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Beyond Arbitrage: Good-Deal Asset Price
Bounds in Incomplete Markets

John H. Cochrane

University of Chicago, Federal Reserve Bank of Chicago, and National Bureau of
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Vega Asset Management LLC

One often wants to value a risky payoff by reference to prices of
other assets rather than by exploiting full-fledged economic mod-
els. However, this approach breaks down if one cannot find a
perfect replicating portfolio. We impose weak economic restric-
tions to derive usefully tight bounds on asset prices in this situa-
tion. The bounds assume that investors would want to buy assets
with high Sharpe ratios—‘‘good deals”’—as well as pure arbitrage
opportunities. We show how to calculate the price bounds in one-
period, multiperiod, and continuous-time contexts. We show that
the multiperiod problem can be solved recursively as a sequence
of one-period problems. We calculate bounds in option pricing
examples including infrequent trading and an option written on
anontraded event, and we use the bounds to explore the economic
significance of option pricing predictions. We find that much varia-
tion in S&P 500 index option prices over time and across strike

prices fits within the bounds.

I. Introduction

The fundamental question of financial economics is how to value
uncertain payoffs. For many applications in economics and finance
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a relative pricing approach is appropriate. In these applications we
are interested only in the value of a specific payoff, we take as given
the prices of other assets without questioning their fundamental eco-
nomic determinants, and we want to make as few economic assump-
tions as possible.

Option pricing is the classic case: we want to know the value of an
option given the price of the underlying stock. The theory of Black
and Scholes (1973) and Merton (1973) is a great success of this ap-
proach. Even though an option payoff is quite different from that
of a stock or bond, they showed how continuous dynamic trading
can complete a market. Therefore, the option payoff can be per-
fectly replicated by continuous trading in the stock and bond, and
the option’s value can be determined given that of the stock and
bond. Via its role in option pricing theory, the relative method is
used in many economic applications of finance theory, such as the
real-option value of irreversible investment (e.g., Dixit and Pindyck
1994; Abel and Eberly 1996). Ross’s (1976 a) arbitrage pricing theory
tries to determine the expected rate of return of a portfolio given
the expected returns of “‘factor’ portfolios, and without preference
assumptions. Even apparently economics-based theories such as the
capital asset pricing model (CAPM) are typically applied in a relative
way since one determines expected returns on assets, portfolios, or
investment projects, taking the market expected return as given. A
relative approach is, appropriately, used for many applications of
asset pricing theory to corporate finance. For example, one exam-
ines the returns on “‘like”” securities to determine the cost of capital
for a specific project.

Alas, a purely preference-free approach often breaks down. One
may not be able to trade continuously; there may be state variables
(e.g., stochastic stock volatility and interest rate) that do not corre-
spond to traded assets; and the event on which an option or real
payoff depends may not be a traded asset or it may be so thinly
traded that it is not useful for hedging. In fact, if options really could
be perfectly and costlessly replicated by other liquid assets, it is un-
likely that options would be traded in the first place.

We use a lttle economics, a slight strengthening of no-arbitrage
and law of one price arguments, to greatly restrict the range of values
of a risky payoff in these situations, without having to fall back on
completely specified economic models such as the consumption-
based asset pricing model.

The basic idea is most simply explained in a one-period environ-
ment. We want to learn about the value of a focus payoff x{,1, taking
as given the prices p, of a set of basis payoffs or hedging assets x,4;.
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A discount factor or marginal utility growth rate m,,; generates
the value p, of any payoff x,,, by

p = E(mx). (1)

Here and below we suppress time subscripts unless they are neces-
sary for clarity. The payoff, value, and discount factor can be real or
nominal. The existence of such a discount factor or marginal utility
has a portfolio interpretation: it is equivalent to the law of one price
that any two ways of constructing the same payoff have the same
value. Thus, if the focus payoff x° can be perfectly replicated from
the basis asset payoffs x, we have enough information to determine
its value exactly. When replication is less than perfect, however, the
existence of a discount factor or law of one price says nothing about
the value of the focus asset, and we need more discount factor re-
strictions.

The more we can restrict the discount factor, the more we can
learn about asset values. We require that the discount factor price
a set of basis assets, require that it be nonnegative, and impose an
upper bound on its volatility. Thus the lower good-deal bound solves

C = min E(mx°)

i (2)

subject to p = E(mx); m = 0; o(m) = Rif’

where Cis the lower good-deal bound; m is the discount factor; x°
is the focus payoff to be valued; for example, x° = max(S; — K, 0)
for a call option; p and x are the price and payoffs of basis assets
(vectors), for example stock and bond; 4 is the prespecified volatility
bound; R’ is the risk-free interest rate; E and ¢ are the conditional
mean and variance; and the upper good-deal bound C solves the
corresponding maximum.

‘““Value’” means how much a particular investor with marginal util-
ity growth m would be willing to pay for a marginal quantity of the
payoff. This sense of value makes no assumptions about whether the
focus payoff is traded or not, or whether the investor already holds
some of it or not. However, this sense of value is not the equilibrium
price of a heretofore untraded security after agents buy all they want
of it.

The first constraint, p = E(mx), enforces the relative pricing idea
that we take as given the prices of a set of basis assets. We use the
prices of these assets to learn about the discount factor, not vice
versa.

The second constraint, m = 0, is a classic and weak characteriza-
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tion of marginal utility. (The distinction between m > 0 and m = 0
is unimportant for our results.) This assumption also has a portfolio
interpretation (Ross 1976 b; Hansen and Richard 1987): it is equiva-
lent to the absence of arbitrage opportunities, which means that if
a payoff is nonnegative in every state of nature, its value must also
be nonnegative. If we know, perhaps by a risk attitude survey, that
an investor will take part in any arbitrage opportunity, then we know
that his marginal utility is nonnegative. The problem above with the
first two constraints leads to well-known arbitrage bounds on the value.

The volatility constraint 6 (m) = h/R/is our innovation. We intend
it as a similar weak restriction on marginal utility, a natural next
step when absence of arbitrage alone does not give precise enough
answers. It also has a portfolio interpretation. Hansen and Jaganna-
than (1991) show that a discount factor volatility restriction is equiva-
lent to an upper limit on the Sharpe ratio of mean excess return to
standard deviation. Precisely, they show that

IE(R)| _ o(m)
o(R)  E(m)

E(mR?) = 0 if and only if

and we have E(m) = 1/R/if there is a risk-free rate. Therefore, if
we know, perhaps by a risk attitude survey, that an investor will take
part at the margin in any portfolio that delivers a Sharpe ratio
greater than A, then we know that his marginal utility satisfies
6 (m) < h/R/. We call the bounds on value calculated with this addi-
tional constraint good-deal bounds because they assume that inves-
tors would want to trade any good deals—large Sharpe ratios—as
well as pure arbitrage opportunities.

There is a long tradition in finance that regards high Sharpe ratios
as ‘“‘good deals” that are unlikely to survive, since investors would
quickly grab them up. Ross (19764) bounds asset pricing theory re-
siduals by assuming that no portfolio can have more than twice the
market Sharpe ratio, which Shanken (1992) calls ‘‘approximate arbi-
trage.” MacKinlay (1995) criticizes Fama and French (1993) by not-
ing what seem like excessively high Sharpe ratios. Ledoit (1995) calls
a high Sharpe ratio a *‘d arbitrage’” and rules it out.

The discount factor volatility constraint is also a way of imposing
weak or robust predictions of economic models. One may not wish
to impose the full structure of an economic asset pricing model,
for example a utility function and a specification of the joint dis-
tribution of consumption and asset payoffs. Still, a wide range of
such models imply that marginal rates of substitution are not out-
rageously volatile, as well as positive. Furthermore, the standard de-
viation of the discount factor, while a weak prediction of such a
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model, may be more robust to model and data specification errors
than are the covariances of payoffs with the discount factor by which
such models generate values.

Similarly, the CAPM specifies that the market portfolio is mean-
variance efficient. If we view the CAPM theory and market proxy
for the wealth portfolio as approximations, then we believe that the
market portfolio should not be too inefficient: Sharpe ratios of other
portfolios should not be dramatically higher than that of the market
portfolio. On the other hand, if the market return is even slightly
inefficient, covariances with the market return can generate arbi-
trarily large pricing errors (Kandel and Stambaugh 1995).

