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12
Regression-Based Tests of

Linear Factor Models

The next four chapters study the question, how should we estimate and
evaluate linear factor models: models of the form p = E (mx), m = b ′f or
equivalently E (R e ) = β ′λ? These models are by far the most common in
empirical asset pricing, and there is a large literature on econometric tech-
niques to estimate and evaluate them. Each technique focuses on the same
questions: how to estimate parameters, how to calculate standard errors of
the estimated parameters, how to calculate standard errors of the pricing
errors, and how to test the model, usually with a test statistic of the form
α̂′V −1α̂.

I start in this chapter with simple and long-standing time-series and
cross-sectional regression tests. In Chapter 13, I pursue the GMM approach
to the model expressed in p = E (mx), m = b ′f form. Chapter 14 summa-
rizes the principle of maximum likelihood estimation and derives maximum
likelihood estimates and tests. Finally, Chapter 15 compares the different
approaches.

As always, the theme is the underlying unity. All of the techniques come
down to one of two basic ideas: time-series regression or cross-sectional
regression. Time-series regression turns out to be a limiting case of cross-
sectional regression. The GMM, p = E (mx) approach turns out to be almost
identical to cross-sectional regressions. Maximum likelihood (with appro-
priate statistical assumptions) justifies the time-series and cross-sectional
regression approaches. The formulas for parameter estimates, standard
errors, and test statistics are all strikingly similar.
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12.1 Time-Series Regressions

When the factor is also a return, we can evaluate the model

E (R ei) = βi E ( f )

by running OLS time-series regressions

R ei
t = αi + βi ft + εi

t , t = 1, 2, . . . , T ,

for each asset. The OLS distribution formulas (with corrected standard errors)
provide standard errors of α and β.

With errors that are i.i.d. over time, homoskedastic, and independent of
the factors, the asymptotic joint distribution of the intercepts gives the model
test statistic,

T
[

1 +
(

ET ( f )

σ̂ ( f )

)2]−1

α̂′�̂−1α̂ ∼ χ 2
N .

The Gibbons--Ross--Shanken test is a multivariate, finite-sample counterpart
to this statistic, when the errors are also normally distributed,

T − N − K
N

(
1 + ET ( f )′�̂−1ET ( f )

)−1
α̂′�̂−1α̂ ∼FN , T −N −K .

I show how to construct the same test statistics with heteroskedastic and
autocorrelated errors via GMM.

I start with the simplest case. We have a factor pricing model with a
single factor. The factor is an excess return (for example, the CAPM, with
R em = R m − R f ), and the test assets are all excess returns. We express the
model in expected return-beta form. The betas are defined by regression
coefficients

R ei
t = αi + βi ft + εi

t (12.1)

and the model states that expected returns are linear in the betas:

E (R ei) = βiE ( f ). (12.2)

Since the factor is also an excess return, the model applies to the factor as
well, so E ( f ) = 1 × λ.

Comparing the model (12.2) and the expectation of the time-series
regression (12.1), we see that the model has one and only one implication for
the data: all the regression intercepts αi should be zero. The regression intercepts
are equal to the pricing errors.

Given this fact, Black, Jensen, and Scholes (1972) suggested a natural
strategy for estimation and evaluation: Run time-series regressions (12.1) for
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each test asset. The estimate of the factor risk premium is just the sample
mean of the factor,

λ̂ = ET ( f ).

Then, use standard OLS formulas for a distribution theory of the para-
meters. In particular, you can use t -tests to check whether the pricing errors
α are in fact zero. These distributions are usually presented for the case that
the regression errors in (12.1) are uncorrelated and homoskedastic, but
the formulas in Section 11.4 show easily how to calculate standard errors for
arbitrary error covariance structures.

We also want to know whether all the pricing errors are jointly equal
to zero. This requires us to go beyond standard formulas for the regres-
sion (12.1) taken alone, as we want to know the joint distribution of α

estimates from separate regressions running side by side but with errors
correlated across assets (E (εi

t ε
j
t ) �= 0). (We can think of (12.1) as a panel

regression, and then it is a test whether the firm dummies are jointly zero.)
The classic form of these tests assume no autocorrelation or heteroskedas-
ticity. Dividing the α̂ regression coefficients by their variance-covariance
matrix leads to a χ 2 test,

T

[
1 +

(
ET ( f )

σ̂ ( f )

)2
]−1

α̂′�̂−1α̂ ∼ χ 2
N , (12.3)

where ET ( f ) denotes sample mean, σ̂ 2( f ) denotes sample variance, α̂ is a
vector of the estimated intercepts,

α̂ = [
α̂1 α̂2 · · · α̂N

]′
.

�̂ is the residual covariance matrix, i.e., the sample estimate of E (εtε
′
t ) = �,

where
εt = [

ε1
t ε2

t · · · εN
t

]′
.

As usual when testing hypotheses about regression coefficients, this
test is valid asymptotically. The asymptotic distribution theory assumes that
σ 2( f ) (i.e., X ′X ) and � have converged to their probability limits; there-
fore, it is asymptotically valid even though the factor is stochastic and � is
estimated, but it ignores those sources of variation in a finite sample. It does
not require that the errors are normal, relying on the central limit theorem
so that α̂ is normal. I derive (12.3) below.

Also as usual in a regression context, we can derive a finite-sample F
distribution for the hypothesis that a set of parameters are jointly zero,

T − N − 1
N

[
1 +

(
ET ( f )

σ̂ ( f )

)2]−1

α̂′�̂−1α̂ ∼ FN , T −N −1. (12.4)
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This is the Gibbons, Ross, and Shanken (1989) or ‘‘GRS’’ test statistic. The
F distribution recognizes sampling variation in �̂, which is not included
in (12.3). This distribution requires that the errors ε are normal as well as
uncorrelated and homoskedastic. With normal errors, the α̂ are normal and
�̂ is an independent Wishart (the multivariate version of a χ 2), so the ratio
is F . This distribution is exact in a finite sample.

