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1
Consumption-Based Model

and Overview

An investor must decide how much to save and how much to consume,
and what portfolio of assets to hold. The most basic pricing equation comes
from the first-order condition for that decision. The marginal utility loss
of consuming a little less today and buying a little more of the asset should
equal the marginal utility gain of consuming a little more of the asset’s payoff
in the future. If the price and payoff do not satisfy this relation, the investor
should buy more or less of the asset. It follows that the asset’s price should
equal the expected discounted value of the asset’s payoff, using the investor’s
marginal utility to discount the payoff. With this simple idea, I present many
classic issues in finance.

Interest rates are related to expected marginal utility growth, and hence
to the expected path of consumption. In a time of high real interest rates, it
makes sense to save, buy bonds, and then consume more tomorrow. There-
fore, high real interest rates should be associated with an expectation of
growing consumption.

Most importantly, risk corrections to asset prices should be driven by the
covariance of asset payoffs with marginal utility and hence by the covariance
of asset payoffs with consumption. Other things equal, an asset that does
badly in states of nature like a recession, in which the investor feels poor and
is consuming little, is less desirable than an asset that does badly in states of
nature like a boom in which the investor feels wealthy and is consuming a
great deal. The former asset will sell for a lower price; its price will reflect a
discount for its ‘‘riskiness,’’ and this riskiness depends on a co-variance, not
a variance.

Marginal utility, not consumption, is the fundamental measure of how
you feel. Most of the theory of asset pricing is about how to go from marginal
utility to observable indicators. Consumption is low when marginal utility
is high, of course, so consumption may be a useful indicator. Consumption
is also low and marginal utility is high when the investor’s other assets have
done poorly; thus we may expect that prices are low for assets that covary
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4 1. Consumption-Based Model and Overview

positively with a large index such as the market portfolio. This is a Capital
Asset Pricing Model. We will see a wide variety of additional indicators for
marginal utility, things against which to compute a covariance in order to
predict the risk-adjustment for prices.

1.1 Basic Pricing Equation

An investor’s first-order conditions give the basic consumption-based
model,

pt = Et

[
β

u ′(ct+1)

u ′(ct )
xt+1

]
.

Our basic objective is to figure out the value of any stream of uncertain
cash flows. I start with an apparently simple case, which turns out to capture
very general situations.

Let us find the value at time t of a payoff x t+1. If you buy a stock today,
the payoff next period is the stock price plus dividend, x t+1 = pt+1 + dt+1.
x t+1 is a random variable: an investor does not know exactly how much he
will get from his investment, but he can assess the probability of various
possible outcomes. Do not confuse the payoff x t+1 with the profit or return;
x t+1 is the value of the investment at time t + 1, without subtracting or
dividing by the cost of the investment.

We find the value of this payoff by asking what it is worth to a typical
investor. To do this, we need a convenient mathematical formalism to cap-
ture what an investor wants. We model investors by a utility function defined
over current and future values of consumption,

U (ct , ct+1) = u(ct ) + βEt

[
u(ct+1)

]
,

where ct denotes consumption at date t . We often use a convenient power
utility form,

u(ct ) = 1
1 − γ

c1−γ
t .

The limit as γ → 1 is1

u(c) = ln(c).

1 To think about this limit precisely, add a constant to the utility function and write it as

u(ct ) = c1−γ
t − 1
1 − γ

.



“chap01” — 2004/10/7 — page 5 — #5

1.1. Basic Pricing Equation 5

The utility function captures the fundamental desire for more
consumption, rather than posit a desire for intermediate objectives such as
mean and variance of portfolio returns. Consumption ct+1 is also random;
the investor does not know his wealth tomorrow, and hence how much he
will decide to consume tomorrow. The period utility function u(·) is increas-
ing, reflecting a desire for more consumption, and concave, reflecting the
declining marginal value of additional consumption. The last bite is never
as satisfying as the first.

This formalism captures investors’ impatience and their aversion to risk,
so we can quantitatively correct for the risk and delay of cash flows. Discount-
ing the future by β captures impatience, and β is called the subjective discount
factor. The curvature of the utility function generates aversion to risk and to
intertemporal substitution: The investor prefers a consumption stream that
is steady over time and across states of nature.

Now, assume that the investor can freely buy or sell as much of the payoff
xt+1 as he wishes, at a price pt . How much will he buy or sell? To find the
answer, denote by e the original consumption level (if the investor bought
none of the asset), and denote by ξ the amount of the asset he chooses to
buy. Then, his problem is

max
{ξ}

u(ct ) + Et

[
βu(ct+1)

]
s.t .

ct = et − ptξ ,

ct+1 = et+1 + xt+1ξ .

Substituting the constraints into the objective, and setting the derivative
with respect to ξ equal to zero, we obtain the first-order condition for an
optimal consumption and portfolio choice,

pt u ′(ct ) = Et

[
βu ′(ct+1)xt+1

]
, (1.1)

or

pt = Et

[
β

u ′(ct+1)

u ′(ct )
xt+1

]
. (1.2)

The investor buys more or less of the asset until this first-order condition
holds.