Finally, the volatility constraint is an easy way to prune unreason-
able discount factors within the arbitrage bounds. For example, the
lower arbitrage bound C = 0 for a call option requires marginal
utility that is zero for all states of nature in which the option finishes
in the money. The upper arbitrage bound C = Srequires a discount
factor that is nonzero only in the two states of nature with the most
extreme stock prices. Though nonnegative, these discount factors
are unlikely characterizations of anyone’s marginal utility. These
discount factors vary a great deal across states of nature and have
a high variance. The volatility constraint weeds out some of these
arbitrage-free but still ‘“‘unreasonable’ discount factors and their
corresponding option prices.

As a simple example, consider a call option on the Standard &
Poor’s 500 index with strike price K= $100, three months to expira-
tion, and no intermediate trading. Figure 1 presents the upper and
lower good-deal bounds for this case.

We use parameter values E(R) = 13 percent, 6(R) = 16 percent
for the stock index return, and a risk-free rate R/ = 5 percent. (We
report all parameters at an annual frequency and adjust to the ap-
propriate time horizon in the calculations.) To calibrate the dis-
count factor volatility constraint, we assume that the investor would
take any opportunity with a Sharpe ratio twice that of the S&P 500,
h=2 X [E(R— R’)/c6(R)] = 1.0. Since most fund managers seem
desperate for average returns a few percent above the S&P 500 in-
dex, this value seems conservative. This value doubles the already
troubling equity premium puzzle; it implies that the standard devia-
tion of marginal utility growth 6(m) = h/R/is equal to its mean,
E(m) = 1/R/, and nearly 100 percent per year. However, this is the
central parameter that a user must input to the calculation; it is easy
to change it, and our contribution is to show how to calculate good-
deal bounds for whatever value of this limit that the user thinks is
appropriate, not to advocate a specific value.

The figure includes the lower arbitrage bounds C = 0, C= K/R/.
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- — - Black—Scholes /
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F16. 1.—Option price bounds as a function of stock price. Options have three
months to expiration and strike price K = $100. The bounds assume no trading
until expiration and a discount factor volatility bound % = 1.0 corresponding to
twice the market Sharpe ratio. The stock is lognormally distributed with parameters
calibrated to an index option.

The upper arbitrage bound states that C < §, but this 45-degree line
is too far up to fit on the vertical scale and still see anything else.
As in many practical situations, the arbitrage bounds are so wide that
they are of little use.

The upper good-deal bound is much tighter than the upper arbi-
trage bound. For example, if the stock price is $95, the entire range
of option prices between the upper bound of $2 and the upper arbi-
trage bound of $95 is ruled out. The lower good-deal bound is the
same as the lower arbitrage bound for stock prices less than about
$90 and greater than about $110. In between $90 and $110, the
good-deal bound improves on the lower arbitrage bound.

The width of the bounds is larger, about $1, at the money than
it is far in the money or out of the money. Options are hardest to
hedge at the money because the nonlinearity of the option payoff
as a function of stock price is greatest here. Therefore, the resid-
ual—option payoff less best approximate hedge—is largest in this
region. However, the width of the bounds is a much larger fraction
of the call option value for out-of-the-money options on the left-
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hand side of the graph. In this sense, as well as when translated to
implied volatilities, the bounds are wider for out-of-the-money op-
tions.

Though one is naturally inclined to look for small bounds, large
bounds can be as interesting as small bounds, and maybe more so.
Small bounds confirm that replication arguments are good approxi-
mations. Large bounds warn us that replication arguments are poor
approximations, that assumptions about unmeasured market prices
of risk are important to the answer, and that further discount factor
restrictions would be useful to restrict the range of values.

Figure 1 includes the Black-Scholes option value for reference,
although it does not apply to this example since the investor can-
not trade continuously. The good-deal bounds converge to Black-
Scholes as the rebalancing interval is made more frequent, but
they converge to a line that differs from the Black-Scholes value as
the volatility bound is lowered while maintaining a fixed trading
interval. Still, it is nice to see that the good-deal bounds include
the Black-Scholes value and have the same general shape, since the
Black-Scholes value is often an excellent approximation to observed
option prices.

Not all values outside the good-deal bounds imply high Sharpe
ratios or arbitrage opportunities. Such values might be generated
by a positive but highly volatile discount factor, and generated by
another less volatile but sometimes negative discount factor, but no
discount factor generates these values that is simultaneously nonnega-
tive and respects the volatility constraint.

It makes sense to define bounds as we do—and to rule out these
values—to intersect discount factor restrictions (m > 0, o(m) =
k/R’) rather than to intersect the value regions (no-arbitrage, lim-
ited Sharpe ratio) formed from each discount factor restriction si-
multaneously. If we know that an investor will invest in any arbitrage
opportunity or take any Sharpe ratio greater than £, then we know
that his marginal utility satisfies both restrictions. He would find a
utility-improving trade for values outside the good-deal bounds,
even though those values may not imply a high Sharpe ratio, an arbi-
trage opportunity, or any other simple portfolio interpretation. Sim-
ple portfolio interpretations, while historically important, are likely
to fall by the wayside as we add more discount factor restrictions or
intersect simple ones. Furthermore, our method for extending the
problem to handle multiple periods requires a nonnegative discount
factor, so again we must impose both constraints.

On the other hand, in many applications the good-deal region is
only very slightly smaller than the intersection of a limited Sharpe
ratio region and the arbitrage-free region, and we have analytic for-
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mulas for these two regions. The difference gets smaller as the time
interval gets shorter and disappears entirely in the continuous-time
limit. Therefore, intersecting the limited Sharpe ratio and arbitrage-
free regions may be a convenient approximation for many applica-
tions.

Good-deal bounds should be useful in many situations in which
a relative pricing approach is appropriate but perfect replication is
not possible. A few examples follow: (1) A trader can use the bounds
as buy and sell points in the search for ‘‘good deals’’ in asset markets
(with the usual warning question of why the market leaves good
deals undiscovered). (2) A bank or other institution that markets or
synthesizes nontraded securities can use good-deal bounds as bid
and ask prices. (3) Good-deal bounds can be used as economic mea-
sures of the accuracy of option pricing formulas. Arbitrage-based
formulas predict no error, so that ‘‘measurement errors’’ in prices
must be tacked on to the models. The bounds can tell us which
option prices should lie close to arbitrage-based formulas and
which can lie far from the predictions of those formulas, using an
economic measure of distance. (4) Option pricing techniques are
increasingly applied to ‘“‘real options’ in capital budgeting, invest-
ment with irreversibilities, and policy questions. A relative pricing
approach is appropriate, but the focus payoffs typically cannot be
perfectly replicated. (5) Option pricing formulas are often used in
risk assessment to quantify the exposure of a position or institution
to various risk factors. It is useful to assess such risks when perfect
replication is impossible and to quantify the importance of the mar-
ket price of risk assumptions.

Section II shows how to calculate good-deal bounds in single-
period, multiperiod, and continuous-time contexts. We find a re-
cursive solution to the multiperiod problem; that is, we show that
the lower bound today solves the one-period problem with the lower
bound tomorrow as payoff. This formulation makes the multiperiod
problem computationally feasible. In continuous time, it leads to
a partial differential equation for the bounds. This is our central
theoretical contribution, and it makes the technique relevant for
serious option pricing applications, which are all inherently dy-
namic. In particular, we can handle continuous trading environ-
ments in which market incompleteness comes from nontraded state
variables or options written on nontradable events.

In Section III, we explore several applications, in part to empha-
size that the bounds are practical and easily computable and in part
for the economic interest of the answers. We show the calculations
behind the simple Black-Scholes example of figure 1; we show how
to bound option deltas (derivative of the option price with respect
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to the stock price); we calculate option price bounds when other
options are used as hedge assets; we calculate multiperiod bounds
using a discrete multinomial model, and we compare the results to
index option prices; and we calculate bounds on an option subject
to ‘“‘basis risk’’—an option on a nontraded underlying security or
event that is imperfectly correlated with basis asset payoffs. Cochrane
and Saa-Requejo (1999) present a more extended application to op-
tion pricing in continuous time with stochastic interest rate and
stock volatility.

II. Calculating Good-Deal Bounds
A.  One Period

We start with the simplest situation. There is one period and no
intermediate trading until the payoff x° is realized. Throughout, we
assume that one of the basis payoffs is riskless, so we can write
E(m) = 1/R/. Itis convenient to express the volatility constraint as
a second moment. Thus, our problem (2) becomes

C = min E(mx°)

(] (3)
subject to p = E(mx), E(m?) =< A%, m = 0,

where A? = (1 + A*)/R’%. We presume a statistical model for the
distribution of the payoffs x, so that we can calculate moments. All
expectations and probabilities refer to the true measure. For any
solution to exist, of course, one must pick a sufficiently large bound
A to price the basis assets:

A? = min E(m?)

