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Abstract

The long period of quiet inflation at near-zero interest rates, with large quantitative eas-

ing, suggests that core monetary doctrines are wrong. It suggests that inflation can be stable

and determinate at the zero bound, and by extension under passive policy including a nomi-

nal interest rate peg, and that arbitrary amounts of interest-paying reserves are not inflation-

ary. Of the known alternatives, the new-Keynesian model merged with the fiscal theory of the

price level is the only simple economic model consistent with this interpretation of the facts.

I explore two implications of this conclusion. First, what happens if central banks raise

interest rates? Inflation stability implies that higher nominal interest rates will eventually re-

sult in higher inflation. But can higher interest rates temporarily reduce inflation? Yes, but

only by a novel mechanism that depends crucially on fiscal policy. Second, what are the im-

plications for monetary policy and the urgency to “normalize?” Inflation stability implies

that low-interest rate monetary policy is, perhaps unintentionally, benign, producing a sta-

ble Friedman-optimal quantity of money, that a large interest-paying balance sheet can be

maintained indefinitely.

The fiscal anchoring required by this interpretation of the data responds to discount rates,

however, and may not be as strong as it appears.
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1 Summary and overview

For nearly a decade in US, UK, and Europe, and three decades in Japan, short-term interest rates

have been stuck near zero. In the last decade, central banks also embarked on immense open

market operations. US quantitative easing (QE) raised bank reserves from $10 billion on the eve

of the crisis in Aug 2008 to $2,759 billion in Aug 2014.

The economy’s response to this important experiment in monetary policy has been silence.

Inflation is stable, and if anything less volatile than before. There is no visually apparent differ-

ence in macroeconomic dynamics in the near-zero-rate, large-reserves state than before.

Existing theories of inflation make sharp predictions about this circumstance: Old-Keynesian

models, characterized by adaptive expectations, and in use throughout the policy world, predict

that inflation is unstable when interest rates do not respond adequately to inflation, (φ < 1 in

it = φπt) and so they predict a deflation spiral at the zero bound. It did not happen. Much mon-

etarist thought, MV = PY with V “stable” in the long run, predicts that a massive increase in

reserves must lead to galloping inflation. It did not happen.

New-Keynesian models, featuring rational expectations, predict that inflation is stable at the

zero bond, and more generally under passive policy. Unless one adds frictions, those models

also predict that quantitative easing operations are irrelevant. The observed inflation stability

is thus a big feather in the new-Keynesian cap. But standard new-Keynesian models predict

that inflation becomes indeterminate when interest rates do not or cannot move in response

to inflation. These models have multiple self-confirming equilibria and can jump from one to

the other. Therefore, new-Keynesian models predict greater inflation and output volatility at

the zero bound. These models also predict a menagerie of policy paradoxes: Productivity im-

provements are bad, promises further in the future have larger effects today, and reducing price

stickiness makes matters worse, without limit.

This is a Michelson-Morley1 moment for monetary policy. We observe a decisive experiment,

in which previously hard-to-distinguish theories clearly predict large outcomes. That experi-

ment yields a null result, which invalidates those theories.

Now, any theory, especially in economics, invites rescue by epicycles. Perhaps inflation really

is unstable, but artful quantitative easing just offset the deflation vortex. Or perhaps wages are

1In 1887, Albert A. Michelson and Edward W. Morley set out to measure the speed of Earth through the ether, the
substance thought in its day to carry light waves, by measuring the speed of light in various directions. They found
nothing: the speed of light is the same in all directions, and the Earth appears to be still. Special relativity follows
pretty much from this observation alone.
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much “stickier” than we thought, or money is taking a long time to leak from reserves to broader

aggregates, so we just need to wait a bit more for unstable inflation to show itself. Perhaps a peg

really does lead to indeterminacy and sunspots, but expectations about active (φ > 1) mone-

tary policy in the far future takes the place of current Taylor rule responses to select equilibria.

Perhaps we have experienced the proverbial seven years of bad luck, and Japan twenty, so that

expectations always featured a quick escape from stuck interest rates. Perhaps the Earth drags

the ether along with it.

Occam responds: Perhaps. Or, perhaps one should take seriously the simplest answer: Per-

haps inflation can be stable and determinate under passive monetary policy, including an inter-

est rate peg, and with arbitrarily large interest-bearing reserves. Classic contrary doctrines were

simply wrong.

We are not left, as Michelson and Morley were, with a puzzle – a set of facts that exist-

ing theories cannot account for. Adding the fiscal theory of the price level to to the standard

rational-expectations framework, including new-Keynesian price stickiness, we obtain a simple

economic model in which inflation can be stable and determinate under passive policy, zero

bound, or even a peg, and despite arbitrary quantitative easing. It predicts no spiral, and is con-

sistent with no additional volatility at the zero bound. The model also has a smooth frictionless

limit, and resolves new-Keynesian policy paradoxes.

What does this experience, and theoretical interpretation, imply about monetary policy go-

ing forward?

First, if inflation is stable at the zero bound, and by extension under an interest rate peg, then

it follows that were the central bank to raise interest rates and leave them there, without fiscal

shocks, then inflation must eventually rise. This reversal of the usual sign of monetary policy has

become known as the “neo-Fisherian” hypothesis.

Stability and this form of long-run neutrality are linked, which merits treating them together.

If it = rt + Etπt+1 is a stable steady state, meaning that once rt, unaffected by inflation in the

long run, settles down, an interest rate peg i will draw inflation π towards it, then raising i and

keeping it there must eventually raise π (as long as fiscal policy can and does support the value of

government debt, whether “actively” or “passively”). Whether one can accept the second propo-

sition helps to digest the first. Whether the data speak loudly enough on the first illuminates the

second.

Stable models have this form of long-run neutrality. Both the standard new-Keynesian model
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and its extension with fiscal theory are stable, and in both cases a prolonged interest rate rise

raises inflation. The models differ only on determinacy, equilibrium selection, and hence the

immediate response to shocks and volatility at the zero bound.

A long-run positive sign is entwined with the standard new-Keynesian equilibrium selec-

tion scheme as well. In the standard new-Keynesian model, when the Fed reacts [φ > 1] by

raising interest rates more than one for one with inflation, this reaction raises subsequent infla-

tion. Inflation then spirals off to infinity, unless the economy jumps to one specific saddle-path

equilibrium. This mechanism requires that persistently higher interest rates raise inflation. If

persistently higher interest rates eventually lowered inflation, then the path with initially higher

inflation would not be ruled out, and the system would remain determinate.

