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20
Expected Returns in the

Time Series and Cross Section

The first revolution in finance started the modern field. Peaking in the
early 1970s, this revolution established the CAPM, random walk, efficient
markets, portfolio-based view of the world. The pillars of this view are:

1. The CAPM is a good measure of risk and thus a good explanation why
some stocks, portfolios, strategies, or funds (assets, generically) earn
higher average returns than others.

2. Returns are unpredictable. In particular,
(a) Stock returns are close to unpredictable. Prices are close to random

walks; expected returns do not vary greatly through time. ‘‘Techni-
cal analysis’’ that tries to divine future returns from past price and
volume data is nearly useless. Any apparent predictability is either
a statistical artifact which will quickly vanish out of sample, or can-
not be exploited after transactions costs. The near unpredictability
of stock returns is simply stated, but its implications are many and
subtle. (Malkiel [1990] is a classic and easily readable introduction.)
It also remains widely ignored, and therefore is the source of lots of
wasted trading activity.

(b) Bond returns are nearly unpredictable. This is the expectations
model of the term structure. If long-term bond yields are higher
than short-term yields—if the yield curve is upward sloping—this
does not mean that expected long-term bond returns are any higher
than those on short-term bonds. Rather, it means that short-term
interest rates are expected to rise in the future, so you expect to
earn about the same amount on short-term or long-term bonds at
any horizon.

(c) Foreign exchange bets are not predictable. If a country has higher
interest rates than are available in the United States for bonds of a
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similar risk class, its exchange rate is expected to depreciate. After
you convert your investment back to dollars, you expect to make the
same amount of money holding foreign or domestic bonds.

(d) Stock market volatility does not change much through time. Not
only are returns close to unpredictable, they are nearly identically
distributed as well.

3. Professional managers do not reliably outperform simple indices and
passive portfolios once one corrects for risk (beta). While some do better
than the market in any given year, some do worse, and the outcomes
look very much like good and bad luck. Managers who do well in one
year are not more likely to do better than average the next year. The
average actively managed fund does about 1% worse than the market
index. The more actively a fund trades, the lower returns to investors.

Together, these views reflected a guiding principle that asset markets
are, to a good approximation, informationally efficient (Fama 1970, 1991).
This statement means that market prices already contain most information
about fundamental value. Informational efficiency in turn derives from
competition. The business of discovering information about the value of
traded assets is extremely competitive, so there are no easy quick profits
to be made, as there are not in every other well-established and competitive
industry. The only way to earn large returns is by taking on additional risk.

These statements are not doctrinaire beliefs. Rather, they summarize
the findings of a quarter-century of extensive and careful empirical work.
However, every single one of them has now been extensively revised by a
new generation of empirical research. Now, it seems that:

1. There are assets, portfolios, funds, and strategies whose average returns
cannot be explained by their market betas. Multifactor models dominate
the empirical description, performance attribution, and explanation of
average returns.

2. Returns are predictable. In particular,
(a) Variables including the dividend/price ratio and term premium can

in fact predict substantial amounts of stock return variation. This
phenomenon occurs over business cycle and longer horizons. Daily,
weekly, and monthly stock returns are still close to unpredictable,
and ‘‘technical’’ systems for predicting such movements are still close
to useless after transactions costs.

(b) Bond returns are predictable. Though the expectations model works
well in the long run, a steeply upward sloping yield curve means that
expected returns on long-term bonds are higher than on short-term
bonds for the next year.

(c) Foreign exchange returns are predictable. If you buy bonds in a
country whose interest rates are unusually higher than those in the
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United States, you expect a greater return, even after converting
back to dollars.

(d) Stock market volatility does in fact change through time. Conditional
second moments vary through time as well as first moments. Means
and variances do not seem to move in lockstep, so conditional Sharpe
ratios vary through time.

3. Some funds seem to outperform simple indices, even after controlling for
risk through market betas. Fund returns are also slightly predictable: past
winning funds seem to do better in the future, and past losing funds seem
to do worse than average in the future. For a while, this seemed to indicate
that there is some persistent skill in active management. However, we now
see that multifactor performance attribution models explain most fund
persistence: funds earn persistent returns by following fairly mechanical
‘‘styles,’’ not by persistent skill at stock selection (Carhart [1997]).

Again, these views summarize a large body of empirical work. The
strength and interpretation of many results are hotly debated.