Tests (12.3) and (12.4) have a very intuitive form. The basic part of the
test is a quadratic form in the pricing errors, α̂′�̂−1α̂. If there were no βf in
the model, then the α̂ would simply be the sample mean of the regression
errors εt . Assuming i.i.d. εt , the variance of their sample mean is just 1/T �.
Thus, if we knew �, then T α̂′�−1α̂ would be a sum of squared sample means
divided by their variance-covariance matrix, which would have an asymptotic
χ 2

N distribution, or a finite-sample χ 2
N distribution if the εt are normal. But

we have to estimate �, which is why the finite-sample distribution is F rather
than χ 2. We also estimate the β, and the second term in (12.3) and (12.4)
accounts for that fact.

Recall that a single-beta representation exists if and only if the reference
return is on the mean-variance frontier. Thus, the test can also be inter-
preted as a test whether f is ex ante mean-variance efficient—whether it is
on the mean-variance frontier using population moments—after accounting
for sampling error. Even if f is on the true or ex ante mean-variance fron-
tier, other returns will outperform it in sample due to luck, so the return f
will usually be inside the ex post mean-variance frontier—i.e., the frontier
drawn using sample moments. Still, it should not be too far inside the sam-
ple frontier. Gibbons, Ross, and Shanken show that the test statistic can be
expressed in terms of how far inside the ex post frontier the return f is,

T − N − 1
N

(
µq/σq

)2 − (
ET ( f )/σ̂ ( f )

)2

1 + (
ET ( f )/σ̂ ( f )

)2 . (12.5)

(
µq/σq

)2
is the Sharpe ratio of the ex post tangency portfolio (maximum

ex post Sharpe ratio) formed from the test assets plus the factor f . The last
term in the numerator is the Sharpe ratio of the factor, so the numerator
expresses how for the factor is inside the ex-post frontier.

If there are many factors that are excess returns, the same ideas work,
with some cost of algebraic complexity. The regression equation is

R ei = αi + β ′
i ft + εi

t .

The asset pricing model
E (R ei) = β ′

i E ( f )

again predicts that the intercepts should be zero. We can estimate α

and β with OLS time-series regressions. Assuming normal i.i.d. errors,
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the quadratic form α̂′�̂−1α̂ has the distribution

T − N − K
N

(
1 + ET ( f )′�̂−1ET ( f )

)−1
α̂′�̂−1α̂ ∼ FN , T −N −K , (12.6)

where

N = number of assets,

K = number of factors,

�̂ = 1
T

T∑
t=1

[
ft − ET ( f )

][
ft − ET ( f )

]′
,

�̂ = 1
T

T∑
t=1

ε̂t ε̂ ′
t .

The main difference is that the Sharpe ratio of the single factor is
replaced by the natural generalization ET ( f )′�̂−1ET ( f ).

Derivation of The χ2 Statistic, and Distributions with General Errors

I derive (12.3) as an instance of GMM. This approach allows us to gen-
erate straightforwardly the required corrections for autocorrelated and
heteroskedastic disturbances. (MacKinlay and Richardson [1991] advocate
GMM approaches to regression tests in this way.) It also serves to remind us
that GMM and p = E (mx) are not necessarily paired; one can do a GMM
estimate of an expected return-beta model, too. The mechanics are only
slightly different than what we did to generate distributions for OLS regres-
sion coefficients in Section 11.4, since we keep track of N OLS regressions
simultaneously.

Write the equations for all N assets together in vector form,

R e
t = α + βft + εt .

We use the usual OLS moments to estimate the coefficients,

gT (b) =
[

ET (R e
t − α − βft )

ET

[
(R e

t − α − βft )ft

]] = ET

([
εt

ftεt

])
= 0.

These moments exactly identify the parameters α, β, so the a matrix in
agT (b̂) = 0 is the identity matrix. Solving, the GMM estimates are of course
the OLS estimates,

α̂ = ET (R e
t ) − β̂ET ( ft ),

β̂ = ET [(R e
t − ET (R e

t ))ft ]
ET [( ft − ET ( ft ))ft ] = covT (R e

t , ft )

varT ( ft )
.
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The d matrix in the general GMM formula is

d ≡ ∂gT (b)

∂b ′ = −
[

IN IN E ( ft )

IN E ( ft ) IN E ( f 2
t )

]
= −

[
1 E ( ft )

E ( ft ) E ( f 2
t )

]
⊗ IN ,

where IN is an N × N identity matrix. The S matrix is

S =
∞∑

j=−∞

[ E (εtε
′
t−j ) E (εtε

′
t−j ft−j )

E ( ftεtε
′
t−j ) E ( ftεtε

′
t−j ft−j )

]
.

Using the GMM variance formula (11.4) with a = I , we have

var
([

α̂

β̂

])
= 1

T
d−1Sd−1′. (12.7)

At this point, we are done. The upper left-hand corner of var(α̂ β̂) gives us
var(α̂) and the test we are looking for is α̂′var(α̂)

−1
α̂ ∼ χ

2
N .

The standard formulas make this expression prettier by assuming that
the errors are uncorrelated over time and not heteroskedastic. These
assumptions simplify the S matrix, as for the standard OLS formulas in
Section 11.4. If we assume that f and ε are independent as well as orthog-
onal, E ( f εε′) = E ( f )E (εε′) and E ( f 2εε′) = E ( f 2)E (εε′). If we assume that
the errors are independent over time as well, we lose all the lead and lag
terms. Then, the S matrix simplifies to

S =
[

E (εtε
′
t ) E (εtε

′
t )E ( ft )

E ( ft )E (εtε
′
t ) E (εtε

′
t )E ( f 2

t )

]
=

[
1 E ( ft )

E ( ft ) E ( f 2
t )

]
⊗ �. (12.8)

Now we can plug into (12.7). Using (A ⊗ B)−1 = A−1 ⊗ B−1 and
(A ⊗ B)(C ⊗ D) = AC ⊗ BD, we obtain

var
([

α̂

β̂

])
= 1

T

([
1 E ( ft )

E ( ft ) E ( f 2
t )

]−1

⊗ �

)
.

