
17 GMM Notes

Note: These notes are slightly amplified versions of the blackboards for the GMM lectures in my
Coursera Asset Pricing class. They are not meant as substitutes for the readings, and are incomplete
and may have typos.

17.1 Standard error of the mean

Example. A sample might be

ut =


5
4
8
8
2

 .
The sample mean is

ET (u) =
1

T

T∑
t=1

ut = ū = 5.4

The sample mean is itself is a random variable. What if we sample again,

Sample #: 1 2 3 4
5 3 5 8
4 7 10 3
8 7 4 6
8 2 6 7
2 2 3 9

ET (u) 5.4 4.2 5.6 6.6

and so on. If we rerun the experiment, the sample mean varies.

The sample mean is a random variable. We only see one sample, but what if we could run the
world over and over again? The art of statistics: from only first sample, guess what variability of
sample mean is across all the samples —the distribution of the bottom row.

How do statisticians achieve such magic?

ū = Et(u) =
1

T

T∑
t=1

ut

var(ū) = var

(
1

T

T∑
t=1

ut

)
=

1

T 2
var

(
T∑
t=1

ut

)
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If 1) ut is stationary so var(u1) = var(u2)..and 2) if cov(ut, ut+j) = 0, then we can find the mean
and variance of the sample mean

var(ū) =
1

T 2

(
T∑
t=1

var (ut)

)
=
var(ut)

T

σ(ū) =
σ(u)√
T
.

When you think about it, this is just amazing. With a few simple assumptions, and looking look
only at our world, the first column, in which the sample mean is one number, we can learn how
that result would come out differently over all possible rerunnings of history or parallel universes.

Now, what if the variables u are not uncorrelated over time? Again “stationary” is enough.
(Don’t confuse stationary with uncorrelated with i.i.d. They are different!) Then, we just include
all the cross terms.

var(ū) =
1

T 2
var

(
T∑
t=1

ut

)
=

1

T

T∑
j=−T

T − |j|
T

cov(ut, ut−j) (1)

=
1

T

var(ut) + 2
T∑
j=1

T − |j|
T

cov(ut, ut−j)


As T gets big,

var(ū)→ 1

T

∞∑
j=−∞

cov(ut, ut−j) =
1

T

var(ut) + 2
∞∑
j=1

cov(ut, ut−j)

 =
S

T
(2)

The last equality is a definition of S.

Intuition: If the covariances are big, then we don’t really have as many data points as we think
we do, so the sample mean is not as precise.

Not only have we found the mean and variance, but sums of random variables approach a
normal distribution, even if the original random variables are not normal. Thus, we have as
T →∞, ū→ N [E(u), var(ū)].

Use: we can use this formula to quantify the precision of a measurement, the standard error.
We can use it to test —is the mean truly zero, or some other number, but we saw a larger number
just by chance?

You just learned how to “compute standard error of mean for autocorrelated time series.”

An example / application /useful formula: Suppose we model the autocorrelation of the u as
an AR(1), ut = ρut−1 + εt. Then

σ2

(
1

T

T∑
t=1

ut

)
→ 1

T
σ2
u

∞∑
j=−∞

ρ‖j‖ =
1

T
σ2
u

(
1 + ρ

1− ρ

)
. (3)
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This is a really nice generalization of σ2/T .

(Note: (3) is called a “parametric correction”and (2) a “nonparametric correction” for serial
correlation. As you can guess, the parametric one works better in small samples if the process is close
to AR(1), because you don’t estimate so many extra parameters. We will come back to this issue in

“Estimating the S matrix.”The finite-sample version, using (1) is var(ū) = 1
T

[
(1+ρ)
(1−ρ) −

2
T

ρ(1−ρT )
(1−ρ)2

]
.)

The Amazing Fact behind GMM: Just about anything you could want to do in econometrics
boils down to generalized version of same idea.
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17.2 GMM Notation / Formula Summary

1. Model moments, true value b0

g(b0) = E [f(xt, b0)] = E [ut] = E [(mt+1(b0)xt+1 − pt] = 0

2. Sample moments:

gT (b) = ET [f(xt, b)] = ET [(mt+1(b)xt+1 − pt] ; ET (·) ≡ 1

T

T∑
t=1

(·)

3. GMM estimator b̂ or bT
aT gT (b̂) = 0

4. Standard errors √
T (b̂− b0)→ N(0,

(
ad)−1aSa′(ad)−1′)

where

d =
∂g(b)

∂b′

a = plim aT

S =
∞∑

j=−∞
E
[
f(xt, b0)f(xt−j , b0)′

]
=

∞∑
j=−∞

E
[
utu
′
t−j
]

5. Variance of moments:
√
TgT (b̂)→ N(0,

[
I − d(ad)−1a

]
S
[
I − d(ad)−1a

]′
).

var [gT (b0)] =
1

T
S;

var
[
gT (b̂)

