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19
Term Structure of Interest Rates

Term structure models are particularly simple, since bond prices are just
the expected value of the discount factor. In equations, the price at time
t of a zero-coupon bond that comes due at time t + j is P ( j)

t = E t (m t , t+j ).
Thus, once you specify a time-series process for a one-period discount factor
m t , t+1, you can in principle find the price of any bond by chaining together
the discount factors and finding P ( j)

t = Et (m t , t+1m t+1, t+2 . . .m t+j−1, t+j ). As
with option pricing models, this chaining together can be hard to do, and
much of the analytical machinery in term structure models centers on this
technical question. As with option pricing models, there are two equivalent
ways to do the chaining together: Solve the discount factor forward and
take an integral, or find a partial differential equation for prices and solve
it backwards from the maturity date.

19.1 Definitions and Notation

A quick introduction to bonds, yields, holding period returns, forward
rates, and swaps.

p(N )t = log price of N period zero-coupon bond at time t .

y(N ) = − 1
N p(N ) = log yield.

hpr(N )t+1 = p(N −1)
t+1 − p(N )t = log holding period return.

hpr = dP (N , t)
P − 1

P
∂P (N , t)
∂N dt = instantaneous return.

f (N →N +1)
t = p(N )t − p(N +1)

t = forward rate.

f (N , t) = − 1
P
∂P (N , t)
∂N = instantaneous forward rate.
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Bonds

The simplest fixed-income instrument is a zero-coupon bond. A zero-coupon
bond is a promise to pay one dollar (a nominal bond) or one unit of the
consumption good (a real bond) on a specified date. I use a superscript in
parentheses to denote maturity: P (3)

t is the price of a three-year zero-coupon
bond. I will suppress the t subscript when it is not necessary.

I denote logs by lowercase symbols, p(N )t = ln P (N )
t . The log price has a

nice interpretation. If the price of a one-year zero-coupon bond is 0.95, i.e.,
95¢ per dollar face value, the log price is ln(0.95) = −0.051. This means that
the bond sells at a 5% discount. Logs also give the continuously compounded
rate. If we write e rN = 1/P (N ), then the continuously compounded rate is
rN = − ln P (N ).

Coupon bonds are common in practice. For example, a $100 face value
10-year coupon bond may pay $5 every year for 10 years and $100 at 10 years.
(Coupon bonds are often issued with semiannual or more frequent pay-
ments, $2.50 every six months for example.) We price coupon bonds by
considering them as a portfolio of zeros.

Yield

The yield of a bond is the fictional, constant, known, annual, interest rate
that justifies the quoted price of a bond, assuming that the bond does not
default. It is not the rate of return of the bond. From this definition, the
yield of a zero-coupon bond is the number Y (N ) that satisfies

P (N ) = 1[
Y (N )

]N .

Hence

Y (N ) = 1[
P (N )

]1/N , y(N ) = − 1
N

p(N ).

The latter expression nicely connects yields and prices. If the price of a
4-year bond is −0.20 or a 20% discount, that is 5% discount per year, or
a yield of 5%. The yield of any stream of cash flows is the number Y that
satisfies

P =
N∑

j=1

CFj

Y j
.

In general, you have to search for the value Y that solves this equation, given
the cash flows and the price. So long as all cash flows are positive, this is fairly
easy to do.
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As you can see, the yield is just a convenient way to quote the price. In using
yields we make no assumptions. We do not assume that actual interest rates
are known or constant; we do not assume the actual bond is default-free.
Bonds that may default trade at lower prices or higher yields than bonds
that are less likely to default. This only means a higher return if the bond
happens not to default.

Holding Period Returns

If you buy an N -period bond and then sell it—it has now become an (N −
1)-period bond—you achieve a return of

HPR (N )
t+1 = $back

$paid
= P (N −1)

t+1

P (N )
t

(19.1)

or, of course,

hpr(N )t+1 = p(N −1)
t+1 − p(N )t .

We date this return (from t to t + 1) as t + 1 because that is when you find
out its value. If this is confusing, take the time to write returns as HPRt→t+1

and then you will never get lost.
In continuous time, we can easily find the instantaneous holding period

return of bonds with fixed maturity date P (T , t)

hpr = P (T , t +�)− P (T , t)
P (T , t)

,

and, taking the limit,

hpr = dP (T , t)
P

.