In sum, stability implies long run neutrality, and both flavors of the new-Keynesian model

have stability and long run neutrality.

However, higher interest rates might still temporarily lower inflation before eventually raising

it. I investigate what minimal set of ingredients it takes to produce a negative short-run impact

of interest rates on inflation.

This quest has a larger goal. We do not have a simple economic baseline model that produces

a negative response of inflation to a rise in interest rates, in our world of interest rate targets and

abundant excess reserves. If there is a short-run negative relationship, what is its basic economic

nature?

The natural starting place in this quest is the simple frictionless Fisherian model, it = r +

Etπt+1. A rise in interest rates i produces an immediate and permanent rise in expected infla-

tion. In the search for a temporary negative sign I add to this basic frictionless model 1) new-

Keynesian pricing frictions 2) backwards-looking Phillips curves 3) monetary frictions. These

ingredients robustly fail to produce the short-run negative sign. Even the standard active money

(φ > 1) new-Keynesian solutions are Fisherian. You cannot truthfully explain, say, to an under-

graduate or policy maker, that higher interest rates produce lower inflation because prices are

sticky, or because lower money supply drives up rates and down prices, and our fancy models

build on this basic intuition.

One fiscal-theory variation can robustly and simply produce the desired temporary negative

sign. If we add long-term debt, then a rise in interest rates can produce a temporary inflation

decline. Higher nominal rates lower the nominal present value of long-term debt; absent any

change in expected surpluses, the price level must fall to restore the real present value of the
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debt. That works, but it is a rather dramatically novel mechanism relative to all standard eco-

nomic stories and policy discussion. It also remains long-run Fisherian. Protracted interest rate

rises eventually raise, not lower, inflation. It cannot give the traditional account of the 1980s.

We are left with a logical conundrum: Either 1) The world really is Fisherian, higher interest

rates raise inflation in both short and long run; 2) more complex ingredients, including frictions

or irrationalities, are necessary as well as sufficient to deliver the negative sign, so this hallowed

belief relies on those complex ingredients; 3) the negative sign ultimately relies on the fiscal

theory story involving long-term debt – and has nothing to do with any of the mechanisms com-

monly alluded for it.

The first view is not as crazy as it seems. The VAR evidence for the traditional sign, reviewed

below, is weak. Perhaps the persistent “price puzzle” was trying to tell us something for all these

decades. Correlations are of little use, as interest rates and inflation move closely together under

either theoretical view, at least away from the zero bound. The second view accepts this paper’s

tentative conclusion – there is no simple, economic model behind a negative sign, so that ad-

ditional complications or frictions are necessary to produce it. Either the second or third view

rather deeply changes the nature of monetary policy economics.

The second set of policy issues: Is it important for central banks to promptly raise nomi-

nal rates and reduce the size of their balance sheets? Should central banks return to rationing

non-interest-bearing reserves, and conducting interest rate policy by conventional open market

operations? Is it important to swiftly return to active φ > 1 policy rules?

The experience of stable inflation at near-zero interest rates, and this theoretical interpre-

tation, says that we can instead live the Friedman optimal quantity of money forever – a large

quantity of interest-bearing reserves, low or zero interest rates with corresponding low inflation

or even slight deflation.

Whether we should do so requires listing (here) and quantifying (eventually) tradeoffs. A

steady nominal rate means variations in the real rate will be, but also must be, accompanied by

inverse variations in inflation, which in a sticky price context can cause output variation. If the

Fed can diagnose real-rate variation, then moving the nominal rate can stabilize inflation. Many

arguments for more activist policy remain valid. The argument that without activism inflation

will spiral off or become indeterminate is denied, but that is not the only argument for activism.

Actual and optimal interest rate policy may not end up looking that different, rising in booms

and with inflation, and falling in bad times, as real interest rates plausibly have that pattern.
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On the other hand, stability and determinacy open additional possibilities. For example, the

Fed could simply target the spread between indexed and non-indexed bonds, and let the level

of interest rates vary arbitrarily to market forces. Expected inflation and, with stable fiscal policy

actual inflation, will follow.

I address a wide range of common objections. Among others: How can the fiscal theory

be consistent with low inflation, given huge debts and ongoing deficits? Fortunately, the fiscal

theory does not predict a tight linkage between current debts, deficits and inflation. Discount

rates matter as well, and discount rates for government debt are very low. What about other

pegs, which did fall apart? Answer: fiscal policy fell apart.

That last observation leads to a final warning. My careful hedging, that an interest rate peg

can be stable, refers to the necessary fiscal foundations. If fiscal foundations evaporate, that

theory warns, and harsh experience reminds us, so can our benign moment of subdued and

quiet inflation. Contrariwise, lowering inflation in countries that are experiencing high infla-

tion, along with fiscal and credibility problems, is not a simple matter of lowering interest rates.

Without a commitment to the duration of low rates, and without solving the underlying fiscal

problems, that strategy will blow up again as it has often in the past.

2 Michelson-Morley

The first part of this paper documents the facts of stable and quiet (opposite of volatile) infla-

tion at the zero bound, the predictions of standard models that inflation should be unstable or

volatile at the zero bound, and how the new-Keynesian plus fiscal theory model is consistent

with stability and quiet.

2.1 Nothing happened

Figure 1 presents the last 20 years of interest rates, inflation and reserves in the U.S. The federal

funds rate follows its familiar cyclical pattern, until it hits essentially zero in 2008 and stays there.

In 2008-2009, the severity of the recession and low inflation required sharply negative interest

rates, in most observers’ eyes and in most specifications of a Taylor rule. The “zero bound” was

binding. If you see data only up to the bottom of inflation in late 2010, and if you view inflation

as unstable under passive monetary policy, fear of a “deflation spiral” is natural and justified.

But the spiral never happened. Despite interest rates stuck near zero, inflation rebounded
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Figure 1: Recent US experience. Core CPI (percent change from a year earlier), federal funds rate
(percent), total reserves (trillions) and 10 year Treasury rate (percent).

with about the same pattern as it did following the previous two much milder recessions, then

resumed its gradual 20 year downward trend.

After 2012, when the financial crisis and deep recession receded, inflation volatility appears

lower than it was before 2009, when interest rates could “actively” stabilize inflation, not higher

as predicted by new-Keynesian models. More generally, the zero bound does not seem to be an

important state variable for stability, determinacy, or any other aspect of inflation dynamics.