This new view of the facts need not overturn the view that markets are
reasonably competitive and therefore reasonably efficient. It does substan-
tially enlarge our view of what activities provide rewards for holding risks,
and it challenges our economic understanding of those risk premia. As of the
early 1970s, asset pricing theory anticipated the possibility and even proba-
bility that expected returns should vary over time and that covariances past
market betas would be important for understanding cross-sectional varia-
tion in expected returns. What took another 15 to 20 years was to see how
important these long-anticipated theoretical possibilities are in the data.

20.1 Time-Series Predictability

I start by looking at patterns in expected returns over time in large
market indices, and then look at patterns in expected returns across
stocks.

Long-Horizon Stock Return Regressions

Dividend/price ratios forecast excess returns on stocks. Regression coef-
ficients and R 2 rise with the forecast horizon. This is a result of the fact that
the forecasting variable is persistent.
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Table 20.1. OLS regressions of percent excess returns (value weighted
NYSE − treasury bill rate) and real dividend growth on the percent VW

dividend/price ratio

R t→t+k = a + b(Dt /Pt ) Dt+k/Dt = a + b(Dt /Pt )
Horizon k
(years) b σ(b) R 2 b σ(b) R 2

1 5.3 (2.0) 0.15 2.0 (1.1) 0.06
2 10 (3.1) 0.23 2.5 (2.1) 0.06
3 15 (4.0) 0.37 2.4 (2.1) 0.06
5 33 (5.8) 0.60 4.7 (2.4) 0.12

R t→t+k indicates the k-year return. Standard errors in parentheses use GMM to correct
for heteroskedasticity and serial correlation. Sample 1947–1996.

The left-hand regression in Table 20.1 gives a simple example of mar-
ket return predictability, updating Fama and French (1988b). ‘‘Low’’ prices
relative to dividends forecast higher subsequent returns. The one-year hori-
zon 0.15 R 2 is not particularly remarkable. However, at longer and longer
horizons larger and larger fractions of return variation are forecastable. At a
five-year horizon 60% of the variation in stock returns is forecastable ahead
of time from the price/dividend ratio.

One can object to dividends as the divisor for prices. However, ratios
formed with just about any sensible divisor work about as well, including
earnings, book value, and moving averages of past prices.

Many other variables forecast excess returns, including the term spread
between long- and short-term bonds, the default spread, the T-bill rate
(Fama and French [1989]), and the earnings/dividend ratio (Lamont
[1998]). Macro variables forecast stock returns as well, including the invest-
ment/capital ratio (Cochrane [1991d]) and the consumption/wealth ratio
(Lettau and Ludvigson [2001b]).

Most of these variables are correlated with each other and correlated
with or forecast business cycles. This fact suggests a natural explanation,
emphasized by Fama and French (1989): Expected returns vary over busi-
ness cycles; it takes a higher risk premium to get people to hold stocks at the
bottom of a recession. When expected returns go up, prices go down. We
see the low prices, followed by the higher returns expected and required by
the market. (Regressions do not have to have causes on the right and effects
on the left. You run regressions with the variable orthogonal to the error
on the right, and that is the case here since the error is a forecasting error.
This is like a regression of actual weather on a weather forecast.)

Table 20.2, adapted from Lettau and Ludvigson (2001b), compares sev-
eral of these variables. At a one-year horizon, both the consumption/wealth
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Table 20.2. Long-horizon return forecasts

Horizon (years) cay d − p d − e rrel R 2

1 6.7 0.18
1 0.14 0.08 0.04
1 −4.5 0.10
1 5.4 0.07 −0.05 −3.8 0.23

6 12.4 0.16
6 0.95 0.68 0.39
6 −5.10 0.03
6 5.9 0.89 0.65 1.36 0.42

The return variable is log excess returns on the S&P composite index. cay is
Lettau and Ludvigson’s consumption to wealth ratio. d − p is the log dividend
yield and d − e is the log earnings yield. rrel is a detrended short-term interest
rate. Sample 1952:4–1998:3.
Source: Lettau and Ludvigson (2001b, Table 6).

ratio and the detrended T-bill rate forecast returns, with R 2 of 0.18 and 0.10,
respectively. At the one-year horizon, these variables are more important
than the dividend/price and dividend/earnings ratios, and their presence
cuts the dividend ratio coefficients in half. However, the d/p and d/e ratios
are slower moving than the T-bill rate and consumption/wealth ratio. They
track decade-to-decade movements as well as business cycle movements. This
means that their importance builds with horizon. By six years, the bulk of the
return forecastability again comes from the dividend ratios, and it is their
turn to cut down the cay and T-bill regression coefficients. The cay and d/e
variables have not been that affected by the late 1990s, while this time period
has substantially cut down our estimate of dividend yield forecastability.

