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2
Applying the Basic Model

2.1 Assumptions and Applicability

Writing p = E (mx), we do not assume
1. Markets are complete, or there is a representative investor
2. Asset returns or payoffs are normally distributed (no options), or indepen-

dent over time
3. Two-period investors, quadratic utility, or separable utility
4. Investors have no human capital or labor income
5. The market has reached equilibrium, or individuals have bought all the

securities they want to
All of these assumptions come later, in various special cases, but we have

not made them yet. We do assume that the investor can consider a small
marginal investment or disinvestment.

The theory of asset pricing contains lots of assumptions used to derive
analytically convenient special cases and empirically useful representations.
In writing p = E (mx) or pu ′(ct ) = Et [βu ′(ct+1)xt+1], we have not made most
of these assumptions.

We have not assumed complete markets or a representative investor.
These equations apply to each individual investor, for each asset to which
he has access, independently of the presence or absence of other investors
or other assets. Complete markets/representative agent assumptions are
used if one wants to use aggregate consumption data in u ′(ct ), or other
specializations and simplifications of the model.

We have not said anything about payoff or return distributions. In
particular, we have not assumed that returns are normally distributed or
that utility is quadratic. The basic pricing equation should hold for any
asset, stock, bond, option, real investment opportunity, etc., and any mono-
tone and concave utility function. In particular, it is often thought that
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mean-variance analysis and beta pricing models require these kinds of
limiting assumptions or quadratic utility, but that is not the case. A mean-
variance efficient return carries all pricing information no matter what the
distribution of payoffs, utility function, etc.

This is not a ‘‘two-period model.’’ The fundamental pricing equation
holds for any two periods of a multiperiod model, as we have seen. Really,
everything involves conditional moments, so we have not assumed i.i.d.
returns over time.

I have written things down in terms of a time- and state-separable utility
function and I have focused on the convenient power utility example.
Nothing important lies in either choice. Just interpret u ′(ct ) as the partial
derivative of a general utility function with respect to consumption at time
t . State- or time-nonseparable utility (habit persistence, durability) compli-
cates the relation between the discount factor and real variables, but does
not change p = E (mx) or any of the basic structure.

We do not assume that investors have no nonmarketable human capital,
or no outside sources of income. The first-order conditions for purchase of
an asset relative to consumption hold no matter what else is in the budget
constraint. By contrast, the portfolio approach to asset pricing as in the
CAPM and ICAPM relies heavily on the assumption that the investor has no
nonasset income, and we will study these special cases below. For example,
leisure in the utility function just means that marginal utility u ′(c , l ) may
depend on l as well as c .

We do not even really need the assumption (yet) that the market is
‘‘in equilibrium,’’ that the investor has bought all of the asset that he wants
to, or even that he can buy the asset at all. We can interpret p = E (mx) as
giving us the value, or willingness to pay for, a small amount of a payoff xt+1

that the investor does not yet have. Here is why: If the investor had a little
ξ more of the payoff xt+1 at time t + 1, his utility u(ct ) + βEt u(ct+1) would
increase by

βEt

[
u(ct+1 + ξxt+1) − u(ct+1)

]

= βEt

[
u ′(ct+1)xt+1ξ + 1

2
u ′′(ct+1)(xt+1ξ)2 + · · ·

]
.

If ξ is small, only the first term on the right matters. If the investor has to
give up a small amount of money vtξ at time t , that loss lowers his utility by

u(ct − vtξ) − u(ct ) = −u ′(ct )vtξ + 1
2

u ′′(ct )(vtξ)2 + · · · .

Again, for small ξ , only the first term matters. Therefore, in order to
receive the small extra payoff ξxt+1, the investor is willing to pay the small
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amount vtξ , where

vt = Et

[
β

u ′(ct+1)

u ′(ct )
xt+1

]
.