The Fed increased bank reserves, from about $50 billion to nearly $3,000 billion, in three

quantitative easing (QE) operations, as shown in Figure 1. Once again, nothing visible hap-

pened. QE2 is associated with a rise in inflation, but QE1 and QE3 are associated with a decline.

And the rise in inflation coincident with QE2 mirrors the QE-free rise coming out of the much

milder 2001 recessions.

QE2 and QE3 were supposed to lower long-term interest rates. To the eye, the 20 year down-

ward trend in long term rates is essentially unaffected by QE. Long-term interest rates rose coin-
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cident with QE2 and QE3 purchases.
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Figure 2: US federal funds rate, unemployment rate, and real GDP growth rate.

Figure 2 plots the unemployment rate and GDP growth rate. Together with Figure 1, these

figures also show no visible difference in macroeconomic dynamics in and out of the zero rate /

QE state, and in particular no increased volatility at the zero bound. Yes, there was a bigger shock

in 2008. But the unemployment recovery looks if anything a bit faster than previous recessions.

Output growth, though too low in most opinions, is if anything less volatile than before.

Figure 3 tells a similar but longer story for Japan. Japanese interest rates declined swiftly in

the early 1990s, and essentially hit zero in 1995. Again, armed with the traditional theory, and

seeing data up to the bottom of inflation in 2001, or again in late 2010, predicting a deflation

“spiral” is natural. But again, it never happened. Despite large fiscal stimulus and quantita-

tive easing operations, Japanese interest rates stuck at zero with slight deflation for nearly two

decades. The 10 year government bond rate never budged from its steady downward trend.

The bottom panel of Figure 3 repeats the story for Europe. Here the spread of low rates and

slight deflation is even stronger than in the US.
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Figure 3: Japan and Europe. Top: Discount rate, Call rate, Core CPI, and 10 year Government
Bond Yield in Japan. The thin line presents the raw CPI data. Thick line adjusts the CPI for the
consumption tax by forcing the April 2014 CPI rise to equal the rise in March 2014. Bottom:
Europe
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Both Japan and Europe diverge from the U.S. in the last few years, with less inflation and

lower interest rates. But are Japanese and European inflation lower despite their lower or even

negative interest rates, or because of them?

2.2 Theories

Old-Keynesian models predict that inflation is unstable at the zero bound, as it is under pas-

sive policy or an interest rate peg. The Taylor rule stabilizes an otherwise unstable economy,

but when it cannot operate, inflation will spiral out of control. (I use “zero bound” as a short

hand. The fact that interest rates were a quarter percent above or below zero is not important to

this discussion. The key point is that interest rates no longer move more than one-for-one with

inflation in the downward direction.)

New-Keynesian models predict that inflation is stable at the zero bound, as it is under pas-

sive policy or an interest rate peg. However, new-Keynesian models are indeterminate at the

zero bound. There are many equilibria, and the economy can jump between them following

“sunspots” or “self-confirming expectations.” Thus, the zero bound, passive interest rate pol-

icy, or an interest rate peg lead to extra inflation volatility. In these models, an interest rate

rule that responds to off-equilibrium inflation more than one for one destabilizes an otherwise

stable economy. The economy is then assumed to jump to the one remaining non-explosive

equilibrium. Destabilization removes local indeterminacies. But when this “active” rule cannot

operate, sunspot volatility breaks out.

The key distinction between the old and new-Keynesian models is rational vs. adaptive ex-

pectations.

The fiscal theory of the price level adds an “active” fiscal policy to the new-Keynesian model.

Rather than assume that the Congress will raise or lower taxes or spending to pay off any multiple-

equilibrium inflation-induced change in the real value of government debt, we assume that peo-

ple expect less than perfect adjustment. Now unexpected inflation is determined by the change

in present value of primary surpluses. If there is no change in volatility of that present value at

and away from the zero bound, then there is no change in the volatility of unexpected inflation.

Thus, adding the fiscal theory of the price level to the sticky-price, rational-expectations new-

Keynesian framework, we have a theory that is stable at the zero bound, and consistent with the

low volatility of inflation.

Since this is review of well-known results, my contribution here is a model that maximizes
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simplicity rather than realism or generality.

The three models are hard to tell apart in normal times, when the Taylor rule or active new-

Keynesian policy can operate. Interest rates and inflation all move up and down together in

all three views. In normal times, the standard active-money new-Keynesian view and the fiscal

theory view are observationally equivalent (Cochrane (1998), Cochrane (2011b)). That is why a

long zero bound is such an important experiment.

Since these points are known, though perhaps underappreciated due to the technical com-

plexity of realistic models, the pedagogical model here maximizes simplicity and transparency

rather than realism or generality.

2.3 A simple model

Consider a Fisher equation, a Phillips curve, a static IS curve, and a Taylor rule for monetary

policy:

it = rt + πet Fisher (1)

πt = πet + κxt Phillips (2)

xt = −σ(rt − r∗ − vrt ) IS (3)

it = max
[
r∗ + π∗ + φ (πt − π∗) + vit, 0

]
. Taylor (4)

Here i is the nominal interest rate, r is the real interest rate, π is inflation, π∗ is the inflation

target, r∗ is the natural rate, πe is expected inflation, x is the output gap, vi is a monetary policy

disturbance, and we can call vr a “natural rate” disturbance. By specifying a static IS equation,

without the usual termEtxt+1 on the right hand side, we can solve the model trivially. The same

points hold in more general and realistic models.

Eliminating x and r, we reduce the model to the solution of a single equation in π:

it = max
[
r∗ + π∗ + φ (πt − π∗) + vit, 0

]
= − 1

σκ
πt +

(
1 +

1

σκ

)
πet + r∗ + vrt , (5)

or

(1 + φσκ) (πt − π∗) = (1 + σκ) (πet − π∗) + σκ(vrt − vit) (6)
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when we ignore the zero bound, or when the interest rate is positive, i.e. when

it > 0↔ r∗ + π∗ + φ (πt − π∗) + vit > 0, (7)

and

πt = (1 + σκ)πet + σκ(r∗ + vrt ) (8)

when the zero bound binds, and (7) does not hold. Equation (8) is the same solution as obtains

from (7) if the Taylor rule picks zero, i.e. with φ = 0, vit = −(r∗ + π∗).

By substituting πet = πt−1 or πet = Etπt+1 we recover adaptive vs. rational expectations ver-

sions of the model.