Equation (1.1) expresses the standard marginal condition for an opti-
mum: pt u ′(ct ) is the loss in utility if the investor buys another unit of the asset;
Et

[
βu ′(ct+1)xt+1

]
is the increase in (discounted, expected) utility he obtains

from the extra payoff at t + 1. The investor continues to buy or sell the asset
until the marginal loss equals the marginal gain.
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Equation (1.2) is the central asset pricing formula. Given the payoff
x t+1 and given the investor’s consumption choice ct , ct+1, it tells you what
market price pt to expect. Its economic content is simply the first-order
conditions for optimal consumption and portfolio formation. Most of the
theory of asset pricing just consists of specializations and manipulations of
this formula.

We have stopped short of a complete solution to the model, i.e., an
expression with exogenous items on the right-hand side. We relate one
endogenous variable, price, to two other endogenous variables, consump-
tion and payoffs. One can continue to solve this model and derive the
optimal consumption choice ct , ct+1 in terms of more fundamental givens of
the model. In the model I have sketched so far, those givens are the income
sequence et , et+1 and a specification of the full set of assets that the investor
may buy and sell. We will in fact study such fuller solutions below. However,
for many purposes one can stop short of specifying (possibly wrongly) all
this extra structure, and obtain very useful predictions about asset prices
from (1.2), even though consumption is an endogenous variable.

1.2 Marginal Rate of Substitution/Stochastic Discount Factor

We break up the basic consumption-based pricing equation into

p = E (mx),

m = β
u ′(ct+1)

u ′(ct )
,

where mt+1 is the stochastic discount factor.

A convenient way to break up the basic pricing equation (1.2) is to
define the stochastic discount factor mt+1

mt+1 ≡ β
u ′(ct+1)

u ′(ct )
. (1.3)

Then, the basic pricing formula (1.2) can simply be expressed as

pt = Et (mt+1xt+1). (1.4)

When it is not necessary to be explicit about time subscripts or the dif-
ference between conditional and unconditional expectation, I will suppress
the subscripts and just write p = E (mx). The price always comes at t , the
payoff at t + 1, and the expectation is conditional on time-t information.
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The term stochastic discount factor refers to the way m generalizes standard
discount factor ideas. If there is no uncertainty, we can express prices via
the standard present value formula

pt = 1
R f

xt+1, (1.5)

where R f is the gross risk-free rate. 1/R f is the discount factor. Since gross
interest rates are typically greater than one, the payoff xt+1 sells ‘‘at a
discount.’’ Riskier assets have lower prices than equivalent risk-free assets,
so they are often valued by using risk-adjusted discount factors,

pi
t = 1

R i
Et

(
xi

t+1

)
.

Here, I have added the i superscript to emphasize that each risky asset i
must be discounted by an asset-specific risk-adjusted discount factor 1/R i .

In this context, equation (1.4) is obviously a generalization, and it says
something deep: one can incorporate all risk corrections by defining a single
stochastic discount factor—the same one for each asset—and putting it
inside the expectation. mt+1 is stochastic or random because it is not known
with certainty at time t . The correlation between the random components
of the common discount factor m and the asset-specific payoff xi generate
asset-specific risk corrections.

mt+1 is also often called the marginal rate of substitution after (1.3). In
that equation, mt+1 is the rate at which the investor is willing to substitute
consumption at time t + 1 for consumption at time t . mt+1 is sometimes also
called the pricing kernel. If you know what a kernel is and you express the
expectation as an integral, you can see where the name comes from. It is
sometimes called a change of measure or a state-price density.

For the moment, introducing the discount factor m and breaking the
basic pricing equation (1.2) into (1.3) and (1.4) is just a notational conve-
nience. However, it represents a much deeper and more useful separation.
For example, notice that p = E (mx) would still be valid if we changed the
utility function, but we would have a different function connecting m to
data. All asset pricing models amount to alternative ways of connecting the
stochastic discount factor to data. At the same time, we will study lots of
alternative expressions of p = E (mx), and we can summarize many empir-
ical approaches by applying them to p = E (mx). By separating our models
into these two components, we do not have to redo all that elaboration for
each asset pricing model.
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1.3 Prices, Payoffs, and Notation

The price pt gives rights to a payoff xt+1. In practice, this notation covers a
variety of cases, including the following:

Price pt Payoff xt+1

Stock pt pt+1 + dt+1

Return 1 R t+1

Price-dividend ratio
pt

dt

(
pt+1

dt+1
+ 1

)
dt+1

dt

Excess return 0 R e
t+1 = R a

t+1 − R b
t+1

Managed portfolio zt zt R t+1

Moment condition E (pt zt ) xt+1zt

One-period bond pt 1

Risk-free rate 1 R f

Option C max(ST − K , 0)

The price pt and payoff xt+1 seem like a very restrictive kind of security.
In fact, this notation is quite general and allows us easily to accommodate
many different asset pricing questions. In particular, we can cover stocks,
bonds, and options and make clear that there is one theory for all asset
pricing.

For stocks, the one-period payoff is of course the next price plus divi-
dend, x t+1 = pt+1 + dt+1. We frequently divide the payoff x t+1 by the price
pt to obtain a gross return

R t+1 ≡ xt+1

pt
.

We can think of a return as a payoff with price one. If you pay one dol-
lar today, the return is how many dollars or units of consumption you get
tomorrow. Thus, returns obey

1 = E (mR),

which is by far the most important special case of the basic formula
p = E (mx). I use capital letters to denote gross returns R , which have a numer-
ical value like 1.05. I use lowercase letters to denote net returns r = R − 1
or log (continuously compounded) returns r = ln(R), both of which have
numerical values like 0.05. One may also quote percent returns 100 × r .