]
=

1

T

[
I − d(ad)−1a

]
S
[
I − d(ad)−1a

]′
This formula can be used to test individual moments, or for χ2 tests for joint significance. In
particular, gT

g′T var(gT )+gT ∼ χ2
N−K

6. Effi cient GMM. Like GLS. Use any effi cient first stage to estimate S, then use

a = d′S−1

with this choice,

var(b̂) =
1

T
(d′S−1d)−1

cov(gT ) =
1

T

[
S − d(d′S−1d)−1d′

]
g′T cov(gT )+gT = Tg′TS

−1gT = TJT ∼ χ2
#mom−#par
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7. Minimization approach
b̂1 = min

b
gT (b)′WgT (b)

This is a choice of aT : {
∂gT (b)′

∂b
W

}
gT (b) = aT gT (b) = 0

Second stage/effi cient W choice

b̂2 = min
b
gT (b)′S−1gT (b)

First order condition: this is the effi cient GMM estimator{
∂gT (b)′

∂b
S−1

}
gT (b) = d′S−1gT (b) = 0

Then, we can write the second stage test in this case as

TJT = T min
{b}

[
gT (b)′S−1gT (b)

]
∼ χ2

#mom−#par
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17.3 GMM defined; standard errors and tests.

The key to GMM is simply mapping a problem into the GMM notation.

17.3.1 Population and sample moments

We write the model in a form in which it predicts that the true mean of some function of the data
is zero. Typically, the model includes some free parameters. Then we choose the free parameters
to make sample means close to zero, and we evaluate the model by how close the sample mean got
to zero. We do standard errors and tests by exploiting the standard error of the mean idea.

Vector of moments

In asset pricing, a typical example is

0 = E(mt+1(b)Ret+1)

0 = E(mt+1(b)Rt+1 − 1)

or more generally,

pt = Et(mt+1(b)xt+1)⇒
0 = E(mt+1(b)xt+1 − pt)

Here we have expressed the asset pricing model by its prediction that the mean of some function
of the data should be zero. There are some unknown parameters b which we will estimate.

Examples:

CAPM: 0 = E
[
(a− bRmt+1)Ret+1

]
{b = a, b}

CCAPM: 0 = E

[
β

(
ct+1

ct

)−γ
Ret+1

]
{b = β, γ}

Here Ret+1 is a vector, e.g. the 25 FF portfolios.

Those returns might even be multiplied by some instruments / managed portfolios, to make a
bigger vector. With one instrument, zt.

Conditional : 0 = E

[
β

(
ct+1

ct

)−γ [
Ret+1

ztR
e
t+1

]]
{b = β, γ}

Conditional : 0 = E

[
β

(
ct+1

ct

)−γ (
Ret+1 ⊗

[
1
zt

])]
{b = β, γ}

The second equality introduces the Kronecker product notation you often see in GMM and econo-
metrics. If Re is a 25× 1 vector of returns, now we have a 50× 1 vector of moments.
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Alphas

Note:
E(mRei) = E(m)E(Rei) + cov(m,Rei) =

1

Rf
[
E(Rei)− βiλ

]
=

1

Rf
αi

Thus, GMM moments are alphas. The model prediction is the same thing as α = 0. We are trying
to pick parameters by making alphas as small as possible, and then we will evaluate the model by
just how small the alphas are. (Mean vs. beta graph)

Sample moments

These are population moments. To do empirical work, just look at sample counterpart,

ET
[
mt+1(b)Ret+1

]
ET ≡

1

T

T∑
t=1

Estimation and testing strategy

So our strategy will be:

1) Estimate Pick b̂ (bT ) to make the model look as good as possible —make the moments as
close to zero as possible, make the alphas as small as possible, make the cross-sectional line as good
as possible, give the model its best chance.

2) Measure statistical uncertainty We will calculate σ(b̂) standard errors.

3) Evaluate and test the model by how close it can get to α = 0. Are sample α 6= 0 just due to
luck?.(accounting for parameters, e.g. 25 parameters to fit 25 moments doesn’t count!) .

Notation:

Now map all this into the GMM notation. The true, or population moments are

g(b) = E [f(xt, b)] = E [ut] = E
[
mt+1(b)Ret+1

]
= 0.

The = just are many versions of the same thing.

The sample moments just replace ET the sample mean in place of population mean

gT (b) = ET [f(xt, b)] = ....

17.3.2 Estimation

There are typically more moments (25 FF returns) than parameters (2 for the CCAPM, β, γ or
CAPM a− bRem). What do we do? We set a linear combination of moments to zero

aT gT (b̂) = 0.
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Example: with 2 parameters b, e.g. m = a − bRem, you can choose the parameters to fit two
returns (Rm, Rf ) exactly. Then you can test the model by seeing if the other moments are small.
(This is what Fama and French’s time-series regressions do. They give zero alpha to the factors
and the risk free rate, thereby estimating factor risk premiums equal to factor means, and then
evaluate the model by the remaining alphas.)