{m}

subject to E(mx) = p, m = 0.

The problem has two inequality constraints. Hence we find a solu-
tion by trying all the combinations of binding and nonbinding con-
straints, in order of their ease of calculation, as follows: (1) We as-
sume that the volatility constraint binds and the positivity constraint
is slack. This is the easiest case since we have analytic formulas for
the bounds and discount factor in this case. If the resulting discount
factor m is nonnegative, this is the solution. If not, (2) we assume
that the volatility constraint is slack and the positivity constraint
binds. This configuration delivers the arbitrage bound on value. We
find the minimum variance discount factor that generates the arbi-
trage bound. If this discount factor satisfies the volatility constraint,
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‘(\\m: p = E(mx)

F16. 2.—Notation and geometry: Xis the space of portfolios of basis asset payoffs,
x is the basis asset payoffs, x° is the focus asset payoff, £° is the best approximate
hedge, and w is the residual. The straight dashed line m: p = E(mx) is the space
of all discount factors that price the basis payoffs x. The solid straight line marked
m > 0 is the space of all positive discount factors that price the basis assets. The arc
is the set of all random variables with second moment less than A%

this is the solution. If not, (3) we solve the problem with both con-
straints binding. Next we show how to handle each case.

1. Volatility Constraint Binds, Positivity
Constraint Is Slack

If the positivity constraint is slack, the problem reduces to
C = min E(mx")
tmi 4)
subject to p = E(mx), E(m?) = A2

Rather than solve this problem directly with Lagrange multipliers
on the constraints, we set up orthogonal decompositions of the focus
payoff x°and discount factor m. The solution then pops out. (The
solution strategy is due to Hansen and Jagannathan [1991]. This
problem is dual to theirs.) Figure 2 describes the idea. The symbol
X = {¢’x, ¢ € R"} denotes the space of payoffs of portfolios of the
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basis assets.! Though graphed as a line, X is typically an infinite-
dimensional space. We know all prices in X, but the payoff x* that
we wish to value does not lie in X.

We orthogonally decompose the focus payoff x‘into an approxi-
mate hedge x°and a residual w, by projection (ordinary least squares
[OLS] regression):

x X+ w,

%= proj(x‘|X) = E(x'x")E(xx") 'x, (5)

w= x° — x°

By construction, E(wx‘) = 0 and E(wx) = 0. As is standard in think-
ing about OLS regressions, figure 2 represents E(wx) = 0 by plotting
w at right angles to the X plane.

Discount factors m generate the prices of payoffs x in X by an in-
ner product p = E(mx). All points on the dashed line marked m in
figure 2 have the same inner product E(mx) with vectors x € X and
hence generate the same prices on X. Such discount factors can be
represented as x* = proj(m|X) plus orthogonal components. This
fact allows us to impose the pricing constraint.

LEmMMA 1. A discount factor m prices the basis assets, p = E(mx),
if and only if it has the form

m= x* + vw + €, (6)
where
x* = p’E(xx")"'x (7

satisfies p = E(x*x) by construction, v is an arbitrary number, € is
any random variable with E(ex) = 0 and E(ew) = 0, and w is the
residual defined in equation (5).

Proofs are in the Appendix. We shall quickly see that we want to
choose € =0, so we are reduced to choosing a single number v
rather than choosing a random variable m.

Since the second moment defines distance in figure 2, the set of
discount factors that satisfies the volatility constraint E(m?) = A? lies
inside the circle shown around the origin. This restricted range of
discount factors will produce a restricted range of values for the re-
sidual wand hence for the focus payoff x°. The maximum and mini-
mum values will be generated when we pick v to exactly satisfy the

! Since we need second moments, they had better be defined. With y = [x" x]’,
we assume Eyy’ < oo; i.e., y is in I? the space of all random variables with finite
second moments. We assume that redundant assets have been pruned from the
specification, so Eyy’ is nonsingular. We also limit consideration to discount factors
m € I2. Hansen and Jagannathan (1991) discuss these technical assumptions.



90 JOURNAL OF POLITICAL ECONOMY

volatility constraint. Proposition 1 expresses this statement more for-
mally.

ProrosiTiON 1. The discount factor that generates the lower
bound is

m= x* — vw (8)
and the bound is

C= E(x*x) — vE(w?), (9)

L[ B
v Bt (10)

The upper bound is given by v = —uv.
The first term in equation (9) is the value of the approximate
hedge portfolio,

where

E(x*x°) = E(x*%°) = E(mx°) (11)

for any discount factor m that prices basis assets. (Here and below
we use the fact that E(xy) = E[x proj(y|X)].) The second term is
the lowest possible valuation of the residual w consistent with the
discount factor volatility bound:

vE(w*) = E(vww) = E[(x* + vw)w] = E(mw).

The bounds are tighter if the volatility constraint A is smaller, if
the residual is smaller, or if the approximate hedge is better. To see
this precisely, we can write the size of the bounds as

C—C=24 - 2) VE(w?
‘ ¢ A® = E(x*%) NE(w*) (12)

= 2VE(x?) VA? — E(x*?) V1 — R,

where

o 2 EG) _ | _ E@?)

R E(xﬂ) E(X&).

In the first expression, we relate the size of the bounds to the size
of the residual VE(w?) directly. In the second expression, we show
that a higher R? of a regression of the focus asset on the basis assets
leads to tighter bounds. Some of the discount factor volatility is
““used up”’ in pricing the basis assets. Only that portion of the volatil-
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ity bound A in excess of the discount factor volatility E(x*?) required
to price the basis assets can be applied to the price of the residual.

For calculations it is useful to substitute the definitions of x* and
w in equation (9) to obtain

C = p’E(xx’)"'E(xx") 3)

— VA — p’E(xx’) 'p VE(x?) — E(xx')E(xx")"E(xx").

The upper bound Cis the same formula with a plus sign in front of
the square root. This formula is much less pretty, but it shows explic-
itly how to calculate the price bound from a statistical model for the
second moments of x, x°.

Using (8), we check the assumption that the discount factor is
in fact positive in every state of nature. If so, this is the good-deal
bound. If not, we proceed to the next step.

2. Both Constraints Bind

Next we show how to find the bounds in a one-period model when
both constraints bind. Though this is the third step in the proce-
dure, it is easiest to describe this case now. In the geometry of figure
2, it is not necessarily true that the E(m?) = A? set lies inside the
m = 0 set. If it does for some states of nature and not for others,
then both constraints bind.

When we introduce Lagrange multipliers, the problem is

C = min max E(mx°) + A'[E(mx) — p] + i [E(m?) — A?].
{m>0} {,8>0) 2

The first-order conditions to this problem yield a discount factor
that is a truncated linear combination of the payoffs:

x¢+ Mx x¢+ AM'x ’
= -0 = - . 14
m max( 5 ) [ 5 ] (14)

The last equality defines the [-]* notation for truncation. To derive
this expression, take partial derivatives with respect to m in each
state. We could plug expression (14) into the constraints and solve
numerically for Lagrange multipliers A and 6 that enforce the con-
straints. Alas, this procedure requires the solution of a system of non-
linear equations in (A, 8), which is often a numerically difficult or
unstable problem.

Hansen, Heaton, and Luttmer (1995) show how to recast the
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problem as a maximization, which is numerically much easier. Inter-
changing min and max, we get

C = max min E(mx‘) + M[E(mx) — p] + §[E(m2) — A?]. (15)
M8>0) (m>0) 2

The inner minimization yields the same first-order conditions (14).
Plugging those first-order conditions into the outer maximization
of (15) and simplifying, we obtain

+2
Ol x*+ AMx o
C= Ey—| ———= — AMp — =A% 16
C = max { 2[ 5 } } p 9 (16)

{1,3>0}

We search numerically over (A, ) to find the solution to this prob-
lem. The upper bound is found by replacing max with min and re-
placing 8 > 0 with § < 0.

3. Positivity Binds, Volatility Is Slack

If the volatility constraint is slack and the positivity constraint binds,
the problem reduces to

C = min E(mx°)

{m}

subject to p = E(mx), m > 0.

These are the arbitrage bounds. One can often deduce the arbitrage
bounds for specific problems without explicitly solving a minimiza-
tion. It is a linear program otherwise. It remains, however, to check
whether the discount factor volatility constraint can be satisfied at
the arbitrage bound.