I emphasize that excess returns are forecastable. We have to understand
this as time-variation in the reward for risk, not time-varying interest rates.
One naturally slips in to nonrisk explanations for price variation; for exam-
ple that the current stock market boom is due to life-cycle savings of the baby
boomers. A factor like this does not reference risks; it predicts that interest
rates should move just as much as stock returns.

Persistent d/p; Long Horizons Are Not A Separate Phenomenon
The results at different horizons are not separate facts, but reflections of
a single underlying phenomenon. If daily returns are very slightly pre-
dictable by a slow-moving variable, that predictability adds up over long
horizons. For example, you can predict that the temperature in Chicago
will rise about 1/3 degree per day in the springtime. This forecast explains
very little of the day-to-day variation in temperature, but tracks almost all
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Figure 20.1. Dividend/price ratio of value-weighted NYSE.

of the rise in temperature from January to July. Thus, the R 2 rises with
horizon.

Thus, a central fact driving the predictability of returns is that the
dividend/price ratio is very persistent. Figure 20.1 plots the d/p ratio and
you can see directly that it is extremely slow-moving. Below, I estimate an
AR(1) coefficient around 0.9 in annual data.

To see more precisely how the results at various horizons are linked,
and how they result from the persistence of the d/p ratio, suppose that we
forecast returns with a forecasting variable x , according to

rt+1 = bx t + εt+1, (20.1)

x t+1 = ρx t + δt+1. (20.2)

(Obviously, you de-mean the variables or put constants in the regressions.)
Small values of b and R 2 in (20.1) and a large coefficient ρ in (20.2)
imply mathematically that the long-horizon regression has a large regression
coefficient and large R 2. To see this, write

rt+1 + rt+2 = b(1 + ρ)x t + bδt+1 + εt+1 + εt+2,

rt+1 + rt+2 + rt+3 = b(1 + ρ + ρ2)x t + bρδt+1 + bδt+2 + εt+1 + εt+2 + εt+3.

You can see that with ρ near one, the coefficients increase with horizon,
almost linearly at first and then at a declining rate. The R 2 are a little messier
to work out, but also rise with horizon.
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The numerator in the long-horizon regression coefficient is

E [(rt+1 + rt+2 + · · · + rt+k)x t ], (20.3)

where the symbols represent deviations from their means. With stationary
r and x , E (rt+j x t ) = E (rt+1x t−j ), so this is the same moment as

E [rt+1(x t + x t−1 + x t−2 + · · · )], (20.4)

the numerator of a regression coefficient of one-year returns on many lags
of price/dividend ratios. Of course, if you run a multiple regression of
returns on lags of p/d, you quickly find that most lags past the first do
not help the forecast power. (That statement would be exact in the AR(1)
example.)

This observation shows once again that one-year and multiyear fore-
castability are two sides of the same coin. It also suggests that on a purely
statistical basis, there will not be a huge difference between one-year return
forecasts and multiyear return forecasts (correcting the latter for the serial
correlation of the error term due to overlap). Hodrick (1992) comes to
this conclusion in a careful Monte Carlo experiment, comparing moments
of the form (20.3), (20.4), and E (rt+1x t ). Also, Jegadeesh (1991) used the
equivalence between (20.3) and (20.4) to test for long-horizon predictability
using one-month returns and a moving average of instruments. The direct
or implied multiyear regressions are thus mostly useful for illustrating the
dramatic economic implications of forecastability, rather than as clever statis-
tical tools that enhance power and allow us to distinguish previously foggy
hypotheses.