[
1 0 0 0
0 1 0 0

]
ET (m(a, b)Rem)
ET
(
m(a, b)Rf − 1

)
ET
(
m(a, b)Rehml

)
ET (m(a, b)Resmb)

 =

[
0
0

]

This defines GMM estimate b̂. It answers the question, given data, how will I estimate the free
parameters? (I’m running out of letters. The GMM notation uses b to denote the vector of param-
eters, b = [a b]′ in this case. That’s two uses of the same letter to mean different things.)

Sometimes can solve for the estimates analytically. For example, for the CAPM, m = a−bRem.

[
1 0
0 1

] ET

((
â− b̂Rem

)
Rem

)
ET

((
â− b̂Rem

)
Rf − 1

)  =

[
0
0

]
[
âET (Rem)− b̂ET

(
Rem2

)
âETR

f − b̂ET
(
RemRf

) ] =

[
0
1

]
[
ET (Rem) ET

(
Rem2

)
ET (Rf ) ET

(
RemRf

) ] [ â

−b̂

]
=

[
0
1

]
[

â

−b̂

]
=

[
ET (Rem) ET

(
Rem2

)
ET (Rf ) ET

(
RemRf

) ]−1 [
0
1

]

Sometimes, you must solve a nonlinear system of equations For example to set agT (b̂) = 0 for
the consumption CAPM,

[
1 0
0 1

] ET

(
β̂
(
Ct+1

Ct

)−γ̂
Remt+1

)
ET

(
β̂
(
Ct+1

Ct

)−γ̂
Rf − 1

)
 =

[
0
0

]
 ET

((
Ct+1

Ct

)−γ̂
Remt+1

)
ET

(
β̂
(
Ct+1

Ct

)−γ̂
Rf
)
 =

[
0
1

]
.

Now you have to use a computer to find β, γ. (In this case it’s not hard. The first moment identifies
γ, and then the second identifies β, so it’s just finding a zero of a single nonlinear function.)

Think about identification. There must be at least as many equations or moments as parameters.
But you must also be able to solve the moment equations for the parameters! If there is no γ̂ that
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solves the first equation in a given sample, you’re stuck, or rather you must take a different approach.
This problem can be subtle!

This all seems a bit arbitrary because I haven’t told you which a matrix to use?

We’ll come back to this question a bit, but not as much as you may hope. You’re used to black
boxes that tell you exactly what to do. GMM isn’t like that. It’s a much more flexible tool. There
is a “statistically optimal”a matrix, but we often use less than optimal matrices that make a lot
more economic sense and are more robust. For example, a statistically optimal technique might
not let you just use the market and risk free rate to estimate a and b, or β and γ, and then “test”
the model on the remaining moments. It might want you to use all the moments to estimate the
parameters “effi ciently.”GMM lets you do the simple version.

17.3.3 Distribution

After specifying how will we produce our estimates b̂, the next econometric question is, what are
the standard errors? If we produce numbers (b̂) by this recipe, what are the statistical properties
of b̂ across many samples? How do we test the model? Are the remaining alphas statistically close
to zero? How likely is it that the remaining alphas are produced just by chance from a world where
the true alphas are zero?

Results

Econometric facts:If model is true, if data are stationary (and some other technical assumptions
—read Hansen), then b̂ is a consistent, asymptotically normal, estimate of b.

1) Standard errors. √
T (b̂− b)→ N(0,

(
ad)−1aSa′(ad)−1′)

d =
∂g(b)

∂b′

a = plim aT

S =
∞∑

j=−∞
E
[
f(xt, b)f(xt−j , b)

′] =
∞∑

j=−∞
E
[
utu
′
t−j
]

2) The distribution of sample moments gT (b̂), after some linear combinations agT (b̂) = 0 are
set to zero is √

TgT (b̂)→ N(0,
[
I − d(ad)−1a

]
S
[
I − d(ad)−1a

]′
).

Since the gT are alphas or pricing errors, this formula gives the distribution of the alphas

3) χ2 tests for joint significance. In particular, gT

g′T (b̂)var(gT (b̂))+gT (b̂) ∼ χ2
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+ is pseudo inversion. Since we set agT (b̂) = 0 in every sample, some linear combinations of gT (b̂)
have no variance, and the variance covariance matrix is singular. But, since those same linear
combinations of gT (b̂) are also zero, this causes no problem. The degrees of freedom of the χ2

equals the rank of the variance-covariance matrix, equals the number of moments less the rank of
a, the number of gT that are not set to zero.

(One form of pseudo inversion uses the eigenvalue decomposition. Write the eigenvalue decom-
position of the symmetric Σ as Σ = QΛQ′ with Q′Q = I and Λ diagonal. Then Σ+ = QΛ+Q′

where

Λ =


λ1

λ2

0
0

 ; Λ+ =


λ−1

1

λ−1
2

0
0


There are numerically better versions, but this is conceptually clear.)