However, it is nicer to look for a bond pricing function P (N , t) that fixes
the maturity rather than the date. As in (19.1), we then have to account for
the fact that you sell bonds that have shorter maturity than you buy:

hpr = P (N −�, t +�)− P (N , t)
P (N , t)

= P (N −�, t +�)− P (N , t +�)+ P (N , t +�)− P (N , t)
P (N , t)

,

and, taking the limit

hpr = dP (N , t)
P

− 1
P
∂P (N , t)
∂N

dt . (19.2)
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Forward Rate

The forward rate is defined as the rate at which you can contract today to
borrow or lend money starting at period N , to be paid back at period N +1.

You can synthesize a forward contract from a spectrum of zero-coupon
bonds, so the forward rate can be derived from the prices of zero-coupon
bonds. Here is how. Suppose you buy one N -period zero-coupon bond and
simultaneously sell x(N + 1)-period zero-coupon bonds. Let us track your
cash flow at every date:

Buy N -period Sell x (N + 1)-period
zero zeros Net cash flow

Today 0: −P (N ) + x P (N +1) x P (N +1) − P (N )

Time N : 1 1

Time N + 1: −x −x

Now, choose x so that today’s cash flow is zero:

x = P (N )

P (N +1)
.

You pay or get nothing today, you get $1.00 at N , and you pay P (N )/P (N +1)

at N + 1. You have synthesized a contract signed today for a loan from N to
N + 1—a forward rate! Thus,

F (N →N +1)
t = Forward rate at t for N → N + 1 = P (N )

t

P (N +1)
t

,

and of course

f (N →N +1)
t = p(N )t − p(N +1)

t . (19.3)

People sometimes identify forward rates by the initial date, f (N )t , and some-
times by the ending date, f (N +1)

t . I use the arrow notation when I want to be
really clear about dating a return.

Forward rates have the lovely property that you can always express a
bond price as its discounted present value using forward rates,

p(N )t = p(N )t − p(N −1)
t + p(N −1)

t − p(N −2)
t − · · · − p(2)t − p(1)t + p(1)t

= −f (N −1→N )
t − f (N −2→N −1)

t − · · · − f (1→2)
t − y(1)t
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y(1)t = f (0→1)
t of course), so

p(N )t = −
N −1∑
j=0

f (j→j+1)
t ;

P (N )
t =

( N −1∏
j=0

F (j→j+1)
t

)−1

.

Intuitively, the price today must be equal to the present value of the payoff
at rates you can lock in today.

In continuous time, we can define the instantaneous forward rate

f (N , t) = − 1
P
∂P (N , t)
∂N

= −∂p(Nt )

∂N
. (19.4)

Then, forward rates have the same property that you can express today’s
price as a discounted value using the forward rate,

p(N , t) = −
∫ N

x=0
f (x , t) dx

P (N , t) = e− ∫ N
x=0 f (x , t) dx .

Equations (19.3) and (19.4) express forward rates as derivatives of the
price versus maturity curve. Since yield is related to price, we can relate
forward rates to the yield curve directly. Differentiating the definition of
yield y(N , t) = −p(N , t)/N ,

∂y(N , t)
∂N

= 1
N 2

p(N , t)− 1
N
∂p(N , t)
∂N

= − 1
N

y(N , t)+ 1
N

f (N , t).

Thus,

f (N , t) = y(N , t)+ N
∂y(N , t)
∂N

.

In the discrete case, (19.3) implies

f (N →N +1)
t = −Ny(N )t + (N + 1)y(N +1)

t = y(N +1)
t + N

(
y(N +1)

t − y(N )t

)
.

Forward rates are above the yield curve if the yield curve is rising, and
vice versa.
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Swaps and Options

Swaps are an increasingly popular fixed-income instrument. The simplest
example is a fixed-for-floating swap. Party A may have issued a 10-year fixed
coupon bond. Party B may have issued a 10-year variable-rate bond—a bond
that promises to pay the current one-year rate. (For example, if the current
rate is 5%, the variable-rate issuer would pay $5 for every $100 of face value.
A long-term variable-rate bond is the same thing as rolling over one-period
debt.) They may be unhappy with these choices. For example, the fixed-
rate payer may not want to be exposed to interest rate risk that the present
value of his promised payments rises if interest rates decline. The variable-
rate issuer may want to take on this interest rate risk, betting that rates will
rise or to hedge other commitments. If they are unhappy with these choices,
they can swap the payments. The fixed-rate issuer pays off the variable-rate
coupons, and the variable-rate issuer pays off the fixed-rate coupons. Obvi-
ously, only the difference between fixed and variable rate actually changes
hands.