The slow movement of the price/dividend ratio means that on a purely
statistical basis, return forecastability is an open question. What we really
know (see Figure 20.1) is that low prices relative to dividends and earnings
in the 1950s preceded the boom market of the early 1960s; that the high
price/dividend ratios of the mid-1960s preceded the poor returns of the
1970s; that the low price ratios of the mid-1970s preceded the current boom.
We really have three postwar data points: a once-per-generation change in
expected returns. In addition, the last half of the 1990s has seen a his-
torically unprecedented rise in stock prices and price/dividend ratios (or
any other ratio). This rise has cut the postwar return forecasting regression
coefficient in half. On the other hand, another crash or even just a decade
of poor returns will restore the regression. Data back to the 1600s show
the same pattern, but we are often uncomfortable making inferences from
centuries-old data.
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Volatility

Price/dividend ratios can only move at all if they forecast future returns,
if they forecast future dividend growth, or if there is a bubble—if the
price/dividend ratio is nonstationary and is expected to grow explosively. In
the data, most variation in price/dividend ratios results from varying expected
returns. ‘‘Excess volatility’’—relative to constant discount rate present-value
models—is thus exactly the same phenomenon as forecastable long-horizon
returns.

I also derive the very useful price/dividend and return linearizations.
Ignoring constants (means),

pt − d t = Et

∞∑
j=1

ρ j−1(�d t+j − rt+j ),

rt − Et−1rt = (Et − Et−1)

⎡
⎣ ∞∑

j=0

ρ j�d t+j −
∞∑

j=1

ρ j rt+j

⎤
⎦ ,

rt+1 = �d t+1 − ρ(d t+1 − pt+1) + (d t − pt ).

The volatility test literature starting with Shiller (1981) and LeRoy and
Porter (1981) (see Cochrane [1991c] for a review) started out trying to
make a completely different point. Predictability seems like a sideshow. The
stunning fact about the stock market is its extraordinary volatility. On a
typical day, the value of the U.S. capital stock changes by a full percentage
point, and days of 2 or 3 percentage point changes are not uncommon. In
a typical year it changes by 16 percentage points, and 30 percentage point
changes are not uncommon. Worse, most of that volatility seems not to be
accompanied by any important news about future returns and discount rates.
Thirty percent of the capital stock of the United States vanished in a year and
nobody noticed? Surely, this observation shows directly that markets are ‘‘not
efficient’’—that prices do not correspond to the value of capital—without
worrying about predictability?

It turns out, however, that ‘‘excess volatility’’ is exactly the same thing as
return predictability. Any story you tell about prices that are ‘‘too high’’ or
‘‘too low’’ necessarily implies that subsequent returns will be too low or too
high as prices rebound to their correct levels.

When prices are high relative to dividends (or earnings, cashflow, book
value, or some other divisor), one of three things must be true: (1) Investors
expect dividends to rise in the future. (2) Investors expect returns to be
low in the future. Future cashflows are discounted at a lower than usual
rate, leading to higher prices. (3) Investors expect prices to rise forever,
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giving an adequate return even if there is no growth in dividends. This
statement is not a theory, it is an identity: If the price/dividend ratio is high,
either dividends must rise, prices must decline, or the price/dividend ratio
must grow explosively. The open question is, which option holds for our
stock market? Are prices high now because investors expect future earnings,
dividends, etc. to rise, because they expect low returns in the future, or
because they expect prices to go on rising forever?

Historically, we find that virtually all variation in price/dividend ratios has
reflected varying expected excess returns.

Exact Present-Value Identity
To document this statement, we need to relate current prices to future
dividends and returns. Start with the identity

1 = R−1
t+1R t+1 = R−1

t+1

Pt+1 + Dt+1

Pt
(20.5)

and hence
Pt

Dt
= R−1

t+1

(
1 + Pt+1

Dt+1

)
Dt+1

Dt
.

We can iterate this identity forward and take conditional expectations to
obtain the identity

Pt

Dt
= Et

∞∑
j=1

( j∏
k=1

R−1
t+k�Dt+k

)
, (20.6)

where �Dt ≡ Dt/Dt−1. (We could iterate (20.5) forward to

Pt =
∞∑

j=1

( j∏
k=1

R−1
t+k

)
Dt+j ,

but prices are not stationary, so we cannot find the variance of prices from a
time-series average. Much of the early volatility test controversy centered
on stationarity problems. Equation (20.6) also requires a limiting con-
dition that the price/dividend ratio cannot explode faster than returns,
limj→∞ Et

(∏j
k=1 R−1

t+k

)
Pt+j/Dt+j . I come back to this condition below.)

Equation (20.6) shows that high prices must, mechanically, come from
high future dividend growth or low future returns.

Approximate Identity
The nonlinearity of (20.6) makes it hard to handle, and means that we
cannot use simple time-series tools. You can linearize (20.6) directly with a
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Taylor expansion. (Cochrane [1991a] takes this approach.) Campbell and
Shiller (1988a) approximate the one-period return identity before iterating,
which is algebraically simpler. Start again from the obvious,

1 = R−1
t+1R t+1 = R−1

t+1

Pt+1 + Dt+1

Pt
.