Evaluating the inverse,

var
([

α̂

β̂

])
= 1

T
1

var( f )

[
E ( f 2

t ) −E ( ft )

−E ( ft ) 1

]
⊗ �.

We are interested in the top left corner. Using E ( f 2) = E ( f )2 + var( f ),

var(α̂) = 1
T

(
1 + E ( f )2

var( f )

)
�.
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This is the traditional formula (12.3). Though this formula is pretty, there
is now no real reason to assume that the errors are i.i.d. or independent of
the factors. By simply calculating (12.7), we can easily construct standard
errors and test statistics that do not require these assumptions.

12.2 Cross-Sectional Regressions

We can fit
E (R ei) = β ′

iλ + αi

by running a cross-sectional regression of average returns on the betas. This
technique can be used whether the factor is a return or not.

I discuss OLS and GLS cross-sectional regressions, I find formulas for the
standard errors of λ, and a χ 2 test whether the α are jointly zero. I derive the
distributions as an instance of GMM, and I show how to implement the same
approach for autocorrelated and heteroskedastic errors. I show that the GLS
cross-sectional regression is the same as the time-series regression when the
factor is also an excess return, and is included in the set of test assets.

Start again with the K factor model, written as

E (R ei) = β ′
iλ, i = 1, 2, . . . , N .

The central economic question is why average returns vary across assets;
expected returns of an asset should be high if that asset has high betas or a
large risk exposure to factors that carry high risk premia.

Figure 12.1 graphs the case of a single factor such as the CAPM. Each
dot represents one asset i . The model says that average returns should be
proportional to betas, so plot the sample average returns against the betas.
Even if the model is true, this plot will not work out perfectly in each sample,
so there will be some spread as shown.

Given these facts, a natural idea is to run a cross-sectional regression to fit a
line through the scatterplot of Figure 12.1. First find estimates of the betas
from time-series regressions,

R ei
t = ai + β ′

i ft + εi
t , t = 1, 2, . . . , T for each i . (12.9)

Then estimate the factor risk premia λ from a regression across assets of
average returns on the betas,

ET (R ei) = β ′
iλ + αi , i = 1, 2, . . . , N . (12.10)

As in the figure, β are the right-hand variables, λ are the regression coeffi-
cients, and the cross-sectional regression residuals αi are the pricing errors.
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Figure 12.1. Cross-sectional regression.

This is also known as a two-pass regression estimate, because one estimates
first time-series and then cross-sectional regressions.

You can run the cross-sectional regression with or without a constant.
The theory says that the constant or zero-beta excess return should be zero.
You can impose this restriction or estimate a constant and see if it turns out
to be small. The usual trade-off between efficiency (impose the null as much
as possible to get efficient estimates) and robustness applies.

OLS Cross-Sectional Regression

It will simplify notation to consider a single factor; the case of multiple
factors looks the same with vectors in place of scalars. I denote vectors
from 1 to N with missing sub or superscripts, i.e., εt = [

ε1
t ε2

t · · · εN
t

]′
,

β = [
β1 β2 · · · βN

]′
, and similarly for R e

t and α. For simplicity take the case
of no intercept in the cross-sectional regression. With this notation OLS
cross-sectional estimates are

λ̂ = (
β ′β

)−1
β ′ET (R e ),

α̂ = ET (R e ) − λ̂β.
(12.11)

Next, we need a distribution theory for the estimated parameters. The
most natural place to start is with the standard OLS distribution formulas.
I start with the traditional assumption that the true errors are i.i.d. over
time, and independent of the factors. This will give us some easily inter-
pretable formulas, and we will see most of these terms remain when we do
the distribution theory right later on.
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In an OLS regression Y = X β + u and E (uu ′) = �, the variance of
the β estimate is (X ′X )−1X ′�X (X ′X )−1. The residual covariance matrix is
(I − X (X ′X )−1X ′)�(I − X (X ′X )−1X ′)′.

To apply these formulas we need cov(α, α′), the error covariance in the
cross-sectional regression. With the traditional assumption that the factors
and errors are i.i.d. over time, the answer is cov(α, α′) = 1

T

(
β�f β

′ + �
)
,

where �f ≡ cov( ft , f ′
t ) and � = cov(εtε

′
t ). To see this, start with α =

ET (R e ) − βλ. With R e
t = a +βft +εt , we have ET

(
R e

t

) = a +βET

(
ft

)+ET (εt ).
Under the null that the model is correct, so E (R e ) = a + βE ( f ) = βλ,
then, we have cov(α, α′) = cov [ET (R e ), ET (R e )′] = 1

T

(
β�f β

′ + �
)
. (Don’t

confuse this covariance with the covariance of the estimated α in the cross-
sectional regression. Like a residual covariance vs. an error covariance, there
are additional terms in the covariance of the estimated α, which I develop
below. Yes, we want the covariance of ET (R e ), not of E (R e ), which is a
number and has no covariance, or of R e

t . ET (R e ) is the y variable in the
cross-sectional regression.)

Then, the conventional OLS formulas for the covariance matrices of
OLS estimates and residuals, accounting for correlated errors, give

σ 2(λ̂) = 1
T

[(
β ′β

)−1
β ′�β(β ′β)−1 + �f

]
(12.12)

cov(α̂) = 1
T

[
I − β(β ′β)−1β ′] �

[
I − β(β ′β)−1β ′]′

(12.13)

The correct formulas, (12.19) and (12.20), which account for the fact that
β are estimated, are straightforward generalizations. (The �f term cancels
in (12.13).)