Returns are often used in empirical work because they are typically
stationary over time. (Stationary in the statistical sense; they do not have
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trends and you can meaningfully take an average. ‘‘Stationary’’ does not
mean constant.) However, thinking in terms of returns takes us away from
the central task of finding asset prices. Dividing by dividends and creating a
payoff of the form

xt+1 =
(

1 + pt+1

dt+1

)
dt+1

dt

corresponding to a price pt/dt is a way to look at prices but still to examine
stationary variables.

Not everything can be reduced to a return. If you borrow a dollar at the
interest rate R f and invest it in an asset with return R , you pay no money
out-of-pocket today, and get the payoff R − R f . This is a payoff with a zero
price, so you obviously cannot divide payoff by price to get a return. Zero
price does not imply zero payoff. It is a bet in which the value of the chance of
losing exactly balances the value of the chance of winning, so that no money
changes hands when the bet is made. It is common to study equity strategies
in which one short-sells one stock or portfolio and invests the proceeds in
another stock or portfolio, generating an excess return. I denote any such
difference between returns as an excess return, R e . It is also called a zero-cost
portfolio.

In fact, much asset pricing focuses on excess returns. Our economic
understanding of interest rate variation turns out to have little to do with
our understanding of risk premia, so it is convenient to separate the two
phenomena by looking at interest rates and excess returns separately.

We also want to think about the managed portfolios, in which one invests
more or less in an asset according to some signal. The ‘‘price’’ of such a
strategy is the amount invested at time t , say zt , and the payoff is zt R t+1. For
example, a market timing strategy might make an investment in stocks pro-
portional to the price-dividend ratio, investing less when prices are higher.
We could represent such a strategy as a payoff using zt = a − b(pt/dt ).

When we think about conditioning information below, we will think of
objects like zt as instruments. Then we take an unconditional expectation
of pt zt = Et (mt+1xt+1)zt , yielding E (pt zt ) = E (mt+1xt+1zt ). We can think of
this operation as creating a ‘‘security’’ with payoff xt+1zt , and ‘‘price’’ E (pt zt )

represented with unconditional expectations.
A one-period bond is of course a claim to a unit payoff. Bonds, options,

investment projects are all examples in which it is often more useful to think
of prices and payoffs rather than returns.

Prices and returns can be real (denominated in goods) or nominal
(denominated in dollars); p = E (mx) can refer to either case. The only
difference is whether we use a real or nominal discount factor. If prices,
returns, and payoffs are nominal, we should use a nominal discount factor.
For example, if p and x denote nominal values, then we can create real
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prices and payoffs to write

pt

�t
= Et

[(
β

u ′(ct+1)

u ′(ct )

)
xt+1

�t+1

]
,

where � denotes the price level (cpi). Obviously, this is the same as defining
a nominal discount factor by

pt = Et

[(
β

u ′(ct+1)

u ′(ct )

�t

�t+1

)
xt+1

]
.

To accommodate all these cases, I will simply use the notation price pt

and payoff xt+1. These symbols can denote 0, 1, or zt and R e
t , R t+1, or zt R t+1,

respectively, according to the case. Lots of other definitions of p and x are
useful as well.

1.4 Classic Issues in Finance

I use simple manipulations of the basic pricing equation to introduce
classic issues in finance: the economics of interest rates, risk adjustments,
systematic versus idiosyncratic risk, expected return-beta representations, the
mean-variance frontier, the slope of the mean-variance frontier, time-varying
expected returns, and present-value relations.

A few simple rearrangements and manipulations of the basic pricing
equation p = E (mx) give a lot of intuition and introduce some classic issues
in finance, including determinants of the interest rate, risk corrections,
idiosyncratic versus systematic risk, beta pricing models, and mean-variance
frontiers.

Risk-Free Rate

The risk-free rate is related to the discount factor by

R f = 1/E (m).

With lognormal consumption growth and power utility,

r f
t = δ + γ Et (� ln ct+1) − γ 2

2
σ 2

t (� ln ct+1).
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Real interest rates are high when people are impatient (δ), when expected
consumption growth is high (intertemporal substitution), or when risk is low
(precautionary saving). A more curved utility function (γ ) or a lower elas-
ticity of intertemporal substitution (1/γ ) means that interest rates are more
sensitive to changes in expected consumption growth.

The risk-free rate is given by

R f = 1/E (m). (1.6)

The risk-free rate is known ahead of time, so p = E (mx) becomes 1 =
E (mR f ) = E (m)R f .

If a risk-free security is not traded, we can define R f = 1/E (m) as the
‘‘shadow’’ risk-free rate. In some models it is called the ‘‘zero-beta’’ rate.
If one introduced a risk-free security with return R f = 1/E (m), investors
would be just indifferent to buying or selling it. I use R f to simplify formulas
below with this understanding.

To think about the economics behind real interest rates in a simple
setup, use power utility u ′(c) = c−γ . Start by turning off uncertainty, in
which case

R f = 1
β

(
ct+1

ct

)γ

.

We can see three effects right away:

1. Real interest rates are high when people are impatient, i.e. when β is
low. If everyone wants to consume now, it takes a high interest rate to
convince them to save.

2. Real interest rates are high when consumption growth is high. In times
of high interest rates, it pays investors to consume less now, invest more,
and consume more in the future. Thus, high interest rates lower the
level of consumption today, while raising its growth rate from today to
tomorrow.