Denote the lower arbitrage bound by C,. The minimum variance
(second-moment) discount factor that generates the arbitrage
bound C, solves

E(m2)min = min E(m2)

{m}

bj P =K * >0
subject to el = m o) .

With the same conjugate method, this problem is equivalent to

E(m*)min = max — E{[— (ux‘ + v'x)]"3} — 2v'p — 2uC.

{v.u
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Again, we search numerically for (v, u) to solve this problem. If
E(m?) min = A, C,is the solution to the good-deal bound,; if not, we
proceed with the case in which both constraints are binding de-
scribed above.

B.  Multiple Periods: A Recursive Solution

Consider the same problem, but allow one intermediate period at
which the investor can change his portfolio of the basis assets. To
keep the notation simple, we do not include intermediate payoffs,
but this is a simple extension. We use time periods 1 and 2 for the
rebalancing date and final date, respectively. The objective function
for the lower bound is then

Co = min Ey(mmgxs),
{my,mg)

where E,(-) = E(-|1,) denotes conditional expectation.
Next, the constraints. The discount factors m; and m, must price
the basis assets, so we require

Po = Eo(mlpl),

p: = Ei(myx,) for all information sets I;.

We generalize the discount factor volatility constraint to the require-
ment that the volatility in each period respect a bound?

Ey(m?) = A} Ei(m3) = Al 17)

The volatility constraints may be functions of information (state)
and thus allow time-varying risk premia. Finally, we require discount
factors to be nonnegative: m; = 0 and m, = 0. Now we can state the
two-period problem and its recursive solution.

? An alternative constraint might be that the two-period Sharpe ratio is below a
given value

Eo[(mymg)?] = A%

This constraint does not lead to a recursive solution. The constraint (17) implies a
constraint of the form

Ey[(mymg)?] = Ey[miE (m5)] < E,(miA}) = AJA},

but the converse is not true. Therefore, individual constraints give sharper bounds
than a two-period constraint. The Sharpe ratio scales with the square root of the
time period. An appropriate numerical value for the bound using a six-month trad-
ing interval is the square root of the appropriate value for a one-year trading interval.
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ProrosITION 2. The two-period problem

Co = min Eo(mmyx3)

{my,mg}
subject to
po = Eo(mp1), Eo(mi) = A5, m, =0, (18)
p1 = E\(mgx,), Ei(m3) <A} VI, m=0 (19)

has the same solution as the sequence of one-period problems:

€, = min E,(myx$)
{mg}

subject to p; = E (myx;), E;(m3) = A}, my =0,

Co = min Ey(m,C))

{mq)

(20)

subject to py = Eo(mip1), Eo(m}) = A}, m; = 0.

The proof is in the Appendix. Basically, since m; = 0 and the
constraint sets on m; and m, do not affect each other, the solution
to the two-period problem min Ey[m,E,(myx°)] must minimize
E,(myx°) in each state of nature at time 1. If m; < 0 were possible,
we would want to maximize E;(myx°) in some states of nature; the
m; = 0 assumption rules this out. Since the bounds are not prices
or payoffs of traded securities, it is not initially obvious that one can
compute the date 0 bound using the date 1 bound as a ‘“‘payoff,”
but the proposition verifies that it is correct to do so.

The recursive statement extends in an obvious way to multiple
periods. To compute multiperiod bounds, we can now work back-
ward: for a payoff at 7, compute one-period bounds as before at
T — 1. Then compute bounds at 7' — 2 using the 7 — 1 bounds as
payoffs, and so forth.

C. Continuous Time
1. Notation

Passing to continuous time is conceptually straightforward, but the
notation is unavoidably a bit different.

Consider an asset with price S, that gives a stream of payoffs or
dividends D,dt. A discount factor is a process A, that generates the
price by

SA = E,J AyiiD,yids. (21)
=0

s
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The continuous-time and discrete-time discount factor concepts are
related by m.; = A4/ A,. Again, we suppress time subscripts where
they are not necessary; for example, we write A = A,.

Using (21) at tand ¢ + At, we can find the continuous-time equiva-
lent to p = E(mx):

EldAS)] | Dy (22)
AS S

0=

If there is an instantaneously risk-free rate 7, (a security with price
one that pays D, = 7, or a money market account whose value grows
at dB/ B = r,dt), then equation (22) implies

E,(@) = —rdt
A

This equation is the continuous-time counterpart to R/ = 1/E(m).
Equation (22) implies

E,dS+ rldt = —E, A dS (23)
S s A S

This equation is the continuous-time counterpart to E(R°)
—cov(m, R*) /E(m) for excess returns R‘. Thus a security with diffu-
sion dz should have an expected excess return equal to

(3

This quantity is the ““market price’” of the risk dz, and this equation
allows us to translate between market price of risk restrictions and
discount factor restrictions.

The continuous-time equivalent to the link between Sharpe ratios
and discount factor volatility, | E(R®)|/6(R) = 6(m)/E(m), can be
found from (22) as

where |.Ls = E,(dS/S) + (D/S§)dtis the conditional expected return
and 6% = E,(dS?/S?) is the conditional variance of return.
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2. Statistical Model

We need a statistical model, the equivalent of the moments of
the basis and focus assets E(x), E(xx"), E(x°), and so forth in the
discrete-time formulas. The statistical model must describe the con-
ditional moments at every point in time.

We model the price processes of an ns-dimensional vector of basis
assets by a diffusion’

as _

S Hs(S, V, n)dt + o5(S, V, t)dz, (24)

where z is an ng-dimensional vector of independent Brownian mo-
tions, and E(dz dz”) = I. The basis assets may pay dividends at rate
D(S, V, t)dt. The term V represents an ny-dimensional vector of
additional state variables that follow

dV=py(S, V, )ydt + o (S, V, )dz + 0w (S, V, t)dw,  (25)

where dw is an ny-dimensional vector of Brownian increments or-
thogonal to dz: E(dw dw’) = I; E(dw dz’) = 0. We again assume
that there is an instantaneously risk-free rate r(S, V, t)dt. This as-
sumption is not essential, but it simplifies the algebra and presen-
tation. When r varies stochastically, it is one of the state variables
in V.

3. The Problem

We want to value an asset that pays continuous dividends at rate x°(.S,
V, t) dt and with a terminal payment x7(S, V, T'). We might not be
able to perfectly hedge or replicate this asset for two reasons: The
risks associated with ny nontraded shocks cannot be hedged, and
the payoff x‘ may depend on the nontraded variables V.

The problem is now to choose a discount factor process to minimize
the asset value

T
C,= min E,J A‘xﬁds + E, 11\\—TX‘T (26)

A t<s=<T)} =t [\ ¢

® Understand division to operate element by element on the vectors, e.g., dS/S =
[dS,/ S, dSs/ S, . . .]. When explicit enumeration of arguments is not necessary,
we write S for S(¢) and W and o for pg(S, V, ¢) and o4(S, V, t). We assume that all
diffusion parameters s(S, V, t), 65(S, V, t), uv(S, V, 1), 6v(S, V, ¢), etc. are continu-
ous in all their arguments. We assume that all variance-covariance matrices such as
os(S, V, 1)os(S, V, t)’, 6v(S, V, t)6y(S, V, t)” are nonsingular for all S € R"™, Ve
R™, te [0, T].
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subject to the constraints that (1) the discount factor prices the basis
assets S, r at each moment in time, (2) the instantaneous volatility
of the discount factor process is less than a prespecified value A? (or,
more generally, less than a process A(S, V, t)? at each moment in
time), and (3) the discount factor is positive, A, > 0, t < s < T. The
upper bound follows by replacing min with max. Since there are no
Jjumps in news variables, we add to our list of economic assumptions
on the discount factor that it also follows a diffusion process without
jumps.

4. Differential Statements

The problem can be solved recursively, by proposition 2. Thus we
can study how to move one step back in time,

t+At
CA, = min EtJ' Axids + E (A 10 Criar),

Ay =t
or, for small time intervals,

CA, = min E/[xAt + (C, + AC) (A, + AN)].
AA)

Letting At — 0, we can write the objective in differential form,
Xi

0 = Mg + min LLAAC)]

, 27
(dA) AC =7

subject to the constraints. We can also write (27) as

EX 4 Xy gy = — min E(
c C

{dA)

dA dC
).