We could test whether all pricing errors are zero with the statistic

α̂′ cov(α̂)
−1

α̂ ∼ χ 2
N −1. (12.14)

The distribution is χ 2
N −1, not χ 2

N , because the covariance matrix is sin-
gular. The singularity and the extra terms in (12.13) result from the fact
that the λ coefficient was estimated along the way, and means that we have
to use a generalized inverse. (If there are K factors, we obviously end up
with χ 2

N −K .)
A test of the residuals is unusual in OLS regressions. We do not usually

test whether the residuals are ‘‘too large,’’ since we have no information
other than the residuals themselves about how large they should be. In this
case, however, the first-stage time-series regression gives us some indepen-
dent information about the size of cov(αα′), information that we could not
get from looking at the cross-sectional residual α itself.
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GLS Cross-Sectional Regression

Since the residuals in the cross-sectional regression (12.10) are correlated
with each other, standard textbook advice is to run a GLS cross-sectional
regression rather than OLS, using E (αα′) = 1

T (� + β�f β
′) as the error

covariance matrix:

λ̂ = (
β ′�−1β

)−1
β ′�−1ET (R e ),

α̂ = ET (R e ) − λ̂β.
(12.15)

(The GLS formula is

λ̂ =
[
β ′

(
β�−1

f β ′ + �
)−1

β

]−1

β ′(β�−1
f β ′ + �)−1ET (R e ).

However, it turns out that we can drop the β�−1
f β ′ term.1)

The standard regression formulas give the variance of these estimates
as

σ 2
(
λ̂
) = 1

T

[(
β ′�−1β

)−1 + �f

]
, (12.16)

cov(α̂) = 1
T

[
� − β

(
β ′�−1β

)−1
β ′

]
. (12.17)

1 Here’s the algebra. Let
A = I + β ′�−1β�−1

f .

Then,

λ̂ =
[
β ′

(
β�−1

f β ′ + �
)−1

β

]−1

A−1Aβ ′
(
β�−1

f β ′ + �
)−1

ET (R e )

=
[

Aβ ′
(
β�−1

f β ′ + �
)−1

β

]−1

Aβ ′
(
β�−1

f β ′ + �
)−1

ET (R e ).

Now,

Aβ ′ =
(

I + β ′�−1β�−1
f

)
β ′

= β ′
(

I + �−1β�−1
f β ′

)
= β ′�−1

(
� + β�−1

f β ′
)

.

Thus,
λ̂ = (

β ′�−1β
)−1

β ′�−1ET (R e ).
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The comments of Section 11.5 warning that OLS is sometimes much
more robust than GLS apply in this case. The GLS regression should improve
efficiency, i.e., give more precise estimates. However, � may be hard to
estimate and to invert, especially if the cross section N is large. One may
well choose the robustness of OLS over the asymptotic statistical advantages
of GLS.

A GLS regression can be understood as a transformation of the space
of returns, to focus attention on the statistically most informative portfolios.
Finding (say, by Choleski decomposition) a matrix C such that CC ′ = �−1,
the GLS regression is the same as an OLS regression of CET (R e ) on Cβ, i.e.,
of testing the model on the portfolios CR e . The statistically most informative
portfolios are those with the lowest residual variance �. But this asymptotic
statistical theory assumes that the covariance matrix has converged to its true
value. In most samples, the ex post or sample mean-variance frontier still
seems to indicate lots of luck, and this is especially true if the cross section
is large, anything more than 1/10 of the time series. The portfolios CR e are
likely to contain many extreme long-short positions.

Again, we could test the hypothesis that all the α are equal to zero
with (12.14). Though the appearance of the statistic is the same, the covari-
ance matrix is smaller, reflecting the greater power of the GLS test. As with
the JT test, (11.10), we can develop an equivalent test that does not require
a generalized inverse:

T α̂′�−1α̂ ∼ χ 2
N −1. (12.18)

To derive (12.18), I proceed exactly as in the derivation of the JT test (11.10).
Define, say by Choleski decomposition, a matrix C such that CC ′ = �−1.
Now, find the covariance matrix of

√
T C ′α̂:

cov
(√

T C ′α
) = C ′((CC ′)−1 − β(β ′CC ′β)−1β ′)C = I − δ

(
δ′δ

)−1
δ′,

where
δ = C ′β.

In sum, α̂ is asymptotically normal so
√

T C ′α̂ is asymptotically normal,
cov(

√
T C ′α̂) is an idempotent matrix with rank N −1; therefore T α̂′CC ′α̂ =

T α̂′�−1α̂ is χ 2
N −1.

Correction for the Fact that β Are Estimated, and
GMM Formulas that Do Not Need i.i.d. Errors

In applying standard OLS formulas to a cross-sectional regression, we
assume that the right-hand variables β are fixed. The β in the cross-sectional
regression are not fixed, of course, but are estimated in the time-series
regression. This turns out to matter, even asymptotically.
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In this section, I derive the correct asymptotic standard errors. With the
simplifying assumption that the errors ε are i.i.d. over time and independent
of the factors, the result is

σ 2(λ̂OLS) = 1
T

[
(β ′β)−1β ′�β

(
β ′β

)−1(
1 + λ′�−1

f λ
) + �f

]
,

σ 2(λ̂GLS) = 1
T

[(
β ′�−1β

)−1(
1 + λ′�−1

f λ
) + �f

]
,

(12.19)

where �f is the variance-covariance matrix of the factors. This correction
is due to Shanken (1992b). Comparing these standard errors to (12.12)
and (12.16), we see that there is a multiplicative correction

(
1 + λ′�−1

f λ
)
.