2.4 Old-Keynesian

Old-Keynesian models, including much monetarist thought such as Friedman (1968), specify

adaptive expectations, πet = πt−1. Substituting that specification in (6) we obtain

(πt − π∗) =
1 + σκ

1 + φσκ
(πt−1 − π∗) +

σκ

1 + φσκ
(vrt − vit) (9)

For φ < 1, or at a peg φ = 0, the dynamics of this system are unstable and determinate. The

coefficient on lagged inflation is above one. There is only one solution.

In this model the Taylor rule stabilizes an otherwise unstable economy. Raising φ to a value

greater than one, the coefficient on lagged inflation becomes less than one. But if the Taylor rule

cannot or does not act, inflation will spiral away.

If φ > 1 but the economy hits the zero bound, then (8) takes over, in this case

πt = (1 + σκ)πt−1 + σκ(r∗ + vrt ) (10)

Now the coefficient on πt−1 is greater than one, and a deflation spiral can set in. ((10) is the same

as (9) at φ = 0, vit = −(r∗ + π∗).)

Figure 4 illustrates a typical old-Keynesian spiral prediction. The economy starts at the steady

state, i = i∗ = 2%, π = π∗ = 2%. The Figure then considers a 3 percentage point decline in the

natural rate vr. I simulate (9) and (10) forward. With the new -3% real rate, the economy needs to

find a steady state in which inflation rises 3 percentage points relative to the interest rate. Indeed

interest rates fall more than inflation, starting to produce a lower real rate. But soon the interest
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rate can fall no more, we switch to (10) dynamics, and then deflation spirals out of control. Once

in the trap, deflation keeps spiraling even though the natural rate shock ends.
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Figure 4: Old-Keynesian spiral at the zero bound.

2.5 New Keynesian

The new Keynesian tradition instead uses rational expectations: πet = Etπt+1. Substituting this

specification into (6), we obtain

Et(πt+1 − π∗) =
1 + φσκ

1 + σκ
(πt − π∗) +

σκ

1 + σκ
(vit − vrt ). (11)

For φ < 1, the coefficient on πt is less than one, so this model is stable all on its own, even

under an interest rate peg φ = 0 or at the zero bound. Adaptive, backward-looking expectations

make price dynamics unstable, like driving a car by looking in the rear-view mirror. Rational,

forward-looking expectations make price dynamics stable, as when drivers look forward and

veer back on the road without outside help. The new-Keynesian model thus reverses the hal-

lowed doctrine – the first item in the Friedman (1968) list of what monetary policy cannot do –
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that interest rate pegs are unstable.

However, the new-Keynesian model with φ < 1 is indeterminate. It only ties down expected

inflation Etπt+1, where the old-Keynesian model ties down actual inflation. To the solutions of

this model we can add any expectational error, δt+1, such that Etδt+1 = 0, and then write the

model’s solutions as

(πt+1 − π∗) =
1 + σκφ

1 + σκ
(πt − π∗) +

σκ

1 + σκ
(vit − vrt ) + δt+1. (12)

The δ shocks that index multiple equilibria are “sunspots,” or “multiple self-confirming equilib-

ria.” In the usual causal interpretation of the equations, small changes in expectations about the

futureEtπt+j induce jumps between equilibria πt. Passive policy, a peg or the zero bound induce

inflation volatility.

In this model, an active policy φ > 1 induces instability into an otherwise stable model, in

order to try to render it locally determinate – to select a particular choice of {δt+1}. For φ > 1,

expected inflation diverges for all values of inflation πt other than

πt − π∗ = − σκ

1 + σκ

∞∑
j=0

(
1 + σκ

1 + σκφ

)j+1

Et(v
i
t+j − vrt+j). (13)

Equivalently, taking Et − Et−1,

δt = − σκ

1 + σκ

∞∑
j=0

(
1 + σκ

1 + σκφ

)j+1

(Et − Et−1) (vit+j − vrt+j). (14)

The economy jumps by an expectational error δt just enough so that expected inflation does not

explode.

This method of inducing determinacy is not entirely uncontroversial (Cochrane (2011b)).

That controversy is one motivation to look for another theory. But that controversy is not central

here. If have passive policy or a peg φ < 1, we are back to the conclusion of (12): stability – no

spirals – but indeterminacy leading to volatility.

New-Keynesian models also predict multiplicity and thus inflation volatility at the zero bound.

The dynamics switch to

Etπt+1 =
1

1 + σκ
πt −

σκ

1 + σκ
(r + vrt ) (15)

at the bound. (These i = 0 dynamics are also the same as (11) with φ = 0, vi = −(π∗ + r∗).)
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Figure 5 illustrates the model with a zero bound. The kinked line expresses the equilibrium

conditions (11)-(15). As a result of the zero bound, there are two steady states, represented by

dots. The arrows represent the dynamics. The right hand steady state is the conventional “active”

equilibrium. This is unstable and hence locally determinate. Any other equilibrium spirals away.

However, the presence of the zero bound means that interest rates i cannot move downward

more than one for one with inflation forever. Therefore, there is a second, stable, “liquidity trap”

steady state, with i = 0 and slight deflation, at the left.

π
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Figure 5: The zero bound in a new-Keynesian model. The kinked line expresses the equilibrium
condition (15). The straight line is the 45 degree line. The two dots express the two steady states.
The left-hand one is the stable indeterminate “liquidity trap” state. The right-hand steady state
is the unstable determinate state. Arrows indicate dynamics. The dashed line shows the policy
rule in the absence of the zero bound. φ = 2, π∗ = 2%, r = 2%, σκ = 2.

The zero-bound steady state is indeterminate as well as stable. The model does not pin down

πt+1−Etπt+1, so inflation can always jump away from this steady state. Such jumps are expected

to revert back to the liquidity trap steady state, so the rule in these models that one throws out

explosive equilibria cannot eliminate them.
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As a result of the potential extra sunspot volatility of inflation, authors such as Benhabib,

Schmitt-Grohé, and Uribe (2002) view the liquidity trap state as a problem, and devote great

effort to additional policy prescriptions that governments might adopt to avoid them, despite

the fact that absent volatility such steady states would be welfare-improving. Zero interest rates

are the Friedman-optimal quantity of money after all, and low inflation reduces the distortions

of sticky prices.

The alternative equilibrium shown by arrows in Figure 5 starts away from the zero bound.

This equilibrium reminds us that the zero bound is an attractive state for any value of inflation

below the active equilibrium on the right. In particular, even sunspot jumps that raise inflation

and temporarily relax the zero bound do not allow the economy to escape the trap. And small

downward jumps out of the rightmost “active” steady state now converge to the zero bound as

well.