17.3.4 Intuition for GMM formulas

1) Why S?

var(gT ) = var(
1

T

T∑
t=1

ut) =→ 1

T

∞∑
j=−∞

E(utu
′
t−j) =

1

T
S

1/T S gives the standard error of sample moments, (ignoring estimation). Precisely, S is the
sampling variance of gT (b), not gT (b̂). As we saw in studying the standard error of the mean, the
sums of correlations just allow for autocorrelation of ut.

In asset pricing, Et(mt+1R
e
t+1) = Et(ut+1) = 0 so E(utut+j) = 0 under the null. However,

we often measure under the alternative, i.e. we allow autocorrelation in standard errors even
though the null says it shouldn’t be there. Sometimes, such as in running 5 year return forecasting
regressions in monthly data, there is serial correlation that we need to correct for.

2) Standard error formula. This is just the delta method. For fixed b, gT (b) will vary in samples
due to luck. How much does variation in gT at each b affect variation in the estimated b̂?

Logic: b0 is the true value. g(b0) is zero by assumption that the model is true. gT (b0) is not
zero, because we might get a lucky draw of returns. So, look at the distribution of b̂. Remember,
b0 is a number.

agT (b̂) = 0

agT (b0) + a
∂gT
∂b′

(b̂− b0) = 0

(b̂− b0) = − (ad)−1 agT (b0)
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Thus, we have measured how variation in gT at fixed b0 translates into variation in b̂ that sets
sample agT to zero

var(b̂− b0) =
1

T
(ad)−1 aSa′ (ad)−1′

b

gT(b)

b$

g(b)

b0

The picture shows you how vertical variation in gT (b) at every fixed b, due to sampling variation,
translates into horizontal variation in the estimated b̂ away from the true b0.

In the picture, a = 1 (exact identification) so b̂ = d−1gT (b) so var(b̂) = d−1var(gT (b))d−1′ =
d−1(S/T )d−1′. The actual formula adds the effect of a 6= I, but I’d need more dimensions to graph
it.

The standard error formula uses aT , which can vary from sample to sample, so long as it
converges to some value a =plim aT . We will often want to use data-dependent aT matrices.
(a = d′S−1 is a prime example, as we estimate both d and S in sample.)

3) S is cov(gT (b)) for fixed b, not cov(gT (b̂)) accounting for the fact that b̂ changes in every
sample too. But we pick b̂ in each sample to set a linear combination of gT to zero. cov(gT (b̂))
needs to account for that.

Example: In the exactly identified case a = I, the number of parameters = the number of
moments, so gT (b̂) = 0 in every sample. Now var(gT (b̂)) = 0, not S. That’s why the formula has
S−(lots of stuff).

“Derivation:” I’ll use the delta method again.

agT (b̂) = 0

gT (b̂) ≈ gT (b0) +
∂gT
∂b′

(
b̂− b0

)
= gT (b0) + d

(
b̂− b0

)
From above, the estimate is

(b̂− b0) = − (ad)−1 agT (b0)
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so

gT (b̂) ≈ gT (b0)− d (ad)−1 agT (b0)

gT (b̂) ≈
(
I − d (ad)−1 a

)
gT (b0)

var(gT (b̂)) ≈ 1

T

(
I − d (ad)−1 a

)
S
(
I − d (ad)−1 a

)′
If a = I, d = full rank, cov[gT (b̂)] = 1

T

[
I − d(d)−1

]
S
[
I − d(d)−1

]′
= 0. So this reduces to our

intuition for the exactly identified case.

Actually, you get the same result if a and d are merely full rank (square). Again, that is the
“exactly identified case” in which we’re using all linear combinations of moments to identify the
parameters. [

I − d(ad)−1a
]
S
[
I − d(ad)−1a

]
=
[
I − dd−1a−1a

]
S
[
I − dd−1a−1a

]
= 0

4) The χ2 test is basically
α′cov(α)+α ∼ χ2

This is the test of any asset pricing model —are the alphas jointly zero, accounting for the linear
combinations of alphas that you set to zero in order to estimate free parameters? This is very much
in the spirit of the “Gibbons Ross Shanken Test”if you know what that is.

17.4 Effi cient GMM

So far it has been up to you to choose the aT matrix. You have N moments gT (b) and K parameters
in b. Which K linear combinations of the gT (b) do you want to set to zero?

Answer 1: Judgement! “Choose the economically important moments”(above).

Answer 2: The “statistically effi cient”answer: use

a = d′S−1.
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If you plug a = d′S−1 into the standard error formulas they simplify to2

var(b̂) =
1

T
(d′S−1d)−1

cov(gT ) =
1

T

[
S − d(d′S−1d)−1d′

]
As before, the second term in the second equation corrects for loss of degrees of freedom due to
parameter estimation.

Be careful. These formulas are often quoted as “the”GMM standard error formulas. But they
only work for effi cient GMM a = d′S−1. For other a matrices, use the previous formulas.