Swapping the payments is much safer than swapping the bonds. If one
party defaults, the other can drop out of the contract, losing the difference
in price resulting from intermediate interest rate changes, but not losing the
principal. For this reason, and because they match the patterns of cashflows
that companies usually want to hedge, swaps have become very popular tools
for managing interest rate risk. Foreign exchange swaps are also popular:
Party A may swap dollar payments for party B’s yen payments. Obviously,
you do not need to have issued the underlying bonds to enter into a swap
contract—you simply pay or receive the difference between the variable rate
and the fixed rate each period.

The value of a pure floating-rate bond is always exactly one. The value
of a fixed-rate bond varies. Swaps are set up so no money changes hands
initially, and the fixed rate is calibrated so that the present value of the fixed
payments is exactly one. Thus, the ‘‘swap rate’’ is the same thing as the yield
on a comparable coupon bond.

Many fixed-income securities contain options, and explicit options on
fixed-income securities are also popular. The simplest example is a call
option. The issuer may have the right to buy the bonds back at a speci-
fied price. Typically, he will do this if interest rates fall a great deal, making
a bond without this option more valuable. Home mortgages contain an
interesting prepayment option: if interest rates decline, the homeowner
can pay off the loan at face value, and refinance. Options on swaps also
exist; you can buy the right to enter into a swap contract at a future
date. Pricing all of these securities is one of the tasks of term structure
modeling.
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19.2 Yield Curve and Expectations Hypothesis

The expectations hypothesis is three equivalent statements about the pattern
of yields across maturity:
1. The N -period yield is the average of expected future one-period yields.
2. The forward rate equals the expected future spot rate.
3. The expected holding period returns are equal on bonds of all maturities.

The expectations hypothesis is not quite the same thing as risk neutrality,
since it ignores 1/2σ 2 terms that arise when you move from logs to levels.

The yield curve is a plot of yields of zero-coupon bonds as a function of
their maturity. Usually, long-term bond yields are higher than short-term
bond yields—a rising yield curve. Sometimes short yields are higher than
long yields—an inverted yield curve. The yield curve sometimes has humps
or other shapes as well. The expectations hypothesis is the classic theory for
understanding the shape of the yield curve.

More generally, we want to think about the evolution of yields—the
expected value and conditional variance of next period’s yields. This is obvi-
ously the central ingredient for portfolio theory, hedging, derivative pricing,
and economic explanation.

We can state the expectations hypothesis in three mathematically
equivalent forms:

1. The N -period yield is the average of expected future one-period yields

y(N )t = 1
N

Et

(
y(1)t + y(1)t+1 + y(1)t+2 + · · · + y(1)t+N −1

)
(+ risk premium). (19.5)

2. The forward rate equals the expected future spot rate

f (N →N +1)
t = Et

(
y(1)t+N

)
(+ risk premium). (19.6)

3. The expected holding period returns are equal on bonds of all maturities

Et (hpr(N )t+1) = y(1)t (+ risk premium). (19.7)

(The risk premia in (19.5--19.7) are related, but not identical.)

You can see how the expectations hypothesis explains the shape of the
yield curve. If the yield curve is upward sloping—long-term bond yields are
higher than short-term bond yields—the expectations hypothesis says this
is because short-term rates are expected to rise in the future.

You can view the expectations hypothesis as a response to a classic
misconception. If long-term yields are 10% but short-term yields are 5%,
an unsophisticated investor might think that long-term bonds are a better
investment. The expectations hypothesis shows how this may not be true.
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If short rates are expected to rise in the future, this means that you will
roll over the short-term bonds at a really high rate, say 20%, giving the
same long-term return as the high-yielding long term bond. Contrariwise,
when the short-term interest rates rise in the future, long-term bond prices
decline. Thus, the long-term bonds will only give a 5% rate of return for the
first year.

You can see from the third statement that the expectations hypothe-
sis is roughly the same as risk neutrality. If we had said that the expected
level of returns was equal across maturities, that would be the same as
risk neutrality. The expectations hypothesis specifies that the expected
log return is equal across maturities. This is typically a close approxima-
tion to risk neutrality, but not the same thing. If returns are lognormal,
then E (R) = eE (r )+(1/2)σ2(r ). If mean returns are about 10% or 0.1 and the
standard deviation of returns is about 0.1, then 1

2σ
2 is about 0.005, which is

very small but not zero. We could easily specify risk neutrality in the third
expression of the expectations hypothesis, but then it would not imply the
other two; 1

2σ
2 terms would crop up.

The intuition of the third form is clear: risk-neutral investors will adjust
positions until the expected one-period returns are equal on all securities.
Any two ways of getting money from t to t + 1 must offer the same expected
return. The second form adapts the same idea to the choice of locking in a
forward contract versus waiting and borrowing and lending at the spot rate.
Risk-neutral investors will load up on one or the other contract until the
expected returns are the same. Any two ways of getting money from t + N
to t + N + 1 must give the same expected return.