In Figure 5, the slide to a liquidity trap can happen all on its own. However, as in the old-

Keynesian models, shocks can move us there as well. I discuss this mechanism below.

(The point can be made most simply without pricing frictions, as is the case in Benhabib,

Schmitt-Grohé, and Uribe (2002). If we merge the policy rule (4) with the frictionless Fisher

equation

it = r + Etπt+1

then inflation dynamics follow

Etπt+1 = max [φ (πt − π∗) + π∗,−r] .

The frictionless version leads to the same analysis as in Figure 5 but with a horizontal line to the

left of the kink. Benhabib, Schmitt-Grohé, and Uribe (2002) also use the fully nonlinear model,

but in this range it is visually indistinguishable from the linearization.)

2.6 Fiscal theory of the price level

To show how the fiscal theory of the price level enters this kind of model in the simplest way, I

specify one-period or floating-rate debt. Then the government debt valuation equation stating

that the real value of nominal debt equals the present value of primary (net of interest) surpluses

reads
Bt−1

Pt
= Et

∞∑
j=0

Mt,t+jst+j = Et

∞∑
j=0

1

Rt,t+j
st+j = Et

∞∑
j=0

βjst+j . (16)
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Here,Bt−1 is the face value of one-period debt, issued at t−1 and coming due at t, Pt is the price

level and st is the real primary surplus. In the first equality, we discount the future with a general

stochastic discount factor M. In the second equality, we discount the future with the ex-post

real rate of return on government debt. Either of these statements is valid in general; the latter

ex-post as well. The third version specializes to a constant real interest rate with β = 1/(1 + r).

In general, real interest rate variation affects the present value of surpluses on the right hand

side of (16). Models with sticky prices imply variation in real interest rates. I argue below that

such real interest rate variation is of first-order importance to understand data, experience, and

policy via the fiscal theory. However, the stability and determinacy points are not affected by

long-term debt or real rate variation, so I specify constant real rates and short-term debt to make

basic points here, then generalize at a cost in algebra below.

Moving the index forward one period, multiplying and dividing (16) by Pt and taking innova-

tions,
Bt
Pt

(Et+1 − Et)
(

Pt
Pt+1

)
= (Et+1 − Et)

∞∑
j=0

βjst+1+j . (17)

In this simple setup, unexpected inflation is determined by innovations to the expected present

value of surpluses.

Indeterminacy is the inability of the standard New Keynesian model to nail down unexpected

inflation with passive policy φ < 1, because we can always add any unexpected shock δ to the

solution as in (12). Equation (17) shows that the fiscal theory of the price level solves the in-

determinacy problem. Unexpected inflation or disinflation revalues outstanding government

debt, which requires changes in discounted future surpluses. If people do not expect, say, that

an unexpected deflation will be met by more taxes or less spending to finance a windfall to bond-

holders, then the bondholders try to get rid of overvalued bonds, which raises aggregate demand

and hence keeps the price level from falling in the first place.

In sum, the fiscal theory of the price level merged with the new-Keynesian model says that

at the zero bound, as under an interest rate peg passive φ < 1 policy, inflation is stable, and

determinate. If there is no change in the volatility of fiscal expectations or their discount rate,

there is no change in the volatility of unexpected inflation.

The central bank is far from powerless in the fiscal theory. In this simple frictionless model,

the Fed, by setting in interest rate target it will set expected inflation it = r+Etπt+1. Expectations

of discounted fiscal policy then select which value of unexpected inflation πt+1 −Etπt+1 occurs.

Monetary policy – setting of interest rate targets – remains the central determinant of the path of
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expected inflation. Stable fiscal policy expectations just cut own on unexpected inflation volatil-

ity. (Cochrane (2014b) explains how the Fed and Treasury can target the nominal interest rate in

this model, even with no nominal rigidities, no monetary frictions, no open market operations,

by varying the interest the Fed pays on reserves.)

Below, I describe how to integrate fiscal theory with the new-Keynesian model with sticky

prices. Again, the fiscal theory ends up just choosing equilibria, and does not alter the equilib-

rium dynamics. However, time-varying real interest rates now contribute to a time-varying dis-

count rate in the government debt present value relation, so just which equilibrium gets picked

is a bit different than in this constant-interest-rate present-value calculation.

Equation (16) holds in all models. One cannot “test the fiscal theory” by testing whether this

equation holds, and the new-Keynesian model does not operate aloof from fiscal foundations.

In the standard new-Keynesian model one assumes that the treasury always adjusts surpluses st

ex-post to validate (16) for whatever price level emerges by the Fed’s equilibrium-selection poli-

cies. That assumption means the equation now determines surpluses rather than the price level.

But the equation still holds. All unexpected inflations and deflations correspond to changes in

expected fiscal policy in both models. If people do not expect the Congress and Treasury to

follow “passive” policy, for example raising taxes or cutting spending to validate an disinflation-

induced present to bondholders, then the unexpected disinflation won’t happen.

2.7 Language

The language used to describe dynamic properties of economic models varies, and I can dispel

some remaining confusion by being explicit about my language choices.

I use the words “stable” and “unstable” in their classic engineering sense, to refer to the dy-

namic properties of the underlying dynamic system. A scalar system zt+1 = Azt + εt+1 is stable

if |A| < 1 and unstable if |A| > 1. Authors often use “stable” to mean the opposite of “volatile,”

which I term “quiet,” but stability and volatility are distinct concepts. A stable system with large

shocks can display lots of volatility.

I use the word “determinate” to mean that an economic model only has one equilibrium.

Determinacy is also distinct from volatility and stability, all frequently confused no matter how

one names them.

A harder case concerns expectational models with roots greater than one, and a variable that

can jump, Et(zt+1) = Azt + vt, |A| > 1. I continue to use the word “unstable” to describe their
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dynamics. However, if one rules out explosions and solves forward, zt = Et
∑∞

j=0A
−(j+1)vt+j ,

then one could justifiably call the equilibrium path of {zt} “stable” since it always jumps just

enough to forestall explosions, and samples show future z expected to revert back after a shock.

This behavior is sometimes called “saddle-path stable.” I use the term “stationary” to describe

this property of equilibrium paths, using the word “stable” or “unstable” to describe the proper-

ties of the dynamic system, A. The “stability” of a forward-looking system that jumps to offset

instability is qualitatively different from that of a system with backward-looking dynamics and

no jump variables, in which economic forces slowly push the system back to equilibrium.