The asymptotic variance-covariance matrix of the pricing errors is

cov(α̂OLS) = 1
T

(
IN − β

(
β ′β

)−1
β ′)�(

IN − β(β ′β)−1β ′)
× (

1 + λ′�−1
f λ

)
(12.20)

cov(α̂GLS) = 1
T

(
� − β

(
β ′�−1β

)−1
β ′)(1 + λ′�−1

f λ
)
. (12.21)

Comparing these results to (12.13) and (12.17), we see the same multiplica-
tive correction.

We can form the asymptotic χ 2 test of the pricing errors by dividing
pricing errors by their variance-covariance matrix, α̂ cov(α̂)

−1
α̂. Following

(12.18), we can simplify this result for the GLS pricing errors resulting in

T
(
1 + λ′�−1

f λ
)
α̂′

GLS�
−1α̂GLS ∼ χ 2

N −K . (12.22)

Is the correction important relative to the simple-to-derive regression
formulas (12.12), (12.13), (12.16), (12.17)? In the CAPM, λ = E (R em) so
λ2/σ 2(R em) ≈ (0.08/0.16)2 = 0.25 in annual data. In annual data, then,
the multiplicative term is too large to ignore. However, the mean and vari-
ance both scale with horizon, so the Sharpe ratio scales with the square
root of horizon. Therefore, for a monthly interval λ2/σ 2(R em) ≈ 0.25/12 ≈
0.02, which is quite small, so ignoring the multiplicative term makes little
difference.

Suppose the factor is in fact a return. Then the factor risk premium
is λ = E ( f ), and we use �f /T , the standard error of the factor mean, as
the standard error of λ. The terms in β correct for the small differences
between cross-sectional and time-series estimates. They are therefore likely
to be small, and the �f /T term is likely to be the most important term.

Comparing (12.22) to the GRS tests for a time-series regression,
(12.3), (12.4), (12.6), we see the same statistic. The only difference is that
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by estimating λ from the cross section rather than imposing λ = E ( f ), the
cross-sectional regression loses degrees of freedom equal to the number of
factors.

Though these formulas are standard classics, I emphasize that we do
not have to make the severe assumptions on the error terms that are used
to derive them. As with the time-series case, I derive a general formula for
the distribution of λ̂ and α̂, and only at the last moment make classic error
term assumptions to make the spectral density matrix pretty.

Derivation and Formulas that Do Not Require i.i.d. Errors

The easy and elegant way to account for the effects of ‘‘generated regressors’’
such as the β in the cross-sectional regression is to map the whole thing
into GMM. Then, we treat the moments that generate the regressors β at
the same time as the moments that generate the cross-sectional regression
coefficient λ, and the covariance matrix S between the two sets of moments
captures the effects of generating the regressors on the standard error of
the cross-sectional regression coefficients. Comparing this straightforward
derivation with the difficulty of Shanken’s (1992b) paper that originally
derived the corrections for λ̂, and noting that Shanken did not go on to
find the formulas (12.20) that allow a test of the pricing errors is a nice
argument for the simplicity and power of the GMM framework.

To keep the algebra manageable, I treat the case of a single factor. The
moments are

gT (b) =
⎡⎢⎣ E (R e

t − a − βft )

E [(R e
t − a − βft )ft ]

E (R e − βλ)

⎤⎥⎦ =
⎡⎢⎣0

0

0

⎤⎥⎦ . (12.23)

The top two moment conditions exactly identify a and β as the time-series
OLS estimates. (Note a not α. The time-series intercept is not necessar-
ily equal to the pricing error in a cross-sectional regression.) The bottom
moment condition is the asset pricing model. It is in general overiden-
tified in a sample, since there is only one extra parameter (λ) and N
extra moment conditions. If we use a weighting vector β ′ on this condi-
tion, we obtain the OLS cross-sectional estimate of λ. If we use a weighting
vector β ′�−1, we obtain the GLS cross-sectional estimate of λ. To accommo-
date both cases, use a weighting vector γ ′, and then substitute γ ′ = β ′ or
γ ′ = β ′�−1 at the end. However, once we abandon i.i.d. errors, the GLS
cross-sectional regression weighted by �−1 is no longer the optimal esti-
mate. Once we recognize that the errors do not obey classical assumptions,
and if we want efficient estimates, we might as well calculate the correct and
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fully efficient estimates. Having decided on a cross-sectional regression, the
efficient estimates of the moments (12.23) are d ′S−1gT (a, β, λ) = 0.

The standard errors for λ̂ come straight from the general GMM standard
error formula (11.4). The α̂ are not parameters, but are the last N moments.
Their covariance matrix is thus given by the GMM formula (11.5) for the
sample variation of the gT . All we have to do is map the problem into the
GMM notation.

The parameter vector is

b ′ = [
a ′ β ′ λ

]
.

The a matrix chooses which moment conditions are set to zero in estimation,

a =
[

I2N 0

0 γ ′

]
.

The d matrix is the sensitivity of the moment conditions to the parameters,

d = ∂gT

∂b ′ =
⎡⎢⎣ −IN −IN E ( f ) 0

−IN E ( f ) −IN E ( f 2) 0

0 −λIN −β

⎤⎥⎦ .

The S matrix is the long-run covariance matrix of the moments,

S =
∞∑

j=−∞
E

⎛⎜⎜⎝
⎡⎢⎣ R e

t − a − βft(
R e

t − a − βft

)
ft

R e
t − βλ

⎤⎥⎦
⎡⎢⎣ R e

t−j − a − βft−j(
R e

t−j − a − βft−j

)
ft−j

R e
t−j − βλ

⎤⎥⎦
′⎞⎟⎟⎠

=
∞∑

j=−∞
E

⎛⎜⎝
⎡⎢⎣ εt

εt ft

β
(

ft − Ef
) + εt

⎤⎥⎦
⎡⎢⎣ εt−j

εt−j ft−j

β
(

ft−j − Ef
) + εt−j

⎤⎥⎦
′⎞⎟⎠ .