We can use the cov(gT ) formula to test whether all the moments are zero, i.e. whether the
observed nonzero gT are just due to sampling error,

g′T cov(gT )+gT = Tg′TS
−1gT = TJT ∼ χ2

#mom−#par.

This is the “JT test of overidentifying restrictions" The cool fact in this formula is that you can
leave out the d(d′S−1d)−1d′ and get the same answer

Why are these “effi cient?”

Fact 2: If b̂ is the effi cient GMM estimate, then var(b̂) is “smallest”standard error among all
linear combinations of given moments. (If you use any other a, the covariance matrix of b̂ is this
plus a positive semidefinite matrix.)

Thus: the statistical answer to picking the a matrix:

1) Choose any (reasonable!) a, to get a first stage estimate b̂1

2) Form an estimate of S

3) Use a = d′S−1 in second stage.

This is just like “Use OLS first-stage, find the error covariance matrix, use GLS in a second
stage.”

And it’s just as dangerous! A great advantage of GMM (vs., say, maximum likelihood) is that
you can pick a that are “robust”not “effi cient,”just as you can run OLS (and correct the standard
errors).

2The algebra is straightforward:

√
TgT (b̂)→ N(0,

[
I − d(ad)−1a

]
S
[
I − d(ad)−1a

]′
).[

I − d(d′S−1d)−1d′S−1]S [I − d(d′S−1d)−1d′S−1]′ =[
I − d(d′S−1d)−1d′S−1]S [I − S−1d′(d′S−1d)−1d′

]
=

S − d(d′S−1d)−1d′ − d(d′S−1d)−1d′ + d(d′S−1d)−1d′S−1d′(d′S−1d)−1d′ =

S − d(d′S−1d)−1d′.
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“Effi ciency”means that if the model is exactly and precisely 100% true, if the data are perfectly
measured and perfectly correspond to the concepts of the model, then the effi cient GMM estimate
has the lowest asymptotic standard error among all GMM estimates that use the same choice of
moments gT (b). If not... no promises.

“Effi ciency”only means with respect to the initial choice of moments! If you add other moments
—other model predictions, or other returns —this always can help.

17.5 The minimization approach

A second natural way to make gT “as small as possible”is

b̂1 = min
b
gT (b)′WgT (b)

for some “weighting matrix.”The first order conditions:{
∂gT (b)′

∂b
W

}
gT (b) = 0

aT gT (b) = 0

So this is just a way to pick an a. Also note why we used aT before: this a will depend on the
sample, but converges asymptotically.

In finance, this procedure amounts to minimizing the weighted sum of squares of the alphas.
Then the minimization objective is the same as the evaluation / testing objective, is the weighted
sum of squared alphas “too big?”

But as we asked “which a matrix should you use?”Now we ask “Which weighting matrix W
should you choose?”

Again, the first answer is, use whatever you want to use, to produce reliable estimates that are
robust to small unmodeled specification and measurement errors. GMM is a tool not a black box!

Again, there is an answer from statistical effi ciency: Use S as weighting matrix in a second stage
minimization:

b̂2 = min
b
gT (b)′S−1gT (b)

(you need a first stage, either with fixed W or fixed a to estimate S). The first order conditions:{
∂gT (b)′

∂b
S−1

}
gT (b) = 0

d′S−1gT (b) = 0

aT gT (b) = 0

This minimization then produces the effi cient GMM estimate.
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Then, we can write the second stage test as

TJT = T min
{b}

[
gT (b)′S−1gT (b)

]
∼ χ2

#mom−#par

(This takes a little bit of clever algebra. See Hansen 1982.)

Advantage of minimization:
agT (b̂) = 0

is a nonlinear set of equations. Solving that can be a bear. Minimization is much easier numerically.

2) Why is S the effi cient weighting matrix?

A weighting matrix min g′TWgT uses W to force GMM to pay more attention to some rather
than others.

What W should you use? Again, the right answer is, first of all, economically interesting choices,
or statistically robust choices —choices that will work well with model misspecification and data
mismeasurement. !

The statistical answer is, pay attention to well-measured moments. Remember,

var(gT )→ 1

T

∞∑
j=−∞

E(utu
′
t−j) =

1

T
S

Thus, weighting by S−1 means paying attention to moments that are well measured.

17.6 GMM applied to OLS

GMM allows you to correct OLS standard errors for many problems. Historically, these corrections
were derived by GMM, and solved long-standing hard questions. (The White, Hansen-Hodrick,
and Newey-West standard errors were famous papers, not problem sets.) This discussion is also
a preview to how we will use GMM to update the distribution theory of classic regression-based
methods in asset pricing.