Since the second and third terms on the left-hand side are fixed,
the condition sensibly tells us to find the lowest value C by maximiz-
ing the drift E,dC at each date.

5. Constraints

Now we express the constraints. As in the discrete-time case, we or-

thogonalize the discount factor and then the solution pops out.
LeEmMMA 2. The term A, is a discount factor driven by dz, dw that

prices the basis assets S, rif and only if it can be represented as

X = ‘1\—* — vdw, (28)
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where

dn*
A*

—rdt — 5 25'05dz,

- D
l»lsElis"'E_T;

25 = 0505,

and v is an arbitrary 1 X ny matrix.*

This proposition is the obvious continuous-time counterpart to
lemma 1 and has the same geometric interpretation as in figure 2.
We can let dA/A load on additional shocks, orthogonal to both V
and §, with no effect on its ability to price focus or basis assets. For
this reason the proposition qualifies ‘‘driven by dz, dw.”” However,
our minimization or maximization of asset values will again put such
loading to zero. (This proposition and proof are similar to proposi-
tion 3.1 in He and Pearson [1992].)

The volatility constraint is

l td—/\? = 2’
dt  A?
and hence, from (28),
%2
w S A= BT - - 3 (29)

By expressing the constraints via (28) and (29), we have again
reduced the problem of choosing the stochastic process for A to the
choice of loadings v on the noises dw with unknown values, subject
to a quadratic constraint on vv’. Since we are picking differentials

* We require

T
E[exp(lj |}1§2§103|2dt>i| < oo
2 Jo
(T
E exp(—f Ivlgdt) < oo
2 Jo

to ensure that the stochastic integrals that describe the dynamics of A are well de-
fined.

and
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and have ruled out jumps, the positivity constraint on the choice of
dA is slack as long as A > 0.

From equation (28), v is the vector of market prices of risks of
the dw shocks:

—lE £li\alw = v
dt \ A

Thus the problem is equivalent to finding at each date the assign-
ment of market prices of risk to the dw shocks that minimizes (maxi-
mizes) the focus payoff value, subject to the constraint that the total
(sum of squared) market price of risk is bounded by A%

6. Solutions: A Differential Characterization

At each moment, the bound calculation is now exactly the same as
in the one-period discrete-time case with a slack positivity constraint.
However, except for the moment just before the terminal date, the
focus payoff is the next period’s lower bound. Thus we obtain a lower
bound at each moment that depends on the distribution of the lower
bound at the next moment. These results must be strung together
in order to obtain the lower bound at each moment in terms of
the underlying assumed stochastic properties of the focus and basis
assets.

To be specific, we assume that the lower bound C follows a diffu-
sion process, so we write

d—Cg+ Be(S V, t)dt + 64 (S, V, t)dz + 66,(S, V, t)dw.  (30)

The terms 6, and o, capture the stochastic evolution of the bound
over the next instant. Therefore, a differential or moment-to-
moment characterization of the bound will tell us P in terms of
ng and Ggw.

ProrosiTION 3. The lower bound discount factor A, follows

—=—-——ud 31
A vdw (31)

and WU, O¢, and O, satisfy the restriction

c *
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where

o= Ala? — 1 dA*¥* o,
v = Ly e —"
dt  A*? \/Ggwo'gw

The upper bound process C, and discount factor A, have the same
representation with v = —uv.

The statement and proof of this proposition are straightforward
analogues to proposition 1 and have the same geometric interpreta-
tion as shown in figure 2. The term dA*/A* is the combination of
basis asset shocks that prices the basis assets by construction, in
analogy to x*. The term o, dw corresponds to the error w, and
6.0¢, corresponds to E(w?). The proposition looks a little different
because now we choose a vector v rather than a number. We could
define a residual o,dw, and then the problem would reduce to
choosing a number, the loading of dA on this residual. It is not con-
venient to do so in this case since 6, potentially changes over time.

As in the discrete-time case, we can plug in the definition of A* to
obtain explicit, if less intuitive, expressions for the optimal discount
factor and the resulting lower bound:

(33)

dA 5 < O

7_= —rdt + uszs Gst_ A2_MSES us\/ dw (34)
and

he+ 7 = 7= 153500000 + VAt - 1535, V0u0%. (35)

7. A Partial Differential Equation for the Bounds

We now have a differential characterization of the lower bound and
the discount factor that generates the lower bound. We have to chain
together those differential characterizations.

First, we find a partial differential equation for the bounds. We
hypothesize a solution C(S, V, ¢). We use Ito’s lemma to derive ex-
pressions for U¢ and O, O¢, in terms of the partial derivatives of
C(S, V, t). We substitute these expressions into restriction (35). The
mechanics are relegated to an algebraic appendix (Cochrane and
Saa-Requejo 1998). The result is ugly but straightforward to evaluate
numerically, and analytically in special cases. It expresses the time
derivative d C/dtin terms of derivatives with respect to state variables,
and thus it can be used to work back from a terminal period.
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ProposiTION 4. The lower bound C(S, V, t) is the solution to the
partial differential equation

oC

x—rC+ =

ot

1 02C 1 0*C
= $:8,05,0 = = o,c,+owcw
~ 355, 50 avaV(V 5 OOt

&C
+ =—S,0507%,.
Z,-a&avj o

D ' iS5G’ ’
= (E - r) (SCo) + (As25'050% — uY) Gy

+ ‘\/A2 - ﬂgzgllls \/g;/GVwG;’wQV

subject to the boundary conditions provided by the focus asset pay-
off x7.The term Cy denotes the vector with typical element d C/ an
and (SCs) denotes the vector with typical element 5,0 C/9S;. Replac-
ing the plus sign with a minus sign before the square root gives the
partial differential equation satisfied by the upper bound.

Note that the drift of the basis assets g enters into the partial
differential equations for the bounds. Again, actual and not just risk-
neutral probabilities matter.

8. A Special Case in Which We Know the
Discount Factor

In general, the A process depends on the parameters G,. Hence,
without solving the partial differential equation above, we do not
know how to spread the loading of dA across the multiple sources
of risk dw whose risk prices we do not observe. Equivalently, we do
not know how to optimally spread the total market price of risk
across the elements of dw. Thus, in general, we cannot use an inte-
gration approach to find the bound; that is, we cannot characterize
A enough simply to calculate

T
gtzEzJ £_\-Sxde"'E‘ :—
-‘:tAt A

>
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However, if there is only one shock dw, then we do not have to worry
about how the loading of dA spreads across multiple sources of risk.
The vector v can be determined simply by the volatility constraint.
In this special case, dw and O, are scalars. Hence equation (31)
simplifies as follows.

PRrROPOSITION 5. In the special case in which there is only one extra
noise dw driving the V process, we can find the optimum discount
factor A directly as

dA

A

In some applications, the loading of dA on multiple shocks dw
may be constant over time. In such cases, one can again construct

the discount factor and solve for bounds by (possibly numerical)
integration, avoiding the solution of a partial differential equation.

= —rdt + 5 25'0sdz — \JA? — i} S5 [0

III. Applications
A.  Black-Scholes with No Intermediate Trading

We start by calculating bounds on call option values in the Black-
Scholes setup with no trading until expiration. The results were pre-
sented in figure 1. The call option payoff is

x‘=max(S; — K, 0),

where Sris the stock price at expiration, and K is the strike price.
The hedge assets are the underlying stock with current price S and
a risk-free bond with return R’. The stock return R = S;/ S is log-
normally distributed. We use the lognormal density to calculate all
the first and second moments of the stock and option payoffs. For
example,

oo

E(x%) = SJ (R - E)f(R)dR.
s S

KJ.

The derivation and expression of these moments are long and un-
enlightening, so we relegate them to the algebraic appendix (Coch-
rane and Saa-Requejo 1998). With these moments in hand, we fol-
low the procedure described in Section IIA.

B. Options as Hedge Assets

The Black-Scholes setup is famous for historical reasons and because
it delivers a closed-form solution with continuous trading. However,



BEYOND ARBITRAGE 103

10 -

Good—deal bound
n Known options
— - - Arbitrage bound

Call Value

90 95 100 105 110
Strike Price
F1c. 3.—Bounds on option values with three months to expiration, no intermedi-

ate trading. Options are hedged with stock, interest rate, and three options whose
prices and strikes are marked with squares.

other assets may provide better approximate hedges in an incom-
plete market. In particular, options with different strike prices have
payoffs more similar to that of the option at hand, so they may pro-
vide sharper information about an option’s value than the underly-
ing stock. Therefore, we examine how one can fill in option prices
across strikes with no dynamic hedging.