The standard three-equation new-Keynesian model with passive φ < 1 monetary policy has

dynamics of the form Et(zt+1) = Azt + vt in which one eigenvalue of A is greater than one and

unstable, and the other is less than one and stable. One could call such a model “mixed,” or

develop additional language to describe the relative number of unstable eigenvalues and expec-

tational equations. However, in this case, we uncontroversially solve the unstable eigenvalue

forward, using the real transversality condition, and uniquely determining one eigenvector lin-

ear combination of variables. Then, the other eigenvector follows a scalar Et(zt+1) = Azt + vt

with A < 1. I use the language “stable” vs “unstable” and “determinate” vs. “indeterminate” to

describe the remaining eigenvector.

I use the word “policy rule” rather than “Taylor rule” to describe it = φπt with φ > 1 in

new-Keynesian models. The latter is really a misnomer. Taylor’s rule stabilizes an unstable de-

terminate model, to bring unstable inflation under control; see Taylor (1993), Taylor (1999). In

new-Keynesian models, the rule operates to turn a stable model into an unstable one and pro-

duce local determinacy, which is an entirely different function.

The “active” and “passive” terminology to describe φ > 1 vs φ < 1 in monetary policy, and

surpluses that do not vs. do move exactly enough to validate any inflation that comes along in

fiscal policy, comes from Leeper (1991).

I use the word “disturbance” rather than “shock” and roman letters v rather than greek ε as a

reminder that “disturbances” can be serially correlated, where “shocks” are unpredictable.

I refer to unstable dynamics such as graphed in Figure 4 as a “spiral,” but a downward price

level jump followed by recovery, produced by some new-Keynesian zero-bound models such as

Werning (2012) or Cochrane (2016b) as a “jump.” (See the top panel of Figure 19 for an example.)

Some authors use the same word for both. I think this confuses the quite different dynamics of

new and old-Keynesian models.
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2.8 Monetarism and QE

Monetarist thought took a back seat during the interest-rate targeting period starting in 1982.

It largely disappeared from academia, but remains a powerful strain of thought in policy circles

and commentary. When Japan hit zero interest rates in the 1990s, monetarist ideas came back

quickly in the form of “helicopter money.” Ben Bernanke advocated the view most prominently,

among other alternative policies (see the review and fascinating discussion in Ball (2016)). Mon-

etarist ideas remain a force behind the analysis of QE (quantitative easing).

Quantitative easing has two parts: The Fed buys bonds or other assets, and issues reserves.

Here I consider the question whether larger reserve supply is inflationary. In traditional mon-

etarist thought, whether the increase in the M of MV = PY stems from the Fed buying short-

term Treasuries, long-term Treasuries, mortgage-backed securities, or from buying nothing –

from helicopter drops, or changes in reserve requirements allowing more inside money – makes

no difference.

Much of the current QE discussion takes on a diametrically opposite view: The liabilities

(reserves) are irrelevant, but QE “works” by affecting the term and credit spreads in long-term

interest rates in segmented bond markets. The asset purchases matter, not the reserve issues.

Whether or not QE lowered long term rates by as much as half a percent via this mechanism, for

how long, and whether such rate declines in segmented markets had a stimulative effect, is really

unrelated to the big issues of inflation stability and determinacy that matter here, so I ignore this

question.

Helicopter money combines increased money with a fiscal expansion. From a fiscal theoretic

point of view, that such an expansion could cause inflation is not a surprise. In this section,

therefore, I only consider increases in reserves accompanied by asset purchases, and hence no

direct implied fiscal expansion (ignoring also the Fed’s assumption of credit term risk in asset

purchases).

In standard new-Keynesian models (before adding extra frictions, see Woodford (2012), QE

has no inflationary effect.

In classic monetarist thought, the zero bound is not an important constraint on monetary

policy. Yes, the Fed can then no longer control the quantity of money implicitly via an interest

rate target. But nothing stops the Fed from buying bonds and issuing reservers at a zero interest

rate, and letting MV=PY do its work – as, a monetarist might add, it should have been doing all

along anyway.
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The behavior of velocity, equivalently of money demand, at zero interest rates is the central

issue. Monetarist thought emphasizes the idea that velocity is “stable,” at least in the “long run.”

Even at zero interest rates, or with interest-paying reserves, or in the puzzling situation that

reserves pay even more than Treasuries, and even if velocity V decreases somewhat temporarily

when M increases, velocity will soon bounce back and persistently more M will lead to more PY.

The contrary view is that at zero interest rates, or when money pays market interest, money

and short-term bonds become perfect substitutes. Velocity becomes a correspondence, not a

function of interest rates. MV = PY becomes V = PY/M; velocity passively adjusts to whatever split

of debt between money and reserves the Fed chooses. The financial system is perfectly happy

to hold arbitrary amounts of reserves in place of short-term treasuries. Open market operations

have no more effect on spending than open change operations, in which the Fed trades two $10

bills for each $20.

This issue was central to the monetarist vs. Keynesian debates of the 1950s and 1960s. Key-

nesians thought that at the zero rates of the great depression, money and bonds were perfect

substitutes, so monetary policy could do nothing, and advocated fiscal stimulus instead. Mone-

tarists held that additional money, even at zero rates, would be stimulative; and the Fed’s failure

to provide additional money the great policy error of that decade.

In the postwar era of positive interest rates, with zero interest on reserves, there was really

no way to tell these views apart. Now there is, and the experiment is nearly as decisive as the

stability of an interest rate peg.

Figure 1 already demonstrated no visible time-series relationship between the massive in-

crease in reserves and inflation. Figure 6 presents a more traditional picture of reserves, scaled

by nominal GDP, as a function of their opportunity cost, the difference between the effective

Federal Funds rate (the rate at which banks can lend out reserves) and the interest on excess re-

serves at the Fed. You see a steady decline in reserves from 1980 to 2000, as fewer bank liabilities

required reserves and banks became better at avoiding excess reserves. You also see a negatively

sloped curve in the periodic recessions. Following tradition, I’ll just call this plot a “demand

curve” without further ado. I fit the dashed line to the 2000-2007 period, and it gives a conven-

tional semi-elasticity log(reserves/PY) = constant - 0.094 (interest rate). If one extends the line

to the vertical axis, it suggests that reserve demand should top out at about 0.12% of GDP, and if

reserve velocity is “stable,” further increases should lead to increases in nominal GDP.