In the second expression, I have used the regression model and the restric-
tion under the null that E (R e

t ) = βλ. In calculations, of course, you could
simply estimate the first expression.

We are done. We have the ingredients to calculate the GMM standard
error formula (11.4) and formula for the covariance of moments (11.5).

With a vector f , the moments are[
IN ⊗ IK +1

γ ′

] ⎡⎣ ET

(
R e − a − βf

)
ET

[(
R e − a − βf

) ⊗ f
]

ET (R e − βλ)

⎤⎦ = 0,

where βi = N × 1, and γ ′ = β ′ for OLS and γ ′ = β ′(�−1) for GLS.
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Note that the GLS estimate is not the ‘‘efficient GMM’’ estimate when
returns are not i.i.d. The efficient GMM estimate is d ′S−1gT = 0. The d
matrix is

d = ∂gT

∂
[
α′ β ′

1 β ′
2 λ′] = −

⎡⎣⎡⎣ 1 E ( f ′)
E ( f ) E ( ff ′)

0 λ′

⎤⎦ ⊗ IN

⎡⎣0
0
β

⎤⎦⎤⎦ .

We can recover the classic formulas (12.19), (12.20), (12.21) by adding
the assumption that the errors are i.i.d. and independent of the factors, and
that the factors are uncorrelated over time as well. The assumption that the
errors and factors are uncorrelated over time means we can ignore the lead
and lag terms. Thus, the top left corner of S is E (εtε

′
t ) = �. The assumption

that the errors are independent from the factors ft simplifies the terms in
which εt and ft are multiplied: E (εt (ε

′
t ft )) = E ( f )� for example. The result is

S =
⎡⎢⎣ � E ( f )� �

E ( f )� E ( f 2)� E ( f )�

� E ( f )� ββ ′σ 2( f ) + �

⎤⎥⎦ .

Multiplying a, d , S together as specified by the GMM formula for the
covariance matrix of parameters (11.4), we obtain the covariance matrix of
all the parameters, and its (3, 3) element gives the variance of λ̂. Multiplying
the terms together as specified by (11.5), we obtain the sampling distribution
of the α̂, (12.20). The formulas (12.19) reported above are derived the same
way with a vector of factors ft rather than a scalar; the second-moment condi-
tion in (12.23) then reads E

[
(R e

t − a − βf t ) ⊗ f t

]
. The matrix multiplication

is not particularly enlightening.
Once again, there is really no need to make the assumption

that the errors are i.i.d. and especially that they are conditionally
homoskedastic—that the factor f and errors ε are independent. It is quite
easy to estimate an S matrix that does not impose these conditions and
calculate standard errors. They will not have the pretty analytic form given
above, but they will more closely report the true sampling uncertainty of
the estimate. Furthermore, if one is really interested in efficiency, the GLS
cross-sectional estimate should use the spectral density matrix as weight-
ing matrix applied to all the moments rather than �−1 applied only to the
pricing errors.

Time Series vs. Cross Section

How are the time-series and cross-sectional approaches different?
Most importantly, you can run the cross-sectional regression when the

factor is not a return. The time-series test requires factors that are also
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returns, so that you can estimate factor risk premia by λ̂ = ET ( f ). The asset
pricing model does predict a restriction on the intercepts in the time-series
regression. Why not just test these? If you impose the restriction E (R ei) =
β ′

iλ, you can write the time-series regression (12.9) as

R ei
t = β ′

iλ + β ′
i

(
ft − E ( f )

) + εi
t , t = 1, 2, . . . , T for each i .

Thus, the intercept restriction is

ai = β ′
i (λ − E ( f )). (12.24)

This restriction makes sense. The model says that mean returns should
be proportional to betas, and the intercept in the time-series regression
controls the mean return. You can also see how λ = E ( f ) results in a zero
intercept. Finally, however, you see that without an estimate of λ, you cannot
check this intercept restriction. If the factor is not a return, you will be forced
to do something like a cross-sectional regression.

When the factor is a return, so that we can compare the two methods,
time-series and cross-sectional regressions are not necessarily the same. The
time-series regression estimates the factor risk premium as the sample mean
of the factor. Hence, the factor receives a zero pricing error in each sample.
Also, the predicted zero-beta excess return is also zero. Thus, the time-series
regression describes the cross section of expected returns by drawing a line as
in Figure 12.1 that runs through the origin and through the factor, ignoring
all of the other points. The OLS cross-sectional regression picks the slope
and intercept, if you include one, to best fit all the points: to minimize the
sum of squares of all the pricing errors.

If the factor is a return, the GLS cross-sectional regression, including the factor
as a test asset, is identical to the time-series regression. The time-series regression
for the factor is, of course,

ft = 0 + 1ft + 0,

so it has a zero intercept, beta equal to one, and zero residual in every
sample. The residual variance-covariance matrix of the returns, including
the factor, is

E
([

R e − a − βf

f − 0 − 1f

][·]′
)

=
[
� 0

0 0

]
.

Since the factor has zero residual variance, a GLS regression puts all its weight
on that asset. Therefore, λ̂ = ET ( f ) just as for the time-series regression.
The pricing errors are the same, as is their distribution and the χ 2 test.
(You gain a degree of freedom by adding the factor to the cross-sectional
regression, so the test is a χ 2

N .)
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Why does the ‘‘efficient’’ technique ignore the pricing errors of all of
the other assets in estimating the factor risk premium, and focus only on the
mean return? The answer is simple, though subtle. In the regression model

R e
t = a + βft + εt ,

the average return of each asset in a sample is equal to beta times the average
return of the factor in the sample, plus the average residual in the sample.
An average return carries no information about the mean of the factor that
is not already observed in the sample mean of the factor. A signal plus noise
carries no additional information beyond that in the same signal. Thus, an
‘‘efficient’’ cross-sectional regression wisely ignores all the information in
the other asset returns and uses only the information in the factor return to
estimate the factor risk premium.