3. Real interest rates are more sensitive to consumption growth if the power
parameter γ is large. If utility is highly curved, the investor cares more
about maintaining a consumption profile that is smooth over time, and
is less willing to rearrange consumption over time in response to interest
rate incentives. Thus it takes a larger interest rate change to induce him
to a given consumption growth.

To understand how interest rates behave when there is some uncertainty,
I specify that consumption growth is lognormally distributed. In this case,
the real risk-free rate equation becomes

r f
t = δ + γ Et (� ln ct+1) − γ 2

2
σ 2

t (� ln ct+1), (1.7)
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where I have defined the log risk-free rate r f
t and subjective discount rate δ by

r f
t = ln R f

t ; β = e−δ,

and � denotes the first difference operator,

� ln ct+1 = ln ct+1 − ln ct .

To derive expression (1.7) for the risk-free rate, start with

R f
t = 1/Et

[
β

(
ct+1

ct

)−γ ]
.

Using the fact that normal z means

E
(
e z

) = eE (z)+(1/2)σ2(z)

(you can check this by writing out the integral that defines the expectation),
we have

R f
t = [

e−δe−γ Et (� ln ct+1)+(γ 2/2)σ2
t (� ln ct+1)

]−1
.

Then take logarithms. The combination of lognormal distributions and
power utility is one of the basic tricks to getting analytical solutions in
this kind of model. Section 1.5 shows how to get the same result in
continuous time.

Looking at (1.7), we see the same results as we had with the deterministic
case. Real interest rates are high when impatience δ is high and when con-
sumption growth is high; higher γ makes interest rates more sensitive to
consumption growth. The new σ 2 term captures precautionary savings. When
consumption is more volatile, people with this utility function are more wor-
ried about the low consumption states than they are pleased by the high
consumption states. Therefore, people want to save more, driving down
interest rates.

We can also read the same terms backwards: consumption growth is high
when real interest rates are high, since people save more now and spend it
in the future, and consumption is less sensitive to interest rates as the desire
for a smooth consumption stream, captured by γ , rises. Section 2.2 takes up
the question of which way we should read this equation—as consumption
determining interest rates, or as interest rates determining consumption.

For the power utility function, the curvature parameter γ simul-
taneously controls intertemporal substitution—aversion to a consump-
tion stream that varies over time, risk aversion—aversion to a consumption
stream that varies across states of nature, and precautionary savings, which
turns out to depend on the third derivative of the utility function. This link
is particular to the power utility function. More general utility functions
loosen the links between these three quantities.
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Risk Corrections

Payoffs that are positively correlated with consumption growth have lower
prices, to compensate investors for risk.

p = E (x)

R f
+ cov(m, x),

E (R i) − R f = −R f cov
(
m, R i

)
.

Expected returns are proportional to the covariance of returns with discount
factors.

Using the definition of covariance cov(m, x) = E (mx) − E (m)E (x), we
can write p = E (mx) as

p = E (m)E (x) + cov(m, x). (1.8)

Substituting the risk-free rate equation (1.6), we obtain

p = E (x)

R f
+ cov(m, x). (1.9)

The first term in (1.9) is the standard discounted present-value formula.
This is the asset’s price in a risk-neutral world—if consumption is constant
or if utility is linear. The second term is a risk adjustment. An asset whose
payoff covaries positively with the discount factor has its price raised and
vice versa.

To understand the risk adjustment, substitute back for m in terms of
consumption, to obtain

p = E (x)

R f
+ cov

[
βu ′(ct+1), xt+1

]
u ′(ct )

. (1.10)

Marginal utility u ′(c) declines as c rises. Thus, an asset’s price is lowered if
its payoff covaries positively with consumption. Conversely, an asset’s price
is raised if it covaries negatively with consumption.

Why? Investors do not like uncertainty about consumption. If you buy
an asset whose payoff covaries positively with consumption, one that pays
off well when you are already feeling wealthy, and pays off badly when you
are already feeling poor, that asset will make your consumption stream more
volatile. You will require a low price to induce you to buy such an asset. If you
buy an asset whose payoff covaries negatively with consumption, it helps to
smooth consumption and so is more valuable than its expected payoff might
indicate. Insurance is an extreme example. Insurance pays off exactly when
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wealth and consumption would otherwise be low—you get a check when
your house burns down. For this reason, you are happy to hold insurance,
even though you expect to lose money—even though the price of insurance
is greater than its expected payoff discounted at the risk-free rate.

To emphasize why the covariance of a payoff with the discount factor
rather than its variance determines its riskiness, keep in mind that the
investor cares about the volatility of consumption. He does not care about
the volatility of his individual assets or of his portfolio, if he can keep a steady
consumption. Consider then what happens to the volatility of consumption
if the investor buys a little more ξ of payoff x . σ 2(c) becomes

σ 2(c + ξx) = σ 2(c) + 2ξ cov(c , x) + ξ 2σ 2(x).

For small (marginal) portfolio changes, the covariance between consumption
and payoff determines the effect of adding a bit more of each payoff on the
volatility of consumption.

We use returns so often that it is worth restating the same intuition for
the special case that the price is 1 and the payoff is a return. Start with the
basic pricing equation for returns,

1 = E (mR i).

I denote the return R i to emphasize that the point of the theory is to
distinguish the behavior of one asset R i from another R j .