Multiplying both sides by Pt/Dt and massaging the result,

Pt

Dt
= R−1

t+1

(
1 + Pt+1

Dt+1

)
Dt+1

Dt
.

Taking logs, and with lowercase letters denoting logs of uppercase letters,

pt − d t = −rt+1 + �d t+1 + ln
(
1 + e pt+1−d t+1

)
.

Taking a Taylor expansion of the last term about a point P/D = e p−d ,

pt − d t = −rt+1 + �d t+1 + ln
(

1 + P
D

)

+ P/D
1 + P/D

[pt+1 − d t+1 − (p − d)]
= −rt+1 + �d t+1 + k + ρ(pt+1 − d t+1) (20.7)

where

k = ln
(

1 + P
D

)
− ρ( p − d).

Since the average dividend yield is about 4% and average price/dividend
ratio is about 25, ρ is a number very near one. I will use ρ = 0.96 for
calculations,

ρ = P/D
1 + P/D

= 1
1 + D/P

≈ 1 − D/P = 0.96.

Without the constant k, the equation can also apply to deviations from means
or any other point.

Now, iterating forward is easy, and results in the approximate identity

pt − d t = const. +
∞∑

j=1

ρ j−1(�d t+j − rt+j ). (20.8)

(Again, we need a condition that pt − d t does not explode faster than ρ−t ,
limj→∞ ρ j ( pt+j − d t+j ) = 0. I return to this condition below.)
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Since (20.8) holds ex post, we can take conditional expectations and
relate price/dividend ratios to ex ante dividend growth and return forecasts,

pt − d t = const. + Et

∞∑
j=1

ρ j−1(�d t+j − rt+j ). (20.9)

Now it is really easy to see that a high price/dividend ratio must be followed
by high dividend growth �d , or low returns r . Which is it?

Decomposing The Variance of Price/Dividend Ratios
To address this issue, equation (20.8) implies

var(pt − d t ) = cov

⎛
⎝pt − d t ,

∞∑
j=1

ρ j−1�d t+j

⎞
⎠

− cov

⎛
⎝pt − d t ,

∞∑
j=1

ρ j−1rt+j

⎞
⎠ . (20.10)

In words, price/dividend ratios can only vary if they forecast changing divi-
dend growth or if they forecast changing returns. (To derive (20.10) from
(20.8), multiply both sides by (pt − d t ) − E (pt − d t ) and take expectations.)
Notice that both terms on the right-hand side of (20.10) are the numerators
of exponentially weighted long-run regression coefficients.

This is a powerful equation. At first glance, it would seem a reasonable
approximation that returns are unforecastable (the ‘‘random walk’’ hypoth-
esis) and that dividend growth is not forecastable either. But if this were the
case, the price/dividend ratio would have to be a constant. Thus the fact that
the price/dividend ratio varies at all means that either dividend growth or
returns must be forecastable—that the world is not i.i.d.

At a simple level, Table 20.1 includes regressions of long-horizon divi-
dend growth on dividend/price ratios to match the return regressions. The
coefficients in the dividend growth case are much smaller, typically one
standard error from zero, and the R 2 are tiny. Worse, the signs are wrong
in Table 20.1. To the extent that a high price/dividend ratio forecasts any
change in dividends, it seems to forecast a small decline in dividends!

Having seen equation (20.10), one is hungry for estimates. Table 20.3
presents some, taken from Cochrane (1991a). As one might suspect
from Table 20.1, Table 20.3 shows that in the past almost all variation in
price/dividend ratios is due to changing return forecasts.

The elements of the decomposition in (20.10) do not have to be between
0 and 100%. For example, −34, 138 occurs because high prices seem to
forecast lower real dividend growth (though this number is not statistically
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Table 20.3. Variance decomposition of value-weighted
NYSE price/dividend ratio

Dividends Returns

Real −34 138
Std. error 10 32
Nominal 30 85
Std. error 41 19

Table entries are the percent of the variance of the
price/dividend ratio attributable to dividend and return
forecasts, 100 × cov(pt − d t ,

∑15
j=1 ρ j−1�d t+j )/var(pt − d t )

and similarly for returns.

significant). Therefore they must and do forecast really low returns, and
returns must account for more than 100% of price/dividend variation.