If this private valuation is higher than the market value pt , and if the
investor can buy some more of the asset, he will. As he buys more, his
consumption will change; it will be higher in states where xt+1 is higher,
driving down u ′(ct+1) in those states, until the value to the investor has
declined to equal the market value. Thus, after an investor has reached his
optimal portfolio, the market value should obey the basic pricing equation
as well, using post-trade or equilibrium consumption. But the formula can
also be applied to generate the marginal private valuation, using pre-trade
consumption, or to value a potential, not yet traded security.

We have calculated the value of a ‘‘small’’ or marginal portfolio change
for the investor. For some investment projects, an investor cannot take
a small (‘‘diversified’’) position. For example, a venture capitalist or
entrepreneur must usually take all or nothing of a project with payoff
stream {xt }. Then the value of a project not already taken, E

∑
j β

j [u(ct+j +
xt+j ) − u(ct+j )], might be substantially different from its marginal counter-
part, E

∑
j β

j u ′(ct+j )xt+j . Once the project is taken, of course, ct+j + xt+j

becomes ct+j , so the marginal valuation still applies to the ex post consump-
tion stream. Analysts often forget this point and apply marginal (diversified)
valuation models such as the CAPM to projects that must be bought in dis-
crete chunks. Also, we have abstracted from short sales and bid/ask spreads;
this modification changes p = E (mx) from an equality to a set of inequalities.

2.2 General Equilibrium

Asset returns and consumption: which is the chicken and which is the
egg? I present the exogenous return model, the endowment economy model,
and the argument that it does not matter for studying p = E (mx).

So far, we have not said where the joint statistical properties of the
payoff xt+1 and marginal utility mt+1 or consumption ct+1 come from. We
have also not said anything about the fundamental exogenous shocks that
drive the economy. The basic pricing equation p = E (mx) tells us only what
the price should be, given the joint distribution of consumption (marginal
utility, discount factor) and the asset payoff.

There is nothing that stops us from writing the basic pricing equation as

u ′(ct ) = Et [βu ′(ct+1)xt+1/pt ].
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We can think of this equation as determining today’s consumption given asset
prices and payoffs, rather than determining today’s asset price in terms of
consumption and payoffs. Thinking about the basic first-order condition in
this way gives the permanent income model of consumption.

Which is the chicken and which is the egg? Which variable is exogenous
and which is endogenous? The answer is, neither, and for many purposes,
it does not matter. The first-order conditions characterize any equilibrium;
if you happen to know E (mx), you can use them to determine p; if you
happen to know p, you can use them to determine consumption and savings
decisions.

For most asset pricing applications we are interested in understanding
a wide cross section of assets. Thus, it is interesting to contrast the cross-
sectional variation in asset prices (expected returns) with cross-sectional
variation in their second moments (betas) with a single discount factor. In
most applications, the discount factor is a function of aggregate variables
(market return, aggregate consumption), so it is plausible to hold the prop-
erties of the discount factor constant as we compare one individual asset to
another. Permanent income studies typically dramatically restrict the num-
ber of assets under consideration, often to just an interest rate, and study
the time-series evolution of aggregate or individual consumption.

Nonetheless, it is an obvious next step to complete the solution of our
model economy; to find c and p in terms of truly exogenous forces. The
results will of course depend on what the rest of the economy looks like, in
particular the production or intertemporal transformation technology and
the set of markets.

Figure 2.1 shows one possibility for a general equilibrium. Suppose that
the production technologies are linear: the real, physical rate of return (the
rate of intertemporal transformation) is not affected by how much is invested.

Figure 2.1. Consumption adjusts when the rate of return is determined by a linear technology.
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Now consumption must adjust to these technologically given rates of return.
If the rates of return on the intertemporal technologies were to change, the
consumption process would have to change as well. This is, implicitly, how
the permanent income model works. This is how many finance theories such
as the CAPM and ICAPM and the Cox, Ingersoll, and Ross (1985) model
of the term structure work as well. These models specify the return process,
and then solve the consumer’s portfolio and consumption rules.