The asset pricing model says that, although expected returns can vary
across time and assets, expected discounted returns should always be the
same, 1. Applying the covariance decomposition,

1 = E (m)E (R i) + cov(m, R i) (1.11)

and, using R f = 1/E (m),

E (R i) − R f = −R f cov(m, R i) (1.12)

or

E (R i) − R f = −cov
[
u ′(ct+1), R i

t+1

]
E

[
u ′(ct+1)

] . (1.13)

All assets have an expected return equal to the risk-free rate, plus a risk
adjustment. Assets whose returns covary positively with consumption make
consumption more volatile, and so must promise higher expected returns
to induce investors to hold them. Conversely, assets that covary negatively
with consumption, such as insurance, can offer expected rates of return that
are lower than the risk-free rate, or even negative (net) expected returns.
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Much of finance focuses on expected returns. We think of expected
returns increasing or decreasing to clear markets; we offer intuition that
‘‘riskier’’ securities must offer higher expected returns to get investors to
hold them, rather than saying ‘‘riskier’’ securities trade for lower prices so
that investors will hold them. Of course, a low initial price for a given payoff
corresponds to a high expected return, so this is no more than a different
language for the same phenomenon.

Idiosyncratic Risk Does Not Affect Prices

Only the component of a payoff perfectly correlated with the discount
factor generates an extra return. Idiosyncratic risk, uncorrelated with the
discount factor, generates no premium.

You might think that an asset with a volatile payoff is ‘‘risky’’ and thus
should have a large risk correction. However, if the payoff is uncorrelated
with the discount factor m, the asset receives no risk correction to its price,
and pays an expected return equal to the risk-free rate! In equations, if

cov(m, x) = 0,

then

p = E (x)

R f
,

no matter how large σ 2(x). This prediction holds even if the payoff x is
highly volatile and investors are highly risk averse. The reason is simple: if
you buy a little bit more of such an asset, it has no first-order effect on the
variance of your consumption stream.

More generally, one gets no compensation or risk adjustment for hold-
ing idiosyncratic risk. Only systematic risk generates a risk correction. To give
meaning to these words, we can decompose any payoff x into a part corre-
lated with the discount factor and an idiosyncratic part uncorrelated with
the discount factor by running a regression,

x = proj(x |m) + ε.

Then, the price of the residual or idiosyncratic risk ε is zero, and the price
of x is the same as the price of its projection on m. The projection of x
on m is of course that part of x which is perfectly correlated with m. The
idiosyncratic component of any payoff is that part uncorrelated with m. Thus
only the systematic part of a payoff accounts for its price.
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Projection means linear regression without a constant,

proj(x |m) = E (mx)

E (m2)
m.

You can verify that regression residuals are orthogonal to right-hand vari-
ables E (mε) = 0 from this definition. E (mε) = 0 of course means that the
price of ε is zero,

p(proj(x |m)) = p
(

E (mx)

E (m2)
m

)
= E

(
m2 E (mx)

E (m2)

)
= E (mx) = p(x).

The words ‘‘systematic’’ and ‘‘idiosyncratic’’ are defined differently in
different contexts, which can lead to some confusion. In this decomposi-
tion, the residuals ε can be correlated with each other, though they are not
correlated with the discount factor. The APT starts with a factor-analytic
decomposition of the covariance of payoffs, and the word ‘‘idiosyncratic’’
there is reserved for the component of payoffs uncorrelated with all of the
other payoffs.

Expected Return-Beta Representation

We can write p = E (mx) as

E (R i) = R f + βi ,mλm .

We can express the expected return equation (1.12), for a return R i , as

E (R i) = R f +
(

cov(R i , m)

var(m)

)(
− var(m)

E (m)

)
(1.14)

or
E (R i) = R f + βi ,mλm , (1.15)

where βi ,m is the regression coefficient of the return R i on m. This is a beta
pricing model. It says that each expected return should be proportional to the
regression coefficient, or beta, in a regression of that return on the discount
factor m. Notice that the coefficient λm is the same for all assets i , while the
βi ,m varies from asset to asset. The λm is often interpreted as the price of risk
and the β as the quantity of risk in each asset. As you can see, the price of
risk λm depends on the volatility of the discount factor.

Obviously, there is nothing deep about saying that expected returns are
proportional to betas rather than to covariances. There is a long historical
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tradition and some minor convenience in favor of betas. The betas refer to
the projection of R on m that we studied above, so you see again a sense in
which only the systematic component of risk matters.

With m = β(ct+1/ct )
−γ , we can take a Taylor approximation of

equation (1.14) to express betas in terms of a more concrete variable,
consumption growth, rather than marginal utility. The result, which I
derive more explicitly and conveniently in the continuous-time limit (1.38)
below, is

E (R i) = R f + βi , �cλ�c , (1.16)

λ�c = γ var(�c).

Expected returns should increase linearly with their betas on consumption
growth itself. In addition, though it is treated as a free parameter in many
applications, the factor risk premium λ�c is determined by risk aversion and
the volatility of consumption. The more risk averse people are, or the riskier
their environment, the larger an expected return premium one must pay
to get investors to hold risky (high beta) assets.

Mean-Variance Frontier

All asset returns lie inside a mean-variance frontier. Assets on the frontier
are perfectly correlated with each other and with the discount factor. Returns
on the frontier can be generated as portfolios of any two frontier returns. We
can construct a discount factor from any frontier return (except R f ), and an
expected return-beta representation holds using any frontier return (except
R f ) as the factor.