The first form reflects a choice between two ways of getting money from
t to N . You can buy an N -period bond, or roll over N one-period bonds. Risk-
neutral investors will choose one over the other strategy until the expected
N -period return is the same.

The three forms are mathematically equivalent. If every way of getting
money from t to t + 1 gives the same expected return, then so must every
way of getting money from t +1 to t +2, and, chaining these together, every
way of getting money from t to t + 2.

For example, let us show that forward rate = expected future spot rate
implies the yield curve. Start by writing

f (N −1→N )
t = Et

(
y(1)t+N −1

)
.

Add these up over N ,

f (0→1)
t + f (1→2)

t + · · · + f (N −2→N −1)
t + f (N −1→N )

t

= Et

(
y(1)t + y(1)t+1 + y(1)t+2 + · · · + y(1)t+N −1

)
.

The right-hand side is already what we are looking for. Write the left-hand
side in terms of the definition of forward rates, remembering P (0) = 1
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so p(0) = 0,

f (0→1)
t + f (1→2)

t + · · · + f (N −2→N −1)
t + f (N −1→N )

t

= (
p(0)t − p(1)t

)+ (
p(1)t − p(2)t

)+ · · · + (
p(N −1)

t − p(N )t

)
= −p(N )t = Ny(N )t .

You can show all three forms (19.5)--(19.7) are equivalent by following
similar arguments.

It is common to add a constant risk premium and still refer to the result-
ing model as the expectations hypothesis, and I include a risk premium in
parentheses to remind you of this idea. One end of each of the three state-
ments does imply more risk than the other. A forward rate is known while the
future spot rate is not. Long-term bond returns are more volatile than short-
term bond returns. Rolling over short-term real bonds is a riskier long-term
investment than buying a long-term real bond. If real rates are constant,
and the bonds are nominal, then the converse can hold: short-term real
rates can adapt to inflation, so rolling over short nominal bonds can be a
safer long-term real investment than long-term nominal bonds. These risks
will generate expected return premia if they covary with the discount factor,
and our theory should reflect this fact.

If you allow an arbitrary, time-varying risk premium, the model is a tau-
tology, of course. Thus, the entire content of the ‘‘expectations hypothesis’’
augmented with risk premia is in the restrictions on the risk premium. We
will see that the constant risk premium model does not do that well empiri-
cally. One of the main points of term structure models is to quantify the size
and movement over time in the risk premium.

19.3 Term Structure Models—A Discrete-Time Introduction

Term structure models specify the evolution of the short rate and poten-
tially other state variables, and the prices of bonds of various maturities at any
given time as a function of the short rate and other state variables. I examine a
very simple example based on an AR(1) for the short rate and the expectations
hypothesis, which gives a geometric pattern for the yield curve. A good way to
generate term structure models is to write down a process for the discount fac-
tor, and then price bonds as the conditional mean of the discount factor. This
procedure guarantees the absence of arbitrage. I give a very simple example
of an AR(1) model for the log discount factor, which also results in geometric
yield curves.
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A natural place to start in modeling the term structure is to model
yields statistically. You might run regressions of changes in yields on the lev-
els of lagged yields, and derive a model of the mean and volatility of yield
changes. You would likely start with a factor analysis of yield changes and
express the covariance matrix of yields in terms of a few large factors that
describe their common movement. The trouble with this approach is that
you can quite easily reach a statistical representation of yields that implies an
arbitrage opportunity, and you would not want to use such a statistical char-
acterization for economic understanding of yields, for portfolio formation,
or for derivative pricing. For example, a statistical analysis usually suggests
that a first factor should be a ‘‘level’’ factor, in which all yields move up
and down together. It turns out that this assumption violates arbitrage: the
long-maturity yield must converge to a constant.1

How do you model yields without arbitrage? An obvious solution is to use
the discount factor existence theorem: Write a statistical model for a positive
discount factor, and find bond prices as the expectation of this discount
factor. Such a model will be, by construction, arbitrage-free. Conversely,
any arbitrage-free distribution of yields can be captured by some positive
discount factor, so you do not lose any generality with this approach.

A Term Structure Model Based on the Expectations Hypothesis

We can use the expectations hypothesis to give the easiest example of a term
structure model. This one does not start from a discount factor and so may
not be arbitrage-free. It does quickly illustrate what we mean by a ‘‘term
structure model.’’

Suppose the one-period yield follows an AR(1),

y(1)t+1 − δ = ρ(y(1)t − δ)+ εt+1.