A regression is
yt = x′tβ + εt

xt =

 1
x1
t

x2
t


Let’s map this to GMM. Moments: OLS chooses the estimate to make the right hand variables

uncorrelated with the error term. Thus, we can define the OLS estimator as an exactly identified
a = I GMM estimate using the orthogonality condition,

gT (β̂) = ET

[
xt

(
yt − x′tβ̂

)]
= 0

β̂ =
[
ET (xtx

′
t)
]−1

ET (xtyt)
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This is a case of linear GMM, so no search or minimization is needed to find the estimate.

This seems a little different from the usual formula. Usually we write

X =

 x′1
x′2
x′t


and then 1

TX
′X = ET (xtx

′
t). Thus our β̂ formula is the same as β̂ = (X ′X)−1X ′Y .

Now, apply the GMM distribution theory,

d =
∂gT
∂β′

= −E(xtx
′
t)

f(xt, β) = ut(β) = xt (yt − xtβ) = xtεt

S =

∞∑
j=−∞

E
(
utu
′
t−j
)

=
∞∑

j=−∞
E
(
εtxtx

′
t−jεt−j

)

var(β̂) =
1

T
d−1Sd−1′

1

T
E(xtx

′
t)
−1

∞∑
j=−∞

E
(
εtxtx

′
t−jεt−j

)
E(xtx

′
t)
−1

We’re done!

Some special cases to make this familiar:

a) Old formulas. If εt serially uncorrelated, conditionally homoskedastic then the formula sim-
plifies:

E(εt|xtxt−1..εt−1εt−1..) = 0→ no lags j

E(ε2
t |xtxt−1..εt−1εt−1..) = σ2

ε

E(ab) = E(E(a|b)b)

means
E
(
εtxtx

′
tεt
)

= E
[
E
(
ε2
t |xtx′t

)]
= E

(
ε2
t )E(xtx

′
t

)
thus,

∞∑
j=−∞

E
(
ε2
txtx

′
t

)
= σ2

εE(xtx
′
t)

so
var(β̂) =

1

T
σ2(ε)E(xtx

′
t)
−1 = σ2(ε)(X ′X)−1.
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b)White errors. Suppose εt are iid but conditionally heteroskedastic. If xt is large, the variance
of ε is also likely to be large. This happens in practice. Then it’s easier to draw lines of different
slope through the data, meaning regular standard errors are too small.

Now, we still have no lags to deal with, but we can’t take out the ε. Still, it’s easy enough to
calculate:

var(β̂) =
1

T
E(xtx

′
t)
−1E

(
εtxtx

′
tεt
)
E(xtx

′
t)
−1

Isn’t this lovely? A simple formula to deal with conditional heteroskedasticity. You don’t have to
model the heteroskedasticity either. If ε2 is large when x is large, the middle term will pick that up
in the data for you. It will be bigger, showing the effect of conditional heteroskedasticity in raising
the size of standard errors.

c) Hansen-Hodrick / Newey-West errors: What if errors are serially correlated? This happens
all the time, as in our regression of long run returns on DP. Now, use the full formula.

var(β̂) =
1

T
E(xtx

′
t)
−1

∞∑
j=−∞

E
(
εtxtx

′
t−jεt−j

)
E(xtx

′
t)
−1

You can’t use infinite lags in practice, and high lags are poorly estimated. Thus, this is usually
estimated with

var(β̂) =
1

T
E(xtx

′
t)
−1

k∑
j=−k

wjE
(
εtxtx

′
t−jεt−j

)
E(xtx

′
t)
−1

for example

wj =
‖k − j‖

k

and a promise to let k increase with sample size. Alternatively, you can use a parametric model of
autocorrelation like the AR(1). Then you get simple formulas.

Note: What we are doing here is to find correct standard errors for OLS in the presence of error
terms that violate the usual OLS assumptions. This is distinct from GLS. The OLS estimate may
be “ineffi cient,”but we’re using it anyway. Thus, this is also a good example of how GMM lets you
find a distribution theory for robust but sensible estimates rather than require you to use effi cient
but potentially fragile estimates.

17.7 Using GMM

(Note: The lectures condensed considerably from this treatment.)

Some comments on using GMM. Remember we defined the GMM estimate as

aT gT (b̂) = 0

You can use any a, of enough rank. This is the genius — and danger — of GMM. You can pick
moments you want to fit. The ability to use an arbitrary a and not just the fully effi cient estimate
is very useful!
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You can pick “robust”“economically important”etc. moments. This ability coincides with a
major change in empirical philosophy in economics over the last few decades. We do not regard
models as literal “truth”but rather as quantitative parables. Thus, we want our models to fit in
“sensible”directions, and to ignore “silly”predictions.

A prime example comes from macroeconomics, in which many great models have one shock such
as a technology shock. This fact means that some transformation of all the variables are perfectly
correlated. The real world has more than one shock and no perfect correlations. Thus the models
can be “rejected”with infinite certainty. But they’re still nice parables. So your choice is, either
dress them up with a lot of “measurement errors”to pretend they are the literal truth, or to adopt
econometric techniques that allow you to specify the “important”moments and ignore the perfect
correlation.