What does reserve demand do at zero opportunity cost? As Figure 6 shows, we have now

run this out-of-sample experiment, on a grand scale – note the numbers on the log scale y axis.
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Figure 6: Reserves vs opportunity cost. Y axis: total reserves (Fred series WRESBAL) at end of
quarter divided by nominal GDP; log scale. X axis: effective Federal funds rate (Fred FF) less
interest on excess reserves (Federal Reserve website policy rates). Sample 1984:1-2016:2. Line fit
by OLS 2000:1-2006:4

Reserves increased by two orders of magnitude – from 0.1% of GDP to 15% of GDP – with no

visible effect on inflation or nominal GDP.

The answer seems unavoidable: Reserve demand is a correspondence when reserves pay

market interest rates; reserves and short-term debt are perfect substitutes; there is no tendency

for velocity to revert to some “stable” previous value; arbitrary quantities of zero-cost reserves

do not cause inflation. The massive size of the experiment avoids conventional objections –

perhaps there was a contemporaneous “velocity shock” such as those alleged to move money

demand in the 1980s; perhaps nominal GDP would have fallen had the Fed not increased re-

serves, and so on.

One may object that reserves are not the relevant M in MV=PY. Figure 7 presents M1, and

M2 as percentages of nominal GDP PY, versus the three-month Treasury bill rate. (Since many

components of these aggregates pay interest, the three-month Treasury bill rate is not a good
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Figure 7: M/PY vs three month treasury bill rate, using M1, and M2.

measure of their opportunity costs, but I’m both following tradition and keeping it simple.) Each

aggregate increased since 2007, but less, proportionally, than reserves increased. M1 increased

from about 9% of GDP to almost 18%, a bit less than doubling – but not rising by a factor of 100.

M2 increased from 50% of GDP to almost 70% of GDP, “only” a 60% rise. Currency (not shown)

rose from 5.9% of GDP to 7.5%, a 30% increase.

These are still substantial increases, which if velocity were “stable” should result in equipro-

portionate rises in nominal income, and eventually the price level.

But even making these plots grants too much. How much inflation a “monetarist” view pre-

dicts for the recent period is beside the point. The question for us is whether arbitrary amounts

of reserves, exchanged for short-term treasuries, cause any inflation; whether open market op-

erations or QE operations affect inflation. Even if one believes thatM2× V = PY (say), and one

claims that a monetarist view does not predict inflation in the current period because reserves

did not leak in to M2, that fact only verifies that arbitrary quantities of reserves are not inflation-

ary, precisely because they do not leak into M2. That leakage is a central part of the transmission

mechanism, and it’s not transmitting. When banks are holding trillions of dollars of excess re-

serves, the money multiplier ceases to operate. So, to argue there is no inflation because M2 did

not rise much is precisely to admit that arbitrary quantities of interest-bearing reserves, corre-

sponding to arbitrarily lower quantities of interest-bearing treasuries, are not inflationary.

Figure 6 really only makes a secondary point: What would happen if reserves were to leak

to larger increases in M1 or M2, or other aggregates? Figure 6 suggests that these aggregates

display the same behavior as reserves, only on a smaller (so far) scale – they happily crawl up
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the vertical axis. There is nothing in their behavior so far to suggest that this correspondence

could not reach the astonishing level that banks’ willingness to hold reserves at the expense of

treasuries have reached.

Looking back at an 80- year controversy, one may wonder why the “stability” of velocity, even

at zero interest cost, and the consequent perfect substitutability of treasuries for reserves, was

so controversial. One answer may be that for most of that period, there was no alternative co-

herent, simple, economic theory of the price level that could hold in that circumstance. In a

monetarist world, strike MV=PY and nothing ties down P. So, it is natural to stick with the idea

that velocity must be “stable,” as otherwise the price level would be indeterminate. To preserve

price level control, monetarists, despite otherwise free-market tendencies, were reluctant to en-

dorse financial innovation including lots of inside money, electronic transactions, and interest-

bearing money. But now we have an equally simple theory – the fiscal theory – that ties down

the price level when money and bonds are perfect substitutes, one that requires no monetary

or pricing frictions and thus allows arbitrary financial innovation, and we have a long period of

apparent empirical validation that inflation is stable at zero rates despite a massive “monetary”

expansion.

My conclusion that abundant interest-bearing reserves do not cause inflation does not ad-

dress many other objections to the Fed’s large balance sheet. One may object to the Fed’s assets

– its purchases of long-term bonds, of mortgage-backed securities, and of other central bank’s

purchases of corporate bonds (ECB) and even stocks (BOJ) – both on grounds that indepen-

dent central banks should not try to directly influence risky asset prices, or on political econ-

omy grounds that such policies constitute credit allocation better done (if at all) by politically-

accountable Treasuries. This paper is silent on those questions.

3 Fisher

If we grant that inflation is stable at the zero bound, and by implication at an interest rate peg,

that observation implies that raising interest rates should sooner or later raise inflation, contrary

to the usually presumed negative sign. This proposition has become known as the “long-run

neo-Fisherian” hypothesis.

This proposition is a form of long-run neutrality under interest rate rules. It basically says

that the Fisher equation it = rt + Etπt+1 is a stable steady state. “Stable” is a key qualifier. It

is a steady state in old-Keynesian models, and interest rates and inflation move together in the
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long run. But it is an unstable steady state in those models, so pegging the interest rate leads

to spiraling inflation. A stable steady state means that inflation will eventually settle down to

a fixed nominal interest rate. (I ignore here a long literature that worries whether long-run real

interest rates r are affected by steady state inflation, so the Fisher relationship may not be exactly

one for one. All that can be trivially added if needed.)

Both flavors of new-Keynesian model have this implication. The fiscal theory addendum

only changes how we think about determinacy and equilibrium selection, and thus the immedi-

ate, unexpected-inflation response to a shock. Long-run neutrality is a proposition about long-

run expectations in any equilibrium.

Stability and long-run neutrality are news to policy however, which is largely based on old-

Keynesian adaptive expectations thinking. If they are true, central banks raising rates will partly

cause the inflation they wish to forestall – though in the event will likely congratulate themselves

for their prescience. Indeed, that inflation will rise before anticipated interest rate increases

(Figure 12 below gives a good example), and the bank will seem to respond to inflation rather

than to cause inflation. Stability and long-run neutrality also imply that low inflation at the zero

bound is in part due to pedal misapplication – central banks, by keeping interest rates low, partly

caused the low inflation that they were trying, wisely or not, to prevent.