Figure 2.2 shows another extreme possibility for the production technol-
ogy. This is an ‘‘endowment economy.’’ Nondurable consumption appears
(or is produced by labor) every period. There is nothing anyone can do to
save, store, invest, or otherwise transform consumption goods this period
to consumption goods next period. Hence, asset prices must adjust until
people are just happy consuming the endowment process. In this case con-
sumption is exogenous and asset prices adjust. Lucas (1978) and Mehra and
Prescott (1985) are two very famous applications of this sort of ‘‘endowment
economy.’’

Which of these possibilities is correct? Well, neither, of course. The
real economy and all serious general equilibrium models look something
like Figure 2.3: one can save or transform consumption from one date to
the next, but at a decreasing rate. As investment increases, rates of return
decline.

Does this observation invalidate the modeling we do with the linear
technology (CAPM, CIR, permanent income) model, or the endowment
economy model? No. Start at the equilibrium in Figure 2.3. Suppose we
model this economy as a linear technology, but we happen to choose for
the rate of return on the linear technologies exactly the same stochastic pro-
cess for returns that emerges from the general equilibrium. The resulting
joint consumption-asset return process is exactly the same as in the origi-
nal general equilibrium! Similarly, suppose we model this economy as an

Figure 2.2. Asset prices adjust to consumption in an endowment economy.
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Figure 2.3. General equilibrium. The solid lines represent the indifference curve and pro-
duction possibility set. The dashed straight line represents the equilibrium rate of return. The
dashed box represents an endowment economy that predicts the same consumption and asset
return process.

endowment economy, but we happen to choose for the endowment pro-
cess exactly the stochastic process for consumption that emerges from the
equilibrium with a concave technology. Again, the joint consumption-asset
return process is exactly the same.

Therefore, there is nothing wrong in adopting one of the following
strategies for empirical work:

1. Form a statistical model of bond and stock returns, solve the opti-
mal consumption-portfolio decision. Use the equilibrium consumption
values in p = E (mx).

2. Form a statistical model of the consumption process, calculate asset prices
and returns directly from the basic pricing equation p = E (mx).

3. Form a completely correct general equilibrium model, including the
production technology, utility function, and specification of the market
structure. Derive the equilibrium consumption and asset price process,
including p = E (mx) as one of the equilibrium conditions.

If the statistical models for consumption and/or asset returns are right,
i.e., if they coincide with the equilibrium consumption or return pro-
cess generated by the true economy, either of the first two approaches
will give correct predictions for the joint consumption-asset return
process.

Most finance models, developed from the 1950s through the early
1970s, take the return process as given, implicitly assuming linear technolo-
gies. The endowment economy approach, introduced by Lucas (1978), is a
breakthrough because it turns out to be much easier. It is much easier to
evaluate p = E (mx) for fixed m than it is to solve joint consumption-portfolio
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problems for given asset returns, all to derive the equilibrium consumption
process. To solve a consumption-portfolio problem we have to model the
investor’s entire environment: we have to specify all the assets to which he has
access, what his labor income process looks like (or wage rate process, and
include a labor supply decision). Once we model the consumption stream
directly, we can look at each asset in isolation, and the actual computation
is almost trivial. This breakthrough accounts for the unusual structure of
the presentation in this book. It is traditional to start with an extensive study
of consumption-portfolio problems. But by modeling consumption directly,
we have been able to study pricing directly, and portfolio problems are an
interesting side trip which we can defer.

Most uses of p = E (mx) do not require us to take any stand on exogene-
ity or endogeneity, or general equilibrium. This is a condition that must
hold for any asset, for any production technology. Having a taste of the
extra assumptions required for a general equilibrium model, you can now
appreciate why people stop short of full solutions when they can address an
application using only the first-order conditions, using knowledge of E (mx)

to make a prediction about p.
It is enormously tempting to slide into an interpretation that E (mx)

determines p. We routinely think of betas and factor risk prices—components
of E (mx)—as determining expected returns. For example, we routinely say
things like ‘‘the expected return of a stock increased because the firm took
on riskier projects, thereby increasing its beta.’’ But the whole consumption
process, discount factor, and factor risk premia change when the produc-
tion technology changes. Similarly, we are on thin ice if we say anything
about the effects of policy interventions, new markets and so on. The equi-
librium consumption or asset return process one has modeled statistically
may change in response to such changes in structure. For such questions
one really needs to start thinking in general equilibrium terms. It may help
to remember that there is an army of permanent-income macroeconomists
who make precisely the opposite assumption, taking our asset return pro-
cesses as exogenous and studying (endogenous) consumption and savings
decisions.

