Inflating our troubles away?

Comments on "Inflating away the public debt? An empirical assessment" by Jens Hilscher Alon Aviv and Ricardo Reis

John H. Cochrane¹

April 22, 2017

¹Hoover Institution, Stanford University. A written version of these comments is on my webpage, http://faculty.chicagobooth.edu/john.cochrane/

Question

$$\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j \frac{u'(c_{t+j})}{u'(c_t)} s_{t+j} = E_t \sum_{j=0}^{\infty} \frac{1}{R_{t,t+j}} s_{t+j}$$
$$\frac{\sum_{j=0}^{\infty} Q_t^{(j)} B_{t-1}^{(j)}}{P_t} = \dots = E_t \sum_{j=0}^{\infty} \frac{1}{R_{t,t+j}} s_{t+j}$$

Real value of government debt = present value of real primary surplus.

Long term debt

- Buffers fiscal shocks $\{s_t\}$ to Q, future P.
- Buffers discount rate shocks $\{R_t\}$.
- Allows slow, expected inflation to devalue debt.

Expected inflation can devalue long-term debt

▶ A rise in E_1P_{1+j} can devalue debt sold before 1, \rightarrow lower s_j .

Inflation and US fiscal problems

"The goal of this paper is to quantify the likelihood of inflation significantly eroding the real value of U.S. debt." "....significantly improving the US long-term fiscal position."

$b_t = rac{B_{t-1}}{P_t} = E_t \sum_{j=0}^\infty rac{1}{R^j} s_{t+j}$		
$rac{b}{Y} = rac{s/Y}{r-g} o rac{s}{Y} = (r-g)rac{b}{Y}$		
	% of GDP	2017 \$
Debt service	< 0.5% - $1%$	\$95b - \$190b
CBO deficits	3% (2017) - 5% (2027)	\$550b - \$950b
Kotlikoff fiscal gap	10.5%	\$2,000b

- ► Social security, medicare, medicaid, pensions, credit guarantees.
- Inflation sensitivity?

US fiscal problems

$$b_t = E_t \sum_{j=0}^{\infty} \frac{1}{R^j} (\tau Y_{t+j} - G_{t+j})$$
$$b + PV(G) = \frac{\tau Y}{r-g}$$

How does the equation hold?

- Massive cuts in growth rate of G. (Expected?)
- Massive negative returns. (Future default, inflation. Unexpected!)
- More g! r g from 2% to 1% doubles $PV(\tau Y) = PV(G)!$
- More τ ? (20% \rightarrow 30% of Y, plus state & local)

$$\frac{d}{d\log\tau}\left(\frac{Y}{r-g}\right) = 1 + \frac{d\log Y}{d\log\tau} + \frac{1}{r-g}\frac{dg}{d\log\tau}$$

"Present value Laffer curve." $1/(r-g) \rightarrow tiny$ growth elasticity ruins the present value of tax receipts.

US fiscal dangers...and inflation

$$b_t = E_t \sum_{j=0}^{\infty} \frac{1}{R^j} (\tau Y_{t+j} - G_{t+j})$$
$$b + PV(G) = \frac{\tau Y}{r-g}$$

How does the equation fall apart?

- Less g! r g from 1% to 2% halves $PV(\tau Y) = PV(G)!$
- ► More r!

$$\frac{s}{Y} = (r - g)\frac{b}{Y}$$

- ▶ r to 5%, b/Y=1, s/Y = 5% GDP = \$1 Trillion.
- "Not so bad r". $r = \delta + \gamma(g n)$. $\gamma = 1$, lose g benefit.
- "Bad r". Lose faith in s, credit spread, r with no g, debt crisis.

A message from the paper. (Inflation?)

- Long term debt, rising r raises debt service right away.
- ► Large inflation does not change surpluses much ↔ surplus crisis resolved by inflation produces larger inflation.