Mechanically, we just include other options with observed prices
in the payoff space Xalong with the underlying stock and a risk-free
bond, and we use integrals against the lognormal density to calculate
the required moments. We again relegate the lengthy evaluation of
the integrals to the algebraic appendix (Cochrane and Sai-Requejo
1998).

Figure 3 shows good-deal bounds as a function of the strike price,
using the same three-month horizon and parameters as before. The
black squares plot the prices of three options whose prices are ob-
served. The curves give bounds on the value of an additional option.
The arbitrage bounds (m > 0 constraint) in this case state that the
option price must be a concave function of the strike price and must
obey the standard call arbitrage bounds.

The good-deal bounds improve on the arbitrage bounds through-
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out. Their small size gives some justification to the common practice
of drawing a smooth line through observed option prices, but it also
warns that small differences in how one draws such a line can have
a dramatic effect on the Sharpe ratios of option-based portfolios.
The good-deal bounds are much tighter than arbitrage bounds be-
yond the last trade options, where concavity places fewer restrictions
on value. Overall, the bounds are much tighter than those of figure
1, verifying the intuition that other options are a better approximate
hedge for a given option than the underlying security is.

C. Deltas

Option pricing theory is used extensively to quantify risk exposure
by measuring how much an option value would change if an underly-
ing state variable such as the stock price changed. This sensitivity is
known as the option’s ‘“‘delta.”” Here we expect (at best) a range for
deltas rather than a number. (Deltas are also used to construct
hedges but are less interesting for that purpose in an incomplete
markets context. For example, we already know how to construct a
hedge that minimizes the variance of residual risk, £° = proj(x‘| X').)

Suppose that we observe an option price, which we write as C(S,
V, K, T), where S is the stock price, Vis additional state variables
(if any), K is the strike price, and T is the time to expiration. We
want to know, how would the option price change if the stock price
changed a bit, C(S + AS, V, K, T)? Alas, our methods give bounds
on the prices of other securities, such as C(S, V, K+ AK, T), not the
same security in a different state of the world.

To infer prices in a different state from the prices of other securi-
ties, we assume that the option value is homogeneous of degree one
in the stock price and the strike price, S and K:

CaS, VoK T) =aC(S, V, K T).

This assumption basically says that the units (dollars or cents) of
the underlying price are irrelevant. Merton (1973) shows that this
assumption holds when the distribution of returns is independent
of the level of the asset price. Homogeneity implies

dC. , 9C

s+ k= cC.
aS oK

Hence we can evaluate deltas with

e L (36)
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no intermediate trading.

To calculate a derivative, we have to start at a point with a known
or hypothesized option value. (Otherwise all we know is that the
value is in a bound now and in another bound at ¢ + At; the time
and hence state derivative can be infinite.) We calculate bounds at
the black squares at which option prices are observed. At such a
point, the maximum and minimum slopes of the bounds dC/0K
and 0 C/ 0K determine maximum and minimum deltas via equation
(36).

Figure 4 presents a graph of upper and lower delta bounds com-
puted in this way, using the same setup as figure 3. Since the slopes
of the good-deal bounds are smaller than those of the arbitrage
bounds at all the observed option prices, the good-deal delta bounds
are tighter than delta bounds based on arbitrage bounds alone. In
this numerical example, the gain is not that large for the central
option value since the slopes of the good-deal bounds in figure 3
were not that much less than the slopes of the arbitrage bounds.
The gain is quite large for the first and last options, where arbitrage
bounds widen.

In sum, the good-deal bounds can be used in this way to quantify
risk exposure and to assess the uncertainty in risk exposure calcula-
tions that assume market prices for untraded risks.
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D. A Multiperiod, Multinomial Approach to Index
Options

So far we have used the Black-Scholes lognormal environment to
understand how our bounds work in a well-understood setup. Here
we pursue a more serious application to S&P 500 index option pric-
ing. We calculate bounds on a three-month index call option. We
use a weekly trading interval, so we iterate the bound calculation
back 12 times from expiration. The lack of continuous hedging is
still the source of market incompleteness. We model the stock return
as a freely specified multinomial rather than a lognormal. Discrete
but frequent trading and multinomial statistical models give a conve-
nient and commonly used environment for the numerical applica-
tion of option pricing techniques. We again choose a discount factor
volatility target equal to twice the market Sharpe ratio.

1. Modeling the Return Distribution

The actual stock index return distribution features fatter tails than
the lognormal distribution. Therefore, we use a kernel estimate
of the empirical return distribution. We set up a grid of return values
R; at the weekly hedging interval with associated probability values
7;. Since we are not pricing by arbitrage, this distribution need not
be binomial or generated by a binomial tree. Instead, we use a large
number of grid points to accurately capture the empirical return
distribution. We use return data R, to assign probabilities &; via a

Gaussian kernel,
T R R 2
T =k X exp[—(é’) ]
2 .

for each i, where w is a weight chosen visually at 0.01 and % is a
constant chosen so that the probabilities sum to one. This procedure
assumes that the return data R, at each date ¢ are drawn from the
same unconditional distribution. This assumption is more reason-
able for excess or real returns than for nominal returns, so we use
for R, the S&P 500 return less the Treasury bill rate plus the constant
5 percent interest rate that we use in the option pricing calculations.
We use the full Center for Research in Security Prices (CRSP) daily
S&P 500 data sample, July 1962—-December 1996.

Figure 5 presents the resulting distribution of weekly returns.
Each triangle represents one grid point of the multinomial distribu-
tion. The plus signs plot tail values of the actual return data; their
height on the graph is arbitrary. One can see the fat tails of the
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F1c. 5.—Multinomial return distribution fitted from CRSP S&P 500 weekly return
data. The plus signs mark return observations larger than *5 percent, as measured
on the x-axis. Their height is arbitrary.

distribution driven by the occasional spectacular outlier returns, es-
pecially crashes.

We assume that this multinomial is the conditional return distri-
bution and that it is independent over time. We checked that the
long-horizon distributions implied by chaining together empirical
distributions as in figure 5 are not bad approximations to the actual
long-horizon distributions. Adding conditioning information (sto-
chastic volatility, serial correlation in returns, etc.) is an important
extension, which will allow for variation in the bounds over time but
will add state variables.

2. Calculating Bounds

We set up a grid of stock prices {S;}. This grid may be finer or coarser
than the return distribution grid. At each date, we represent the
lower (upper) bound function C(S, ¢) by its value on the grid of
stock prices. To evaluate moments, we interpolate C(S, ¢) on the
stock price grid. For example, suppose that we know C(S, ¢t + At)
and we wish to find C(S, t). Start at stock price grid index j, time
¢. For each element of the return grid R;, we find the corresponding
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value of the stock price at time ¢ + At, S;R;. By linear interpolation,
we find the bound at this point, C(S;R;, ¢ + At). Now, by summing
over states ¢ weighted by the associated probabilities, we can find all
the required moments for the time ¢ bound calculation.

The discount factor is the choice variable, and it is now a vector
with one element for every point on the return grid. At each stock
price grid point, we first compute the price bounds assuming that
only the volatility constraint binds. If the resulting discount factor
is positive (at every point on the return grid), this is the solution
and the positivity constraint is slack. If not, we compute arbitrage
bounds,” and we compute the minimum second-moment discount
factor needed to attain the arbitrage bounds. If that second moment
is less than its bound A% the arbitrage bounds are the solution and
the discount factor volatility constraint is slack. If not, we compute
the bounds with both volatility and positivity constraints binding as
described above.

3. Results

Figure 6 presents bounds, translated to implied volatilities. The
middle line imposes a zero market price, or risk-neutral valuation,
of the residual risk by simply setting v = 0 in the bound formula
(9). The upper bound and zero residual risk price calculations show

® Ritchken (1985) gives a solution for the arbitrage bounds in a multinomial envi-
ronment, the solution to the linear programming problem
min E(mx) subject to p = E(mx), m = 0.
(m}
The upper bound has a nonzero discount factor in the smallest (1) and largest (N)
return states:

_ 1 Ry— R/

! Tth/RN - Rl’
1 R —Ry
my = ——
nNRfRN - R]

The lower bound discount factor is nonzero only in the two states (i, j) with return
just above and below the risk-free rate:

1 R-FR

m; = H
nR'R - R,
1 R-R

m;, = .
" mR/R,— R,

These discount factors are not unique; other discount factors can also generate the
arbitrage bounds. Therefore, to test whether this arbitrage bound solution is the
solution to the good-deal bound, we use these discount factors to compute the arbi-
trage bound, and then we search for the minimum variance discount factor that
generates the arbitrage bound.