Asset pricing theory has focused a lot on the means and variances of asset
returns. Interestingly, the set of means and variances of returns is limited.
All assets priced by the discount factor m must obey

∣∣E (R i) − R f
∣∣ ≤ σ(m)

E (m)
σ (R i). (1.17)

To derive (1.17) write for a given asset return R i

1 = E (mR i) = E (m)E (R i) + ρm, Ri σ(R i)σ (m)

and hence

E (R i) = R f − ρm, Ri
σ(m)

E (m)
σ (R i). (1.18)
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Correlation coefficients cannot be greater than 1 in magnitude, leading
to (1.17).

This simple calculation has many interesting and classic implications.

1. Means and variances of asset returns must lie in the wedge-shaped region
illustrated in Figure 1.1. The boundary of the mean-variance region in
which assets can lie is called the mean-variance frontier. It answers a nat-
urally interesting question, ‘‘how much mean return can you get for a
given level of variance?’’

2. All returns on the frontier are perfectly correlated with the discount
factor: the frontier is generated by |ρm, Ri | = 1. Returns on the upper
part of the frontier are perfectly negatively correlated with the discount
factor and hence positively correlated with consumption. They are ‘‘max-
imally risky’’ and thus get the highest expected returns. Returns on the
lower part of the frontier are perfectly positively correlated with the dis-
count factor and hence negatively correlated with consumption. They
thus provide the best insurance against consumption fluctuations.

3. We can go beyond perfect correlation. Consider a payoff m/E (m2). Its
price is E (m2)/E (m2) = 1, so it is a return. It is on the mean-variance
frontier. Thus, if we know m, we can construct a mean-variance effi-
cient return. We will expand on this theme in Chapter 5, in an explicitly
incomplete market.

4. All frontier returns are also perfectly correlated with each other, since
they are all perfectly correlated with the discount factor. This fact implies
that we can span or synthesize any frontier return from two such returns.
For example, if you pick any single frontier return R m , then all frontier

Figure 1.1. Mean-variance frontier. The mean and standard deviation of all assets priced by
a discount factor m must lie in the wedge-shaped region.
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returns R mv must be expressible as

R mv = R f + a
(
R m − R f

)

for some number a.
5. Since each point on the mean-variance frontier is perfectly correlated

with the discount factor, we must be able to pick constants a, b, d , e such
that

m = a + bR mv ,

R mv = d + em.

Thus, any mean-variance efficient return carries all pricing information. Given
a mean-variance efficient return and the risk-free rate, we can find a
discount factor that prices all assets and vice versa.

6. Given a discount factor, we can also construct a single-beta representa-
tion, so expected returns can be described in a single-beta representation using
any mean-variance efficient return (except the risk-free rate),

E (R i) = R f + βi ,mv

[
E (R mv) − R f

]
.

The essence of the beta pricing model is that, even though the means
and standard deviations of returns fill out the space inside the mean-
variance frontier, a graph of mean returns versus betas should yield a
straight line. Since the beta model applies to every return including R mv

itself, and R mv has a beta of 1 on itself, we can identify the factor risk
premium as λ = E (R mv − R f ).

The last two points suggest an intimate relationship between discount
factors, beta models, and mean-variance frontiers. I explore this relation
in detail in Chapter 6. A problem at the end of this chapter guides you
through the algebra to demonstrate points 5 and 6 explicitly.

7. We can plot the decomposition of a return into a ‘‘priced’’ or ‘‘systematic’’
component and a ‘‘residual,’’ or ‘‘idiosyncratic’’ component as shown in
Figure 1.1. The priced part is perfectly correlated with the discount factor,
and hence perfectly correlated with any frontier return. The residual or
idiosyncratic part generates no expected return, so it lies flat as shown in
the figure, and it is uncorrelated with the discount factor or any frontier
return. Assets inside the frontier or even on the lower portion of the
frontier are not ‘‘worse’’ than assets on the frontier. The frontier and
its internal region characterize equilibrium asset returns, with rational
investors happy to hold all assets. You would not want to put your whole
portfolio in one ‘‘inefficient’’ asset, but you are happy to put some wealth
in such assets.
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Slope of the Mean-Standard Deviation
Frontier and Equity Premium Puzzle

The Sharpe ratio is limited by the volatility of the discount factor. The
maximal risk-return trade-off is steeper if there is more risk or more risk
aversion, ∣∣∣∣E (R) − R f

σ(R)

∣∣∣∣ ≤ σ(m)

E (m)
≈ γ σ(� ln c).

This formula captures the equity premium puzzle, which suggests that either
people are very risk averse, or the stock returns of the last 50 years were good
luck which will not continue.

The ratio of mean excess return to standard deviation

E (R i) − R f

σ(R i)

is known as the Sharpe ratio. It is a more interesting characterization of a
security than the mean return alone. If you borrow and put more money
into a security, you can increase the mean return of your position, but you
do not increase the Sharpe ratio, since the standard deviation increases at
the same rate as the mean.

The slope of the mean-standard deviation frontier is the largest available
Sharpe ratio, and thus is naturally interesting. It answers ‘‘how much more
mean return can I get by shouldering a bit more volatility in my portfolio?’’