But one should not go so far as to ignore sampling error! At least we can measure the sampling
uncertainty associated with our “calibration”exercises. GMM is an ideal tool for this purpose.

A classic asset pricing example: consider the CAPM or consumption model, as discussed above
(I repeat as a reminder)

m(a, b) = a− bRem or m = β

(
Ct+1

Ct

)−γ
Why don’t we use the market and risk free rate to “estimate”the parameters, a, b or β, γ, and then
use additional assets such as hml and smb to “test”, or to “see how well the model performs on
explaining the value and small firm premiums.” The following a choice implements this idea.

[
1 0 0 0
0 1 0 0

]
ET (m(a, b)Rem)
ET
(
m(a, b)Rf − 1

)
ET
(
m(a, b)Rehml

)
ET (m(a, b)Resmb)

 =

[
0
0

]

It is a useful trick in economics. Real business cycle and DSGE models often “calibrate”
preference and technology parameters β, γ, etc. by long term averages averages such as capital
/ labor ratios, (equity premium!) etc. Then they “evaluate” the model by its ability to capture
variances and correlations —carefully avoiding the stochastic singularity implied by the one-shock
structure. Good — but maybe we don’t really know all that much about the parameters from
the “calibration”? How sure are we about those parameters? If the model’s predicted correlation
between investment and output is different from that in the data, how likely is that fact just due
to sampling error in the model, including the sampling error in the parameter calibration? We can
implement the calibrate-verify procedure and answer all these sampling questions with

[
1 0 0 0
0 1 0 0

]
ET (model k/l - data k/l)
ET (model ∆y- data ∆y)

σ(∆c), σ(∆i)
corr(∆c,∆i, etc)

 =

[
0
0

]

You don’t need to test models! The whole equity premium, risk free rate puzzle comes down to
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studying moment conditions

[
1 0
0 1

] ET

(
β
(
Ct+1

Ct

)−γ
Rem

)
ET

(
β
(
Ct+1

Ct

)−γ
Rf − 1

)
 =

[
0
0

]

As this is exactly identified, there is nothing to test. But we can examine the β, γ estimates (γ
being too high is the equity premium, β > 1 the risk free rate puzzle), and we can get standard
errors of β, γ, to see how strongly the data require puzzling values.

GMM is a very flexible framework for all sorts of econometric problems. The “generated re-
gressor”is the classic case.

yt = bxt + εt

zt = β(E(yt|xt)) + δt = β(b̂xt) + δt

How do we find standard errors of β̂ that incorporate the sampling uncertainty of â and b̂? Answer:
write down the moments

E[(yt − bxt)xt] = 0

E[(zt − β(bxt))zt] = 0.

The weighting matrix a = I will give the OLS estimates of both equations. The S matrix captures
correlations between the two equations, and the off diagonal elements of the d matrix capture how b
estimates enter the second equations. All together, then, the standard errors of β̂ will then include
the uncertainty about b.

A classic case comes up in finance: we run time series regressions of returns on factors to estimate
β,

Reit = a+ βift + εit t = 1, 2, ..T ∀i

and then we run cross sectional regressions of average returns on β to estimate factor risk preimums
and pricing errors.

E(Rei) = γ + β̂iλ+ αi i = 1, 2, ..N

We can’t use OLS formulas for σ(λ̂) because 1) the errors αi are correlated across assets i and 2)
the β̂ are not fixed, but generated regressors.

In finance, our moments are E [(m(scalar) Re(vector)] so aE(mRe) = E [m (aRe)] . The a ma-
trix is a choice of portfolios of the underlying assets. By choosing an a matrix, you determine
which portfolios of given assets will have zero in-sample alphas to estimate parameters. There
are always some! If you say I’ll use a = [1111..] to treat all assets equally, you are not: you are
estimating parameters to perfectly price the equally weighted portfolio in sample. There is always
some perfectly priced portfolio. So look at a and choose it sensibly!

Similarly, a minimization,
min gT (b̂)′WgT (b̂)
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With first order condition,
d′WgT (b̂) = 0

also amounts to a choice of how to weight portfolios. Write W = Q′Q, then

min gT (b̂)′Q′QgT (b̂)

minET

[
m(b̂) [QRet ]

′
]
ET

[
m(b̂)

(
QRe′t

)]
so the choice of weighting matrix tells us which portfolios you want GMM to price as well as
possible.

17.7.1 a and W choices

So what’s a “good”choice of a matrix or W matrix? It will certainly help in this decision to recall
the properties of our choices.

Fist stage or effi cient GMM?