2.3 Consumption-Based Model in Practice

The consumption-based model is, in principle, a complete answer to
all asset pricing questions, but works poorly in practice. This observation
motivates other asset pricing models.
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The model I have sketched so far can, in principle, give a complete
answer to all the questions of the theory of valuation. It can be applied
to any security—bonds, stocks, options, futures, etc.—or to any uncertain
cash flow. All we need is a functional form for utility, numerical values for
the parameters, and a statistical model for the conditional distribution of
consumption and payoffs.

To be specific, consider the standard power utility function

u ′(c) = c−γ . (2.1)

Then, excess returns should obey

0 = Et

[
β

(
ct+1

ct

)−γ

R e
t+1

]
. (2.2)

Taking unconditional expectations and applying the covariance decompo-
sition, expected excess returns should follow

E (R e
t+1) = −R f cov

[
β

(
ct+1

ct

)−γ

, R e
t+1

]
. (2.3)

Given a value for γ , and data on consumption and returns, you can
easily estimate the mean and covariance on the right-hand side, and check
whether actual expected returns are, in fact, in accordance with the formula.

Similarly, the present-value formula is

pt = Et

∞∑
j=1

β j

(
ct+j

ct

)−γ

dt+j . (2.4)

Given data on consumption and dividends or another stream of payoffs, you
can estimate the right-hand side and check it against prices on the left.

Bonds and options do not require separate valuation theories. For exam-
ple, an N -period default-free nominal discount bond (a U.S. Treasury strip)
is a claim to one dollar at time t + N . Its price should be

pt = Et

(
βN

(
ct+N

ct

)−γ
�t

�t+N
1
)

,

where � = price level ($/good). A European option is a claim to the payoff
max(St+T − K , 0), where St+T = stock price at time t + T , K = strike price.
The option price should be

pt = Et

[
βT

(
ct+T

ct

)−γ

max(St+T − K , 0)

]
.
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Figure 2.4. Mean excess returns of 10 CRSP size portfolios versus predictions of the power
utility consumption-based model. The predictions are generated by −R f cov(m, R i) with
m = β(ct+1/ct )

−γ . β = 0.98 and γ = 241 are picked by first-stage GMM to minimize
the sum of squared pricing errors (deviation from 45◦ line). Source: Cochrane (1996).

Again, we can use data on consumption, prices, and payoffs to check these
predictions.

Unfortunately, this specification of the consumption-based model
does not work very well. To give a flavor of some of the problems, Figure 2.4
presents the mean excess returns on the ten size-ranked portfolios of
NYSE stocks versus the predictions—the right-hand side of (2.3)—of the
consumption-based model. I picked the utility curvature parameter γ = 241
to make the picture look as good as possible. (The section on GMM esti-
mation below goes into detail on how to do this. The figure presents the
first-stage GMM estimate.) As you can see, the model is not hopeless—there
is some correlation between sample average returns and the consumption-
based model predictions. But the model does not do very well. The pricing
error (actual expected return − predicted expected return) for each port-
folio is of the same order of magnitude as the spread in expected returns
across the portfolios.

2.4 Alternative Asset Pricing Models: Overview

I motivate exploration of different utility functions, general equilibrium
models, and linear factor models such as the CAPM, APT, and ICAPM as ways
to circumvent the empirical difficulties of the consumption-based model.
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The poor empirical performance of the consumption-based model
motivates a search for alternative asset pricing models—alternative func-
tions m = f (data). All asset pricing models amount to different functions
for m. I give here a bare sketch of some of the different approaches; we
study each in detail in later chapters.