12.3 Fama--MacBeth Procedure

I introduce the Fama--MacBeth procedure for running cross-sectional
regression and calculating standard errors that correct for cross-sectional cor-
relation in a panel. I show that, when the right-hand variables do not vary
over time, Fama--MacBeth is numerically equivalent to pooled time-series,
cross-section OLS with standard errors corrected for cross-sectional correla-
tion, and also to a single cross-sectional regression on time-series averages
with standard errors corrected for cross-sectional correlation. Fama--MacBeth
standard errors do not include corrections for the fact that the betas are also
estimated.

Fama and MacBeth (1973) suggest an alternative procedure for running
cross-sectional regressions, and for producing standard errors and test statis-
tics. This is a historically important procedure, it is computationally simple
to implement, and is still widely used, so it is important to understand it and
relate it to other procedures.

First, you find beta estimates with a time-series regression. Fama and
MacBeth use rolling 5-year regressions, but one can also use the technique
with full-sample betas, and I will consider that simpler case. Second, instead
of estimating a single cross-sectional regression with the sample averages,
we now run a cross-sectional regression at each time period, i.e.,

R ei
t = β ′

iλt + αit , i = 1, 2, . . . , N for each t .

I write the case of a single factor for simplicity, but it is easy to extend
the model to multiple factors. Then, Fama and MacBeth suggest that
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we estimate λ and αi as the average of the cross-sectional regression
estimates,

λ̂ = 1
T

T∑
t=1

λ̂t , α̂i = 1
T

T∑
t=1

α̂it .

Most importantly, they suggest that we use the standard deviations of the
cross-sectional regression estimates to generate the sampling errors for these
estimates,

σ 2(λ̂) = 1
T 2

T∑
t=1

(
λ̂t − λ̂

)2
, σ 2(α̂i) = 1

T 2

T∑
t=1

(
α̂it − α̂i

)2
.

It is 1/T 2 because we are finding standard errors of sample means, σ 2/T .
This is an intuitively appealing procedure once you stop to think about

it. Sampling error is, after all, about how a statistic would vary from one
sample to the next if we repeated the observations. We cannot do that with
only one sample, but why not cut the sample in half, and deduce how a
statistic would vary from one full sample to the next from how it varies
from the first half of the sample to the next half? Proceeding, why not cut
the sample in fourths, eighths, and so on? The Fama--MacBeth procedure
carries this idea to its logical conclusion, using the variation in the statistic
λ̂t over time to deduce its variation across samples.

We are used to deducing the sampling variance of the sample mean
of a series x t by looking at the variation of x t through time in the sample,
using σ 2(x̄) = σ 2(x)/T = 1

T 2

∑
t (x t − x̄)2. The Fama--MacBeth technique

just applies this idea to the slope and pricing error estimates. The formula
assumes that the time series is not autocorrelated, but one could easily
extend the idea to estimates λ̂t that are correlated over time by using a
long-run variance matrix, i.e., estimate

σ 2(λ̂) = 1
T

∞∑
j=−∞

covT (λ̂t , λ̂t−j ).

One should of course use some sort of weighting matrix or a parametric
description of the autocorrelations of λ̂, as explained in Section 11.7. Asset
return data are usually not highly correlated, but accounting for such cor-
relation could have a big effect on the application of the Fama--MacBeth
technique to corporate finance data or other regressions in which the
cross-sectional estimates are highly correlated over time.

It is natural to use this sampling theory to test whether all the pric-
ing errors are jointly zero as we have before. Denote by α the vector of
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pricing errors across assets. We could estimate the covariance matrix of the
sample pricing errors by

α̂ = 1
T

T∑
t=1

α̂t ,

cov(α̂) = 1
T 2

T∑
t=1

(
α̂t − α̂

) (
α̂t − α̂

)′
,

(or a general version that accounts for correlation over time) and then use
the test

α̂′ cov(α̂)
−1

α̂ ∼ χ 2
N −1.

Fama--MacBeth in Depth

The GRS procedure and the analysis of a single cross-sectional regression
are familiar from any course in regression. We will see them justified by
maximum likelihood below. The Fama--MacBeth procedure seems unlike
anything you have seen in any econometrics course, and it is obviously a use-
ful and simple technique that can be widely used in panel data in economics
and corporate finance as well as asset pricing. Is it truly different? Is there
something different about asset pricing data that requires a fundamentally
new technique not taught in standard regression courses? Or is it similar to
standard techniques? To answer these questions it is worth looking in a little
more detail at what it accomplishes and why.

It is easier to do this in a more standard setup, with left-hand variable y
and right-hand variable x . Consider a regression

yit = β ′xit + εit , i = 1, 2, . . . , N , t = 1, 2, . . . , T .

The data in this regression have a cross-sectional element as well as a time-
series element. In corporate finance, for example, you might be interested
in the relationship between investment and financial variables, and the data
set has many firms (N ) as well as time-series observations for each firm (T ).
In an expected return-beta asset pricing model, the xit stands for the βi and
β stands for λ.