First stage uses an arbitrary (hopefully thoughtful) a or W matrix. Its properties are 1. the
estimate b̂ is consistent. 2. GMM gives standard error σ(b̂) formulas, σ(ĝT ) formulas, χ2 tests for
g = 0. All of these are consistent. All give correct standard errors and test statistics. But the
estimate is not asymptotically effi cient. (if the model is 100% correct and given choice of moments)

Stopping at first stage estimates/tests is not “wrong”in that it does not introduce a bias. It is
not “wrong” in the way that using σ/

√
T for autocorrelated data is “wrong.”The only criticism

one could make is that it is not “effi cient.” You could have wrung slightly more precise estimates
out of the data. Now effi ciency does matter. Throwing away half the data is ineffi cient too. But at
least check that the gain in effi ciency (lower asymptotic standard errors) is not balance by a loss
of robustness or common sense. You could have included more data too, which usually has a much
greater increase in effi ciency.

Second stage or effi cient GMM is Asymptotically effi cient (given the choice of moments) That’s
it. It has a lower true (not necessarily estimated) σ(b̂)..

The disadvantage: is it better in finite samples? is it robust to model misspecification? Does
it focus in on small bid ask spreads, measurement errors, and other unmodeled ways in which the
model is not a 100% accurate description of reality? (Remember, that is assumption 1! When you
tell theory “Assume the model is true”you mean literally, 100% absolutely exactly true, and it can
price a 1000% long-short position!)

As you can see, I’m sympathetic to robust but ineffi cient first stage estimates with well chosen a
andW matrices, but correct standard errors. That’s not always and everywhere. Asset pricing and
macro cases that I deal with usually have enough data to statistically measure parameters quite
well, or at least effi cient estimates don’t improve (lower standard errors) a lot. These cases also
feature a lot of “quantitative parable”model simplification in which effi cient or GLS transformations
tend to seize on small specification and measurement errors and deliver garbage. However, in the
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cases I’m familiar with there is a lot of serial or cross correlation of moments. Standard errors
which ignore such correlation are very wrong. And the presence of such correlation is a reason
that GLS or effi cient estimates are often radically different from OLS or first stage estimates. A
circumstance with a very nearly “true”model, very well measured data, but not much data and
not much correlation of errors could easily reverse this prejudice and yield a preference for effi cient
procedures.

OLS vs. GLS analogy.

OLS: solves min (Y −Xβ)′(Y −Xβ)→ β = (X ′X)−1X ′Y

What if Y = Xβ + ε, and ε autocorrelated/heteroskedastic?

Recall that the OLS β̂ is consistent, but not effi cient. The OLS standard error formula σ =
(X ′X)−1 s2 is biased. It is often very badly biased (especially cross sectionally, and waving the
“cluster”wand does not fix the problem)

The statistician’s answer: Run a 2 stage procedure 1) Run OLS to find β1. Form estimate
of E(εε′) = Ω, 2) Run GLS, min(Y − Xβ)′Ω−1(Y − Xβ) → β̂ =

(
X ′Ω−1X

)−1
X ′Ω−1Y . This

GLS estimate is consistent, effi cient. Its standard error formula σ2(β) = (X ′Ω−1X)−1s2 is also
consistent.

The Economist’s answer is, increasingly: It is often much better to run ols, but correct standard
errors. Nearly universal in asset pricing, corporate finance. “FMB”standard errors are just this.

GLS works poorly in small samples, and often throws out the baby with bathwater, e.g. first
differencing data Why? GLS assumes the model is literally 100% true, without measurement errors.
See “A Brief Parable of Overdifferencing”

An alternative dominates practice: Run OLS, which is “robust”but fix the standard errors. In
the standard regression context,

σ2(β̂OLS) = var
[(
X ′X

)−1
X ′Y

]
= var

[(
X ′X

)−1
X ′ε

]
=
(
X ′X

)−1
X ′ΩX

(
X ′X

)−1

The first stage formulas above are GMM analogues to this formula. The GMM does OLS
formulas are similar. As above, this is appropriate when you have lots of data, so squeezing more
information out of the data is not critical, there is lots of correlation to correct for, so OLS and
GLS differ a lot, and the model is approximate or data are measured with error, so (for example)
though you trust yit = xitβ + εit, you don’t trust (yit − yit−1) = (xit − xit−1)β + (εit − εit−1) or
even less the difference-in-difference (yit − yit−1)− (yjt − yjt−1) = [(xit − xit−1)− (xjt − xjt−1)]β+
(εit − εit−1)− (εjt − εjt−1), which throw out gobs of variation in the data.
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17.8 Assumptions

I have not talked much at all about the assumptions behind GMM or the beautiful asymptotic
distribution theory by which all these results are proved. For applied work, a few assumptions are
important to keep in mind:

1. The model is true. This seems innocuous, but it is important, and can help you to diagnose
problems. Not only must there be a b such that ag(b) = 0, there must be a b̂ such that aT (b̂)gT (b̂) =
0 in each sample. Loosely, b must be identified.

2. The data are stationary. This is all based on the idea that sample means converge to
population means. If xt = xt−1 + εt, then the sample mean of x does not converge to a population
mean. GMM uses different parts of the sample to guess what would happen in different histories,
and the data must be stationary to make that implication.

That’s only two that most frequently go wrong.
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