BEYOND ARBITRAGE 109
30

25

20

Implied volatility, 7
o

¥—— Upper bound
A—— Lower bound
e—— v =20

L I s i L L L | L ! !

60 70 80 90 100 110 120 130 140 150 160

Stock price

F1c. 6.—Upper and lower good-deal bounds for S&P 500 index options with three
months to expiration and strike price K = 100. The stock return follows a multi-
nomial distribution fitted to S&P 500 return data. Each option is hedged with the
index and a 5 percent risk-free rate. Hedge portfolios may be changed weekly.

a pronounced volatility smile. This smile is driven by the fat tails in
the return distribution. However, the lower bound does not show
much, if any, smile, and it reduces to the lower arbitrage bound
past a certain point. Therefore, a robust volatility smile depends on
tighter bounds on market prices of residual risk than we have im-
posed, or more frequent than weekly rebalancing.

While interpreting these results, keep in mind that implied volatil-
ity is a highly nonlinear function, and very small price changes for
far-from-the-money options translate to very large changes in im-
plied volatility. For example, at a stock price of $142, where the lower
good-deal bound meets the lower arbitrage bound, option prices
are driven by the probability of a 42/142 = 30 percent decline in
stock prices. At this stock price, the Black-Scholes price with 15 per-
cent volatility is only 1.79 X 107° dollars above the arbitrage bound!
Even the upper good-deal bound is only 1.5¢ above the arbitrage
bound. Furthermore, the results in this range are driven by the ex-
treme tail estimates in the probability distribution and so are subject
to substantial sampling uncertainty. One more crash in the sample
could double these option values.
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F16. 7.—Implied volatilities for CBOE S&P 500 index put options with three
months to expiration, 1996.

To compare these bounds with actual option prices, figure 7
presents data on daily closing Chicago Board Options Exchange
(CBOE) S&P 500 index option prices for three months in 1996.°

The data show the well-known volatility smile: implied volatilities
(prices) are higher for farther-in-the-money calls and equivalent
out-of-the-money puts on the right-hand side of the graph. This rise
in volatility is a little steeper than that predicted by our calculation
of the bounds, but not by much. (Note that the horizontal scale on
fig. 6 extends farther to the left than that of fig. 7, so you see only
one side of the predicted smile.) The calculation replicates the im-
plied volatilities of the far-from-the-money options. Since the lower
bound is never below 15 percent and the option data go as low as
10 percent, the puzzle in the data is the low implied volatility of the
near-money options.

There is some variability across strike prices (graphed as variability

¢ We present volatility curves for the end of June, September, and December, when
the fullest set of options across strike prices is available. We convert put prices to
call equivalent using put-call parity, C = P + S — (K/R’/). We choose the interest
rate each month between 1 and 5 percent to best match put and call implied volatil-
ity curves. To conform with other figures, we transform (implied) call prices with
a common stock price $* and varying strikes K to call prices with a common strike
price K* = 100 and varying stock price § = $*K*/ Kby assuming linear homogene-
ity, C($*K*/ K, K*) = (K*/K) X C(S8*, K).
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across stock prices) for any given date, and the variation between
puts and calls (not shown) is about the same size. This variability is
much smaller than the size of the bounds. One is tempted to con-
clude that variability across strikes is economically unimportant. To
take this conclusion seriously, however, we should consider hedging
each option with all the other options but also take seriously the
illiquidity and bid/ask spread of all the other options, especially
those far from the money.

There is also a certain amount of variability across time: the curves
shift up or down by about three to four points of implied volatility.
This is also less than the size of the bounds. This observation suggests
that an important fraction of observed variation in implied volatility
over time may simply be due to variation within good-deal bounds
that is difficult to profitably hedge away, not due to variation in the
conditional variance of stock returns. In this case, the ability to
hedge one option with another will not change the picture since the
whole curve wanders up or down.

We have of course conducted many more experiments than we
have space to show. As the time to expiration increases, the pre-
dicted implied volatility curves flatten out, and the region in which
the lower bound lies above the arbitrage bound increases. For
shorter times to expiration, the predicted volatility smiles steepen,
but the bounds become wider. With a monthly hedging interval, the
upper bound is about the same but the lower bound is looser. The
monthly interval also produces a steeper volatility smile to the right
and a shallower one to the left. The monthly return distribution has
larger crashes and smaller positive outliers. This fact suggests that
one may better match empirical volatility smiles if one calibrates
the weekly return distribution to more accurately reflect the implied
three-month distribution.

E. Basis Risk and Real Options

Suppose that we want to value a European call option on an event
Vthat is not a traded asset, but is correlated with a traded asset that
can be used as an approximate hedge. There is an unavoidable ‘‘ba-
sis risk’”’ between the option and the securities that can be used to
hedge the option, even if we can trade continuously. This situation
is common with real options, with nonfinancial options (options on
airplane purchases), and in the application of option pricing tech-
niques to real investments. For example, Vcould represent the price
of a nondurable good, and one wants to value the right to build an
investment project that can produce one unit of the good at cost K.
Even purely financial options are increasingly written on events that
are not traded assets, such as catastrophe insurance options. For
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options on traded but illiquid underlying assets, it is often better
to hedge an option with an imperfectly correlated but more liquid
asset.

The terminal payoff is

x5 = max(Vy — K, 0).

We model the joint evolution of the traded asset S and the event V
on which the option is written as

d_s:s = “'Sdt + Gst,

d—‘y= Wydt + oy dz + Gy, dw,

E(dz*) = E(dw®) = 1, E(dzdw) = 0.
There is also a constant risk-free rate .
Since the setup is so close to the Black-Scholes setup, we can give
closed-form solutions to the good-deal bounds in this case:

C,or C= Vye""o(d + hoNT) — Ke'o(d — o NT), (37)

where ¢ (-) denotes the left tail of the normal distribution and

In(W/K) + (m+nT
oNT ’

\ 42
’n = |:hv - hg(p - a -};g '\/1 - p )i|6v,

d=

O oy

dv dS\ _ oy,
p=corr|— —| = —,
Vs Gy

+1 upper bound
~ | =1 lower bound.
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This expression is exactly the Black-Scholes formula with the addi-
tion of the N term. The Black-Scholes formula appears as a special
case, 1 = 0 when V = §. The term Wy enters the formula because
the event Vmay not grow at the same rate as the asset S. Obviously,
the correlation p between Vshocks and asset shocks enters the for-
mula, and as this correlation declines, the bounds widen. The
bounds also widen as the volatility constraint A becomes larger rela-
tive to the asset Sharpe ratios 4.

We derive equation (37) by applying the discount factor integra-
tion technique described in proposition 5. When we apply that prop-
osition, the lower bound is generated by the discount factor

= —rdt — hgdz — VA2 — B} duw,

> S

and the bound is then given by

C = E,[ﬁ—rmaX(VT - K):|.

3¢

The upper bound is generated with a plus sign in front of the square
root. The terms Sy, V;, and A are jointly lognormally distributed,
so the double integral defining the expectation is straightforward to
perform. Once again, we relegate the algebra to the algebraic appen-
dix (Cochrane and Sai-Requejo 1998).

As a numerical example, we once again consider a call option with
three months to expiration and strike value 100. To keep the exam-
ple as simple as possible, we specify that V has the same drift and
volatility as the stock index (Ly = s, Oy = O5). We specify the cor-
relation between dV and the stock index p = 0.9, and we again use
a discount factor volatility bound equivalent to twice the market
Sharpe ratio. Figure 8 presents the upper and lower price bounds.

As before, the dollar size of the bounds is smaller for out-of-the-
money options, but the proportional size of the bounds shown in
the figure is smaller for in-the-money options. The bounds are sub-
stantial and wider above the Black-Scholes value than below it” with
10-30 percent errors. The errors increase as time to expiration in-

” We do not report implied volatilities because the highly nonlinear implied vola-
tility metric is not appropriate in this case. For example, the lower price bound
can fall below the lower arbitrage bound, with no violation of arbitrage, since the
correlation is not perfect. We cannot even calculate implied volatilities of such
prices.
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F1G. 8.—Good-deal bounds for a European call option written on an event V
whose shocks are correlated .9 with the stock index shocks. Continuous trading is
allowed. There are three months to expiration, and other parameters match the
index.

creases. The figure helps us to evaluate the common perception that
Black-Scholes is a good approximation even when its assumptions
are violated, as in this case.