Let R mv denote the return of a portfolio on the frontier. From
equation (1.17), the slope of the frontier is

∣∣∣∣E (R mv) − R f

σ(R mv)

∣∣∣∣ = σ(m)

E (m)
= σ(m)R f .

Thus, the slope of the frontier is governed by the volatility of the discount
factor.

For an economic interpretation, again consider the power utility
function, u ′(c) = c−γ ,

∣∣∣∣E (R mv) − R f

σ(R mv)

∣∣∣∣ = σ
[
(ct+1/ct )

−γ
]

E
[(

ct+1/ct

)−γ ] . (1.19)

The standard deviation on the right hand side is large if consumption is
volatile or if γ is large. We can state this approximation precisely using the
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lognormal assumption. If consumption growth is lognormal,

∣∣∣∣E (R mv) − R f

σ(R mv)

∣∣∣∣ =
√

e γ 2σ2(� ln ct+1) − 1 ≈ γ σ(� ln c). (1.20)

(A problem at the end of the chapter guides you through the algebra of
the first equality. The relation is exact in continuous time, and thus the
approximation is easiest to derive by reference to the continuous-time result;
see Section 1.5.)

Reading the equation, the slope of the mean-standard deviation frontier is
higher if the economy is riskier—if consumption is more volatile—or if investors
are more risk averse. Both situations naturally make investors more reluc-
tant to take on the extra risk of holding risky assets. Both situations also
raise the slope of the expected return-beta line of the consumption beta
model, (1.16). (Or, conversely, in an economy with a high Sharpe ratio, low
risk-aversion investors should take on so much risk that their consumption
becomes volatile.)

In postwar U.S. data, the slope of the historical mean-standard deviation
frontier, or of average return-beta lines, is much higher than reasonable risk
aversion and consumption volatility estimates suggest. This is the ‘‘equity
premium puzzle.’’ Over the last 50 years in the United States, real stock
returns have averaged 9% with a standard deviation of about 16%, while the
real return on treasury bills has been about 1%. Thus, the historical annual
market Sharpe ratio has been about 0.5. Aggregate nondurable and services
consumption growth had a mean and standard deviation of about 1%. We
can only reconcile these facts with (1.20) if investors have a risk-aversion
coefficient of 50!

Obvious ways of generalizing the calculation just make matters worse.
Equation (1.20) relates consumption growth to the mean-variance frontier
of all contingent claims. Market indices with 0.5 Sharpe ratios are if anything
inside that frontier, so recognizing market incompleteness makes matters
worse. Aggregate consumption has about 0.2 correlation with the market
return, while the equality (1.20) takes the worst possible case that consump-
tion growth and asset returns are perfectly correlated. If you add this fact,
you need risk aversion of 250 to explain the market Sharpe ratio! Individu-
als have riskier consumption streams than aggregate, but as their risk goes
up their correlation with any aggregate must decrease proportionally, so to
first order recognizing individual risk will not help either.

Clearly, either (1) people are a lot more risk averse than we might have
thought, (2) the stock returns of the last 50 years were largely good luck
rather than an equilibrium compensation for risk, or (3) something is deeply
wrong with the model, including the utility function and use of aggregate
consumption data. This ‘‘equity premium puzzle’’ has attracted the attention
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of a lot of research in finance, especially on the last item. I return to the
equity premium in more detail in Chapter 21.

Random Walks and Time-Varying Expected Returns

If investors are risk neutral, returns are unpredictable, and prices follow
martingales. In general, prices scaled by marginal utility are martingales, and
returns can be predictable if investors are risk averse and if the conditional
second moments of returns and discount factors vary over time. This is more
plausible at long horizons.

So far, we have concentrated on the behavior of prices or expected
returns across assets. We should also consider the behavior of the price
or return of a given asset over time. Going back to the basic first-order
condition,

pt u ′(ct ) = Et [βu ′(ct+1)(pt+1 + dt+1)]. (1.21)

If investors are risk neutral, i.e., if u(c) is linear or there is no variation
in consumption, if the security pays no dividends between t and t + 1, and
for short time horizons where β is close to 1, this equation reduces to

pt = Et (pt+1).

Equivalently, prices follow a time-series process of the form

pt+1 = pt + εt+1.

If the variance σ 2
t (εt+1) is constant, prices follow a random walk. More gen-

erally, prices follow a martingale. Intuitively, if the price today is a lot lower
than investors’ expectations of the price tomorrow, then investors will try to
buy the security. But this action will drive up the price of the security until
the price today does equal the expected price tomorrow. Another way of
saying the same thing is that returns should not be predictable; dividing by
pt , expected returns Et (pt+1/pt ) = 1 should be constant; returns should be
like coin flips.

The more general equation (1.21) says that prices should follow a mar-
tingale after adjusting for dividends and scaling by marginal utility. Since
martingales have useful mathematical properties, and since risk neutral-
ity is such a simple economic environment, many asset pricing results are
easily derived by scaling prices and dividends by discounted marginal util-
ity first, and then using ‘‘risk-neutral’’ formulas and risk-neutral economic
arguments.
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Since consumption and risk aversion do not change much day to day, we
might expect the random walk view to hold pretty well on a day-to-day basis.
This idea contradicts the still popular notion that there are ‘‘systems’’ or
‘‘technical analysis’’ by which one can predict where stock prices are going
on any given day. The random walk view has been remarkably successful.
Despite decades of dredging the data, and the popularity of media reports
that purport to explain where markets are going, trading rules that reliably
survive transactions costs and do not implicitly expose the investor to risk
have not yet been reliably demonstrated.