An obvious thing to do in this context is simply to stack the i and t
observations together and estimate β by OLS. I will call this the pooled
time-series cross-section estimate. However, the error terms are not likely to
be uncorrelated with each other. In particular, the error terms are likely
to be cross-sectionally correlated at a given time. If one stock’s return is
unusually high this month, another stock’s return is also likely to be high;
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if one firm invests an unusually great amount this year, another firm is also
likely to do so. When errors are correlated, OLS is still consistent, but the
OLS distribution theory is wrong, and typically suggests standard errors that
are much too small. In the extreme case that the N errors are perfectly cor-
related at each time period, there is really only one observation for each
time period, so one really has T rather than NT observations. Therefore,
a pooled time-series cross-section estimate must include corrected standard
errors. People often ignore this fact and report OLS standard errors.

Another thing we could do is first take time-series averages and then
run a pure cross-sectional regression of

ET (yit ) = β ′ET

(
xit

) + ui , i = 1, 2, . . . , N .

This procedure would lose any information due to variation of the xit over
time, but at least it might be easier to figure out a variance-covariance matrix
for ui and correct the standard errors for residual correlation. ( You could
also average cross-sectionally and then run a single time-series regression. We
will get to that option later.) In either case, the standard error corrections are
just applications of the standard formula for OLS regressions with correlated
error terms.

Finally, we could run the Fama--MacBeth procedure: run a cross-
sectional regression at each point in time, average the cross-sectional β̂t

estimates to get an estimate β̂, and use the time-series standard deviation of
β̂t to estimate the standard error of β̂.

It turns out that the Fama--MacBeth procedure is another way of
calculating the standard errors, corrected for cross-sectional correlation.

Proposition: If the xit variables do not vary over time, and if the errors are cross-
sectionally correlated but not correlated over time, then the Fama--MacBeth estimate,
the pure cross-sectional OLS estimate, and the pooled time-series cross-sectional OLS
estimates are identical. Also, the Fama--MacBeth standard errors are identical to
the cross-sectional regression or stacked OLS standard errors, corrected for residual
correlation. None of these relations hold if the xit vary through time.

Since they are identical procedures, whether one calculates estimates
and standard errors in one way or the other is a matter of taste.

I emphasize one procedure that is incorrect: pooled time-series and
cross-section OLS with no correction of the standard errors. The errors are
so highly cross-sectionally correlated in most finance applications that the
standard errors so computed are often off by a factor of 10.

The assumption that the errors are not correlated over time is probably
not so bad for asset pricing applications, since returns are close to indepen-
dent. However, when pooled time-series cross-section regressions are used
in corporate finance applications, errors are likely to be as severely corre-
lated over time as across firms, if not more so. The ‘‘other factors’’ (ε) that
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cause, say, company i to invest more at time t than predicted by a set of right-
hand variables is surely correlated with the other factors that cause company
j to invest more. But such factors are especially likely to cause company i
to invest more at time t + 1 as well. In this case, any standard errors must
also correct for serial correlation in the errors; the GMM-based formulas in
Section 11.4 can do this easily.

The Fama--MacBeth standard errors also do not correct for the fact that
β̂ are generated regressors. If one is going to use them, it is a good idea to
at least calculate the Shanken correction factors outlined above, and check
that the corrections are not large.

Proof: We just have to write out the three approaches and compare them.
Having assumed that the x variables do not vary over time, the regression is

yit = x ′
i β + εit .

We can stack up the cross sections i = 1, . . . , N and write the regression as

yt = xβ + εt .

x is now a matrix with the x ′
i as rows. The error assumptions mean

E (εtε
′
t ) = �.

Pooled OLS: To run pooled OLS, we stack the time series and cross
sections by writing

Y =

⎡⎢⎢⎢⎣
y1

y2
...

yT

⎤⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎣
x
x
...
x

⎤⎥⎥⎥⎦ , ε =

⎡⎢⎢⎢⎣
ε1

ε2
...

εT

⎤⎥⎥⎥⎦
and then

Y = X β + ε,

with

E (εε ′) = � =

⎡⎢⎢⎣
�

. . .

�

⎤⎥⎥⎦ .

The estimate and its standard error are then

β̂OLS = (X ′X )−1X ′Y ,

cov(β̂OLS) = (X ′X )−1X ′�X (X ′X )−1.
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Writing this out from the definitions of the stacked matrices, with
X ′X =Tx ′x ,

β̂OLS = (x ′x)−1x ′ET (yt ),

cov(β̂OLS) = 1
T

(x ′x)−1(x ′�x)(x ′x)−1.

We can estimate this sampling variance with

�̂ = ET (ε̂t ε̂
′
t ), ε̂t ≡ yt − x β̂OLS.

Pure cross-section: The pure cross-sectional estimator runs one cross-
sectional regression of the time-series averages. So, take those averages,

ET

(
yt

) = xβ + ET (εt ) ,

where x = ET (x) since x is constant. Having assumed i.i.d. errors over time,
the error covariance matrix is

E
[
ET (εt ) ET

(
ε′

t

)] = 1
T

�.

The cross-sectional estimate and corrected standard errors are then

β̂XS = (x ′x)−1x ′ET (yt ),

σ 2(β̂XS ) = 1
T

(x ′x)−1x ′�x(x ′x)−1.

Thus, the cross-sectional and pooled OLS estimates and standard errors are
exactly the same, in each sample.

Fama--MacBeth: The Fama--MacBeth estimator is formed by first run-
ning the cross-sectional regression at each moment in time,

β̂t = (
x ′x

)−1
x ′yt .

Then the estimate is the average of the cross-sectional regression estimates,

β̂FM = ET

(
β̂t

) = (
x ′x

)−1
x ′ET

(
yt

)
.

Thus, the Fama--MacBeth estimator is also the same as the OLS estimator, in
each sample. The Fama--MacBeth standard error is based on the time-series
standard deviation of the β̂t . Using covT to denote sample covariance,

cov
(
β̂FM

) = 1
T

covT

(
β̂t

) = 1
T

(x ′x)−1x ′ covT (yt )x(x ′x)−1,