1) Different utility functions. Perhaps the problem with the consumption-
based model is simply the functional form we chose for utility. The
natural response is to try different utility functions. Which variables
determine marginal utility is a far more important question than the
functional form. Perhaps the stock of durable goods influences the
marginal utility of nondurable goods; perhaps leisure or yesterday’s
consumption affect today’s marginal utility. These possibilities are all
instances of nonseparabilities. One can also try to use micro data on indi-
vidual consumption of stockholders rather than aggregate consumption.
Aggregation of heterogeneous investors can make variables such as the
cross-sectional variance of income appear in aggregate marginal utility.

2) General equilibrium models. Perhaps the problem is simply with the con-
sumption data. General equilibrium models deliver equilibrium decision
rules linking consumption to other variables, such as income, invest-
ment, etc. Substituting the decision rules ct = f (yt , it , . . .) in the
consumption-based model, we can link asset prices to other, hopefully
better-measured macroeconomic aggregates.

In addition, true general equilibrium models completely describe
the economy, including the stochastic process followed by all variables.
They can answer questions such as why is the covariance (beta) of an
asset payoff x with the discount factor m the value that it is, rather than
take this covariance as a primitive. They can in principle answer struc-
tural questions, such as how asset prices might be affected by different
government policies or the introduction of new securities. Neither kind
of question can be answered by just manipulating investor first-order
conditions.

3) Factor pricing models. Another sensible response to bad consumption data
is to model marginal utility in terms of other variables directly. Factor
pricing models follow this approach. They just specify that the discount
factor is a linear function of a set of proxies,

mt+1 = a + bAf A
t+1 + bBf B

t+1 + · · · , (2.5)

where f i are factors and a, bi are parameters. (This is a different sense of
the use of the word ‘‘factor’’ than ‘‘discount factor’’ or ‘‘factor analysis.’’
I did not invent the confusing terminology.) By and large, the factors
are just selected as plausible proxies for marginal utility: events that
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describe whether typical investors are happy or unhappy. Among others,
the Capital Asset Pricing Model (CAPM) is the model

mt+1 = a + bR W
t+1,

where R W is the rate of return on a claim to total wealth, often proxied
by a broad-based portfolio such as the value-weighted NYSE portfolio.
The Arbitrage Pricing Theory (APT) uses returns on broad-based port-
folios derived from a factor analysis of the return covariance matrix.
The Intertemporal Capital Asset Pricing Model (ICAPM) suggests macro-
economic variables such as GNP and inflation and variables that forecast
macroeconomic variables or asset returns as factors. Term structure mod-
els such as the Cox--Ingersoll--Ross model specify that the discount factor
is a function of a few term structure variables, for example the short rate
of interest and a few interest rate spreads.

Many factor pricing models are derived as general equilibrium mod-
els with linear technologies and no labor income; thus they also fall into
the general idea of using general equilibrium relations (from, admit-
tedly, very stylized general equilibrium models) to substitute out for
consumption.

4) Arbitrage or near-arbitrage pricing. The mere existence of a representation
p = E (mx) and the fact that marginal utility is positive m ≥ 0 (these facts
are discussed in the next chapter) can often be used to deduce prices
of one payoff in terms of the prices of other payoffs. The Black--Scholes
option pricing model is the paradigm of this approach: Since the option
payoff can be replicated by a portfolio of stock and bond, any discount
factor m that prices the stock and bond gives the price for the option.
Recently, there have been several suggestions on how to use this idea in
more general circumstances by using very weak further restrictions on
m, and we will study these suggestions in Chapter 17.

We return to a more detailed derivation and discussion of these
alternative models of the discount factor m below. First, and with this
brief overview in mind, we look at p = E (mx) and what the discount
factor m represents in a little more detail.

Problems—Chapter 2

1. The representative consumer maximizes a CRRA utility function,

Et

∑
β j

c1−γ

t+j

1 − γ
.