This observation solidifies one’s belief in price/dividend ratio forecasts
of returns. Yes, the statistical evidence that price/dividend ratios forecast
returns is weak, and many return forecasting variables have been tried and
discarded, so selection bias is a big worry in forecasting regressions. But the
price/dividend ratio (or price/earning, market book, etc.) has a special
status since it must forecast something. To believe that the price/dividend
ratio is stationary and varies, but does not forecast returns, you have to
believe that the price/dividend ratio does forecast dividends. Given this
choice and Table 20.1, it seems a much firmer conclusion that it forecasts
returns.

It is nonetheless an uncomfortable fact that almost all variation in
price/dividend ratios is due to variation in expected excess returns. How
nice it would be if high prices reflected expectations of higher future cash-
flows. Alas, that seems not to be the case. If not, it would be nice if high
prices reflected lower interest rates. Again, that seems not to be the case.
High prices reflect low risk premia, lower expected excess returns.

Campbell’s Return Decomposition
Campbell (1991) provides a similar decomposition for unexpected returns,

rt − Et−1rt = (Et − Et−1)

⎡
⎣ ∞∑

j=0

ρ j�d t+j −
∞∑

j=1

ρ j rt+j

⎤
⎦ . (20.11)

A positive shock to returns must come from a positive shock to forecast
dividend growth, or from a negative shock to forecast returns.

Since a positive shock to time-t dividends is directly paid as a return (the
first sum starts at j = 0), Campbell finds some fraction of return variation
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is due to current dividends. However, once again, the bulk of index return
variation comes from shocks to future returns, i.e., discount rates.

To derive (20.11), start with the approximate identity (20.8), and move
it back one period,

pt−1 − d t−1 = const. +
∞∑

j=0

ρ j (�d t+j − rt+j ).

Now take innovations of both sides,

0 = (Et − Et−1)

∞∑
j=0

ρ j (�d t+j − rt+j ).

Pulling rt over to the left-hand side, you obtain (20.11). (Problem 3 at the
end of the chapter guides you through an alternative and more constructive
derivation.)

Cross Section
So far, we have concentrated on the index. One can apply the same anal-
ysis to firms. What causes the variation in price/dividend ratios, or, better
book/market ratios (since dividends can be zero) across firms, or over time
for a given firm? Vuolteenaho (1999) applies the same sort of analysis to indi-
vidual stock data. He finds that as much as half of the variation in individual
firm book/market ratios reflects expectations of future cashflows. Much of
the expected cashflow variation is idiosyncratic, while the expected return
variation is common, which is why variation in the index book/market ratio,
like variation in the index dividend/price ratio, is almost all due to varying
expected excess returns.

Bubbles
In deriving the exact and linearized present-value identities, I assumed an
extra condition that the price/dividend ratio does not explode. Without
that condition, and taking expectations of both sides, the exact identity
reads

Pt

Dt
= Et

∞∑
j=1

( j∏
k=1

R−1
t+k�Dt+k

)
+ lim

j→∞
Et

( j∏
k=1

R−1
t+k�Dt+k

)
Pt+j

Dt+j
, (20.12)

and the linearized identity reads

pt − d t = const. + Et

∞∑
j=1

ρ j−1(�d t+j − rt+j )

+ Et lim
j→∞

ρ j (pt+j − d t+j ). (20.13)
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As you can see, the limits in the right-hand sides of (20.12) and (20.13)
are zero if the price/dividend ratio is stationary, or even bounded. For
these terms not to be zero, the price/dividend ratio must be expected to
grow explosively, and faster than R or ρ−1. Especially in the linearized form
(20.13) you can see that stationary r , �d implies stationary p − d if the
last term is zero, and p − d is not stationary if the last term is not zero.
Thus, you might want to rule out these terms just based on the view that
price/dividend ratios do not and are not expected to explode in this way.
You can also invoke economic theory to rule them out. The last terms must
be zero in an equilibrium of infinitely lived agents or altruistically linked
generations. If wealth explodes, optimizing long-lived agents will consume
more. Technically, this limiting condition is a first-order condition for opti-
mality just like the period-to-period first-order condition. The presence of
the last term also presents an arbitrage opportunity in complete markets, as
you can short a security whose price contains the last term, buy the dividends
separately, and eat the difference right away.

On the other hand, there are economic theories that permit the limiting
terms—overlapping generations models, and they capture the interest-
ing possibility of ‘‘rational bubbles’’ that many observers think they see in
markets, and that have sparked a huge literature and a lot of controversy.