IV. Extensions
A.  Picking the Basis Assets and Volatility Constraint

The size of the bounds is directly related to the size of the residual,
or the R? in a regression of option payoffs on basis asset payoffs. It
is therefore tempting to use lots of basis assets, but fishing for R? is
dangerous since it is hard to build a believable and stable model of
the joint distribution of a large number of assets. This is not just an
issue for econometricians: Large hedge fund losses in the summer
of 1998 were partly attributed to too-low estimates of the correlation
between yield spreads on different bond classes (Henriques and
Kahn 1998). Many basis assets can be more easily accommodated
when a theoretical structure governs their joint distribution, as was
the case when we used other options as basis assets.

The size of our bounds is also directly related to the difference
between the maximum discount factor volatility and the volatility
used up in pricing the basis assets, A* — E(x*?). This fact suggests
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that one include high—Sharpe ratio basis assets to obtain tighter
bounds, even if those assets are not well correlated with the focus
payoff. However, it may be better to lower the volatility constraint
A?instead. This procedure gives up whatever use the extra assets had
as hedges, but it avoids the construction of a large joint distribution
model.

For example, when pricing bond options, one could use a volatility
constraint equal to the market Sharpe ratio and exclude the market
from the set of basis assets rather than use a constraint equal to twice
the market Sharpe ratio and build a model of the joint distribution
of stocks and bonds. Similarly, we used a constraint of twice the mar-
ket Sharpe ratio and ignored the possibility of high—Sharpe ratio,
low-B strategies such as Fama and French’s (1993) value portfolio,
rather than include them, model them, and use a perhaps more
realistic constraint (given their presence) of four times the market
Sharpe ratio.

B. Transactions Costs

Specifying frictionless trading at discrete intervals is a crude way to
handle transactions costs. Our one-period calculations could in-
clude explicit transactions costs, using Luttmer’s (1996) solution for
Hansen-Jagannathan bounds with transactions costs. But this does
not solve the central problem, namely, to find the optimal times at
which to trade in a continuous-time framework with transactions
costs. For this reason, most of the literature on option pricing
bounds with explicit transactions costs also considers two-period
analysis or ad hoc trading rules, for example, Leland (1985), Con-
stantinides and Zariphopoulou (1997), and Constantinides (1998).

C. More Discount Factor Restrictions

Adding further discount factor restrictions is a natural way to tighten
the bounds.

Levy (1985) and Constantinides (1998) calculate option price
bounds by assuming that the discount factor declines monotonically
with a state variable. We have a related condition: the covariance
between stock returns and the discount factor must be negative to
generate positive expected returns (the pricing constraint). But
global monotonicity is more stringent than covariance, and this con-
straint may tighten the bounds.

Our bounds allow the worst case that marginal utility growth is
perfectly correlated with a portfolio of basis and focus assets. In
many cases one could credibly impose a sharper limit than —1 =
p = 1 on this correlation to obtain tighter bounds.
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Bernardo and Ledoit (2000, this issue) use the restriction a = m =
b to sharpen the no-arbitrage restriction e = m > 0 and cleverly
relate this bound taken alone to portfolio ‘‘gain-loss ratios.”” This
restriction is related to the volatility restriction: upper and lower
bounds on m imply a bound on its variance, and by Chebyshev’s
inequality, a variance bound implies that the probability that m ex-
ceeds upper and lower bounds can be made vanishingly small. Our
central proposition 2 that one can solve multiperiod problems recur-
sively goes through in this case.

Bernardo and Ledoit also suggest that one impose a = m/y =
b, where y is an explicit discount factor model such as the con-
sumption-based model or CAPM, as a way of imposing a ‘‘weak im-
plication’ of that particular model. Limits on 6(m/y) or 6(m — y)
might be technically easier to impose, especially in continuous time,
but this idea can also be added.

Until one has recovered a true discount factor m,; = Bu’(¢+1)
+ u’(¢,), further restrictions will always tighten bounds. Also, and
despite our extended motivation, one should not be too dogmatic
about which weak restriction is best. By their nature, weak restric-
tions will admit values that are strange according to stronger or dif-
ferent restrictions. Therefore, the various restrictions are not com-
petitors. One should impose as many discount factor restrictions that
apply to a given situation, and, perhaps most important, with which
one can still conveniently calculate bounds for a given application.

D. Multiple Focus Assets

We have emphasized a single focus asset. For some applications, such
as examining the set of index options across the strike price, it may
make more sense to find a bound on the values (p1, po, ps, . . .) of
several focus payoffs simultaneously rather than consider each focus
payoff in isolation.

Appendix

Proofs of Lemmas and Propositions

Proof of Lemma 1

If: E(wx) = E(ex) = 0, so E[(x* + vw + €)x] = E(x*x) = p.

Only if: For any m that satisfies p = E(mx), we have proj(m|x) =
E(mx’)E(xx")"'x by the OLS projection formula, and then proj(m|x) =
p’E(xx’)7'x = x* by the assumption that p = E(mx). Define a residual
8 = m — x*. By construction, E(8x) = 0. Thus any discount factor m can
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be represented as m = x* + 0. Projecting & on w and defining € as the
residual again, we obtain m = x* + vw + e.

Proof of Proposition 1
We substitute for m from equation (6) to express the volatility constraint as
E(m?) = E(x*?) + v’E(w?) + E(e?) < A
and to express the objective as
E[mx] = E(x*x°) + vE(wx) + E(ex®) = E(x*x°) + vE(w?). (Al)

The problem now reduces to the choice of vand e. Since € appears only
in the inequality constraint, we choose € = 0 to weaken that constraint as
much as possible. Now we have a linear objective subject to a quadratic
constraint and one parameter v to choose. As long as w # 0 so E(w?) # 0,
the volatility constraint binds and we simply pick v to satisfy the constraint,
leading to equation (10). Equations (8) and (9) follow by substituting v
into equation (6) and into the objective, equation (Al).

The Sharpe ratio bound must be greater than or equal to that generated
by the basis assets, A> = E(x*?) = p’E(xx’)"'p, of course, or there is no
discount factor that even satisfies the constraints. If w = 0, then the volatility
constraint does not bind. Any discount factor m that satisfies the pricing
constraint produces the same price for x¢, so C = C = E(x*x°).

Proof of Proposition 2
Denote by Q, and Q,(];) the constraint sets on m;, m, defined by (18) and
(19), respectively. Using the law of iterated expectations, we can write

Co= min min Ey[mE;(myx5)].
{meQy (moe Qy(hy))

Suppose that the solution to this problem gives E;(myx§) > C, in some
state of nature at time 1. If this were true, one could lower E,(myx$) in
that state without violating any of the constraints, by definition of C,. Since
my > 0, this action would lower Eo[m,E; (m4x5)], contrary to the assumption
that we started at a solution to the two-period problem.

Proof of Lemma 2

We verify that A satisfies the basic pricing equation (22) for the risk-free
rate and basis assets. Liberally using E(dSdw) = 0 and E(dzdw) = 0, we get

El(d—A) = —rdt,

A

dAS —d—EdS-l-EdA +EdAdS+dt

AS S S A*S S
(Hs - r— fi535'0s05 + )

Only if holds by projection, as in lemma 1.
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Proof of Proposition 3

If we substitute equation (28) into the problem (27) in order to impose
the pricing constraint, the problem is

c *
0=%a+E|* O _ invE|aw®
C A*C o C

*2
subject to vv’ = A? — lE, dA™)
dt "\ A*¥

When we use equation (30) for dC/C in the last term, the problem is

c *
0=£+lE, d(A*C) — min vG ¢,
C A*C o) -

*2
subject to vv’ = A? — lE,(dA )

(A2)

dt '\ A*¥?

This is a linear objective in v with a quadratic constraint. Therefore, as long
as O¢, # 0, the constraint binds and the optimal v is given by (33). The
equality v = —uv gives the maximum since 6,0, > 0. Plugging the opti-
mal value for vin (A2) gives

3 *
0=§-+—1-E,M — UG,
Cc adt A*xC B

For clarity, and exploiting the fact that dA* does not load on dw, we write
the middle term as

% *
lEl d(A g) = “’C - r+ lEl ﬂcadz .
dt A*C - dt A

If 6, = 0, any v leads to the same price bound. In this case we can most
simply take v = 0.
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