However, more recently, evidence has accumulated that long-horizon
excess returns are quite predictable, and to some this evidence indicates that
the whole enterprise of economic explanation of asset returns is flawed. To
think about this issue, write our basic equation for expected returns as

Et (R t+1) − R f
t = −covt (mt+1, R t+1)

Et (mt+1)

= −σt (mt+1)

Et (mt+1)
σt (R t+1)ρt (mt+1, R t+1) (1.22)

≈ γtσt (�ct+1)σt (R t+1)ρt (mt+1, R t+1),

where �ct+1 denotes consumption growth.
I include the t subscripts to emphasize that the relation applies to con-

ditional moments. Sometimes, the conditional mean or other moment of a
random variable is different from its unconditional moment. Conditional on
tonight’s weather forecast, you can better predict rain tomorrow than just
knowing the average rain for that date. In the special case that random vari-
ables are i.i.d. (independent and identically distributed), like coin flips, the
conditional and unconditional moments are the same, but that is a special
case and not likely to be true of asset prices, returns, and macroeconomic
variables. In the theory so far, we have thought of an investor, today, forming
expectations of payoffs, consumption, and other variables tomorrow. Thus,
the moments are really all conditional, and if we want to be precise we should
include some notation to express this fact. I use subscripts Et (xt+1) to denote
conditional expectation; the notation E (xt+1|It ) where It is the information
set at time t is more precise but a little more cumbersome.

Examining equation (1.22), we see that returns can be somewhat
predictable—the expected return can vary over time. First, if the conditional
variance of returns changes over time, we might expect the conditional
mean return to vary as well—the return can just move in and out along a line
of constant Sharpe ratio. This explanation does not seem to help much in
the data; variables that forecast means do not seem to forecast variances and
vice versa. Unless we want to probe the conditional correlation, predictable
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excess returns have to be explained by changing risk—σt (�ct+1)—or chang-
ing risk aversion γ . It is not plausible that risk or risk aversion change at
daily frequencies, but fortunately returns are not predictable at daily fre-
quencies. It is much more plausible that risk and risk aversion change over
the business cycle, and this is exactly the horizon at which we see predictable
excess returns. Models that make this connection precise are a very active
area of current research.

Present-Value Statement

pt = Et

∞∑
j=1

mt , t+j dt+j .

It is convenient to use only the two-period valuation, thinking of a price
pt and a payoff xt+1. But there are times when we want to relate a price to the
entire cash flow stream, rather than just to one dividend and next period’s
price.

The most straightforward way to do this is to write out a longer-term
objective,

Et

∞∑
j=0

β j u(ct+j ).

Now suppose an investor can purchase a stream {dt+j } at price pt . As with
the two-period model, his first-order condition gives us the pricing formula
directly,

pt = Et

∞∑
j=1

β j u ′(ct+j )

u ′(ct )
dt+j = Et

∞∑
j=1

mt , t+j dt+j . (1.23)

You can see that if this equation holds at time t and time t + 1, then we
can derive the two-period version

pt = Et [mt+1(pt+1 + dt+1)]. (1.24)

Thus, the infinite-period and two-period models are equivalent.
(Going in the other direction is a little tougher. If you chain

together (1.24), you get (1.23) plus an extra term. To get (1.23) you also
need the ‘‘transversality condition’’ limj→∞ Et [mt , t+j pt+j ] = 0. This is an
extra first-order condition of the infinite-period investor, which is not
present with overlapping generations of two-period investors. It rules out
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‘‘bubbles’’ in which prices grow so fast that people will buy now just to resell
at higher prices later, even if there are no dividends.)

From (1.23) we can write a risk adjustment to prices, as we did with
one-period payoffs,

pt =
∞∑

j=1

Et dt+j

R f
t , t+j

+
∞∑

j=1

covt (dt+j , m t ,t+j ),

where R f
t , t+j ≡ Et (mt , t+j )

−1 is the j period interest rate. Again, assets
whose dividend streams covary negatively with marginal utility, and posi-
tively with consumption, have lower prices, since holding those assets gives
the investor a more volatile consumption stream. (It is common instead
to write prices as a discounted value using a risk-adjusted discount factor,
e.g., pi

t = ∑∞
j=1 Et d i

t+j/(R
i) j , but this approach is difficult to use correctly

for multiperiod problems, especially when expected returns can vary over
time.)

At a deeper level, the expectation in the two-period formula p = E (mx)

sums over states of nature. Equation (1.23) just sums over time as well and
is mathematically identical.

1.5 Discount Factors in Continuous Time

Continuous-time versions of the basic pricing equations.

Discrete Continuous

pt = Et

∞∑
j=1

β j u ′(ct+j )

u ′(ct )
Dt+j pt u ′(ct ) = Et

∫ ∞

s=0
e−δsu ′(ct+s)Dt+s ds

mt+1 = β
u ′(ct+1)

u ′(ct )
�t = e−δt u ′(ct )

p = E (mx) 0 = �D dt + Et [d(�p)]

E (R) = R f − R f cov(m, R) Et

(
dp
p

)
+ D

p
dt = r f

t dt − Et

[
d�

�

dp
p

]

It is often convenient to express asset pricing ideas in the language
of continuous-time stochastic differential equations rather than discrete-
time stochastic difference equations as I have done so far. The appendix