An investor holds a security with a rational bubble not for any divi-
dends, but on the expectation that someone else will pay even more for that
security in the future. This does seem to capture the psychology of some
investors from the (alleged, see Garber [2000]) tulip bubble of 17th century
Holland to the dot-com bubble of the millennial United States—why else
would anyone buy Cisco Systems at a price/earnings ratio of 217 and market
capitalization 10 times that of General Motors in early 2000?

A ‘‘rational bubble’’ imposes a little discipline on this centuries-old
description, however, by insisting that the person who is expected to buy
the security in the future also makes the same calculation. He must expect
the price to rise even further. Continuing recursively, the price in a rational
bubble must be expected to rise forever. A Ponzi scheme, in which everyone
knows the game will end at some time, cannot rationally get off the ground.

The expectation that prices will grow at more than a required rate of
return forever does not mean that sample paths do so. For example, consider
the bubble process

Pt+1 =
{

γ RPt , prob = Pt R−1
γ Pt R−1 ,

1, prob = Pt R(γ−1)

γ Pt R−1 .

Figure 20.2 plots a realization of this process with γ = 1.2. This process
yields an expected return R , and the dashed line graphs this expectation
as of the first date. Its price is positive though it never pays dividends. It
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Figure 20.2. Sample path from a simple bubble process. The solid line gives a price realization.
The dashed line gives the expected value of prices as of time zero, i.e., p0R t .

repeatedly grows with a high return γ R for a while and then bursts back to
one. The expected price always grows, though almost all sample paths do not
do so.

Infinity is a long time. It is really hard to believe that prices will rise
forever. The solar system will end at some point; any look at the geological
and evolutionary history of the earth suggests that our species will die out a
lot sooner than that. Thus, the infinity in the bubble must really be a parable
for ‘‘a really long time.’’ But then the ‘‘rational’’ part of the bubble pops—it
must hinge on the expectation that someone will be around to hold the
bag; to buy a security without the expectation of dividends or further price
increases. (The forever part of usual present-value formulas is not similarly
worrying because 99.99% of the value comes from the first few hundred
years of dividends.)

Empirically, bubbles do not appear to be the reason for historical
price/dividend ratio variation. First, price/dividend ratios do seem
stationary. (Craine [1993] runs a unit root test with this conclusion.) Even
if statistical tests are not decisive, as is expected for a slow-moving series
or a series such as that plotted in Figure 20.2, it is hard to believe that
price/dividend ratios can explode rather than revert back to their four-
century average level of about 20 to 25. Second, Table 20.3 shows that
return and dividend forecastability terms add up to 100% of the variance
of price/dividend ratios. In a bubble, we would expect price variation not
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matched by any variation in expected returns or dividends, as is the case in
Figure 20.2.

I close with a warning: The word ‘‘bubble’’ is widely used to mean
very different things. Some people seem to mean any large movement in
prices. Others mean large movements in prices that do correspond to low
or perhaps negative expected excess returns (I think this is what Shiller
[2000] has in mind), rather than a violation of the terminal condition,
but these expected returns are somehow disconnected from the rest of the
economy.

A Simple Model for Digesting Predictability

To unite the various predictability and return observations, I construct
a simple VAR representation for returns, price growth, dividend growth,
dividend/price ratio. I start only with a slow-moving expected return and
unforecastable dividends.

This specification implies that d/p ratios reveal expected returns.
This specification implies return forecastability. To believe in a lower

predictability of returns, you must either believe that dividend growth really
is predictable, or that the d/p ratio is really much more persistent than it
appears to be.

This specification shows that small but persistent changes in expected
returns add up to large price changes.

We have isolated two important features of the long-horizon forecast
phenomenon: dividend/price ratios are highly persistent, and dividend
growth is essentially unforecastable. Starting with these two facts, a simple
VAR representation can tie together many of the predictability and volatility
phenomena.

Start by specifying a slow-moving state variable x t that drives expected
returns, and unforecastable dividend growth,

x t = bx t−1 + δt , (20.14)

rt+1 = x t + εr t+1, (20.15)

�d t+1 = εd t+1. (20.16)

All variables are de-meaned logs. (The term structure models of Chapter 19
were of this form.)

From this specification, using the linearized present-value identity and
return, we can derive a VAR representation for prices, returns, dividends,