Now, we can use the expectations hypothesis (19.5) to calculate yields on
bonds of all maturities as a function of today’s one-period yield,

y(2)t = 1
2

Et

[
y(1)t + y(1)t+1

]

= 1
2

[
y(1)t + δ + ρ(y(1)t − δ)

]

= δ + 1 + ρ

2
(y(1)t − δ).

1 More precisely, the long-term forward rate, if it exists, must never fall. Problem 7 guides
you through a simple calculation. Dybvig, Ingersoll, and Ross (1996) derive the more general
statement.
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Continuing in this way,

(
y(N )t − δ

) = 1
N

1 − ρN

1 − ρ
(y(1)t − δ). (19.8)

You can see some issues that will recur throughout the term structure
models. First, the model (19.8) can describe different yield curve shapes at
different times. If the short rate is below its mean, then there is a smoothly
upward sloping yield curve. Long-term bond yields are higher, as short rates
are expected to increase in the future. If the short rate is above its mean, we
get a smoothly inverted yield curve. This particular model cannot produce
humps or other interesting shapes that we sometimes see in the term struc-
ture. Second, this model predicts no average slope of the term structure:
E (y(N )t ) = E (y(1)t ) = δ. In fact, the average term structure seems to slope up
slightly and more complex models will reproduce this feature. Third, all
bond yields move together in the model. If we were to stack the yields up in
a VAR representation, it would be

y(1)t+1 − δ = ρ
(
y(1)t − δ

)+ εt+1,

y(2)t+1 − δ = ρ
(
y(2)t − δ

)+ 1 + ρ

2
εt+1,

...

y(N )t+1 − δ = ρ
(
y(N )t − δ

)+ 1
N

1 − ρN

1 − ρ
εt+1.

(You can write the right-hand variable in terms of y(1)t if you want—any
one yield carries the same information as any other.) The error terms are
all the same. We can add more factors to the short-rate process, to improve
on this prediction, but most tractable term structure models maintain less
factors than there are bonds, so some perfect factor structure is a common
prediction of term structure models. Fourth, this model has a problem in
that the short rate, following an AR(1), can be negative. Since people can
always hold cash, nominal short rates are never negative, so we want to start
with a short-rate process that does not have this feature. Fifth, this model
shows no conditional heteroskedasticity—the conditional variance of yield
changes is always the same. The term structure data show times of high
and low volatility, and times of high yields and high yield spreads seem to
track these changes in volatility. Modeling conditional volatility is crucially
important for valuing term structure options.

With this simple model in hand, you can see some obvious directions
for generalization. First, we will want more complex driving processes than
an AR(1). For example, a hump shape in the conditionally expected short
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rate will result in a hump-shaped yield curve. If there are multiple state
variables driving the short rate, then we will have multiple factors driving
the yield curve which will also result in more interesting shapes. We also want
processes that keep the short rate positive in all states of nature. Second,
we will want to add some ‘‘market prices of risk’’—some risk premia. This
will allow us to get average yield curves to not be flat, and time-varying risk
premia seem to be part of the yield data. We will also want to check that the
market prices are reasonable, and in particular that there are no arbitrage
opportunities.

The yield curve literature proceeds in exactly this way: specify a short-
rate process and the risk premia, and find the prices of long-term bonds.
The trick is to specify sufficiently complex assumptions to be interesting,
but preserve our ability to solve the models.

The Simplest Discrete-Time Model

The simplest nontrivial model I can think of is to let the log of the discount
factor follow an AR(1) with normally distributed shocks. I write the AR(1)
for the log rather than the level in order to make sure the discount factor
is positive, precluding arbitrage. Log discount factors are typically slightly
negative, so I denote the unconditional mean E (ln m) = −δ

(ln m t+1 + δ) = ρ(ln m t + δ)+ εt+1.

In turn, you can think of this discount factor model as arising from a
consumption-based power utility model with normal errors,

m t+1 = e−δ
(

Ct+1

Ct

)γ
,

ct+1 − ct = ρ(ct − ct−1)+ εt+1.

The term structure literature has only started to explore whether the empiri-
cally successful discount factor processes can be connected empirically back
to macroeconomic events in this way.

From this discount factor, we can find bond prices and yields. This is easy
because the conditional mean and variance of an AR(1) are easy to find.
(I am following the strategy of solving the discount factor forward rather
than solving the price backward.) We need

y(1)t = −p(1)t = − ln Et (e ln m t+1),

y(2)t = −1
2

p(2)t = −1
2

ln Et (e ln m t+1+ln m t+2),