But a long-run positive sign leaves open the possibility that higher interest rates temporarily

lower inflation, and vice versa. The classic belief need not be wrong and may well reflect short-

run experience. We can label the contrary proposition that higher interest rates raise inflation

even right away as the “short-run” neo-Fisherian hypothesis.

The quest of this section, then, is to find the minimal simple economic model that produces

a temporary negative impact of higher interest rates on inflation, validating at least part of the

classic belief. (The qualifiers “simple” and “economic” are important.)

The main result is negative. The basic new-Keynesian model produces a uniformly positive

sign. One simply cannot say, for example, that sure, the Fisher relation means that raising inter-

est rates raises inflation, but sticky prices overturn that result for a while. They don’t. A suite of

sensible modifications one might adduce to provide the desired sign do not work. A novel fiscal

theory argument with long-term debt produces the desired negative sign, though rather deeply

changes one’s views of just what monetary policy is and how it works.

Just what the core predictions of new-Keynesian models for the sign of monetary policy turns

out to be a delicate question, which is the reason for much of this section and its apparent return
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to basics that one would think were well established, but are not. The short preview: the appar-

ent ability of the new-Keynesian model with standard policy rules to deliver a negative response

for transitory interest rate shocks is an illusion. In fact the new-Keynesian model has a sepa-

rate interest rate policy, which governs expected inflation, and an equilibrium selection policy,

which can induce an unexpected inflation. By engineering an unexpected disinflation via the

latter policy, (and only by this mechanism), the model can deliver a temporary negative sign for

any persistence of the interest rate shock, not just transitory shocks. But that’s bad news. There

is therefore no necessary or logical connection between the Fed’s choice to temporarily disin-

flate and its choice to raise interest rates, which on its own leads uniformly to higher inflation.

Such a path remains entirely a Fed choice, not a characterization of how interest rates affect

inflation in the economy. Viewed through fiscal theory eyes, which are observationally equiva-

lent, interest rate rises may historically have coincided with fiscal contractions, which generate

an unexpected disinflation. But there is no reason that monetary policy alone – interest rate

changes that do not have contemporaneous changes in fiscal policy – should therefore lower

inflation. In either view, monetary policy – interest rate policy – remains Fisherian.

We are left with three possibilities. 1) The temporary negative sign is not true. The impression

that it is true comes from events that feature joint monetary-fiscal contractions, and overly ag-

gressive fishing of VAR specifications. 2) The temporary negative sign is true, but it results from

the simple long-term debt fiscal-theory mechanism, and has nothing to do with any of the stan-

dard stories. That mechanism also differs sharply in its implications for policy. 3) The temporary

negative sign is true, but necessarily relies on novel, complex or non-economic ingredients. Any

of these possibilities undermines traditional monetary economics.

3.1 A frictionless benchmark

I start with a simple frictionless model. One may think it obvious that a frictionless model does

not deliver the desired negative sign, and one may wish to get on to price stickiness and other

variations with more potential to do so. But it turns out those models don’t work any better than

the frictionless model, and all the conceptual issues can be shown in the very simple frictionless

model, with much more transparent algebra.

The model consists of a Fisher equation,

it = r + Etπt+1, (18)
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the government debt valuation equation, which implies

Bt
Pt

(Et+1 − Et)
(

Pt
Pt+1

)
= (Et+1 − Et)

∞∑
j=0

βjst+1+j , (19)

or, linearizing,

(Et+1 − Et)πt+1 = − (Et+1 − Et)
∞∑
j=0

βjst+1+j/bt, (20)

where b is the real value of debt, and an interest rate policy rule,

it = (r∗ + Etπ
∗
t+1) + φ(πt − π∗t ) or (21)

it = r∗ + π∗ + φπt + vit. (22)

One can derive the first two equations as the two important equilibrium conditions of a com-

plete general equilibrium model with a constant endowment. See Cochrane (2005). The contrast

between the two equivalent parameterizations of the interest rate rule, one with a a time-varying

inflation target π∗t and the other with a fixed target π∗ and a policy disturbance vit, will turn out

to offer important insights. For the purpose of impulse-response functions, the occasionally

binding zero bound is not important. This model is “simple,” “economic,” and consistent with

stability at the zero bound.

3.1.1 Response function

Figure 8 presents responses of inflation to an interest rate rise for this model, as given by (18).

The model produces a rise in expected inflation starting the period after the rate rise. There is

no temporary inflation decline.

This calculation, using (18) alone, does not assume a peg, passive monetary policy, or fiscal

theory, nor does it deny an underlying policy rule such as (22). This is a calculation of inflation

given a path for the equilibrium interest rate. That interest rate may well be the result of under-

lying disturbances {i∗t }, {π∗t } or {vit}with any value of φ. Indeed, we can and will use (22) to back

out a sequence of disturbances that produce the desired interest rate path.

The response to a given interest rate path is a different object than the response to a given

path of policy disturbances {vit}. It is more common to plot the latter. But in the end, we are

interested in how changes in inflation correspond to changes in interest rates which we can di-

rectly observe. The path of disturbances {vit} can be quite different from the interest rate path,
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as we will see, even having different signs. Solving for the path of inflation given interest rates

gives us a more general answer, as the same interest rate path can occur from many different pol-

icy disturbance paths, and from both active-fiscal and active-money regimes. It also saves us a

reverse-engineering task of finding disturbances that generate the desired path of interest rates.

Werning (2012) innovated this clever idea of first finding equilibrium inflation given equilibrium

interest rate paths, and then, if needed, constructing the underlying policy rule.

3.1.2 Unexpected disinflation?

By itself, the Fisher equation (18) allows an arbitrary one-period unexpected inflation in the

impulse-response function, upwards or downwards, coincident with the announcement of the

policy change. The dashed lines in Figure 8 plot some possible response functions that pair an

unexpected inflation shock with a rise in interest rates.

Perhaps we can deliver the desired negative sign by pairing a negative unexpected-inflation

shock with the interest rate rise, choosing, say, the bottom-most dashed line of Figure 8?

Equation (20) helps us to think about this issue. Each value of unexpected inflation corre-

sponds to a revision in the present value of future surpluses. Disinflations, by unexpectedly rais-

ing the value of government debt, must correspond to a higher present value of future surpluses.

A 1% disinflation requires that the surplus/debt ratio rises permanently by one percent.

This kind of event may correspond to historical experience. The vast majority of monetary

policy changes are reactions to events. It is sensible that fiscal policy reacts to the same events,

that the interest rate rises we see historically represent joint monetary-fiscal contractions. One

would have to orthogonalize VAR shocks very carefully to measure a monetary policy shock in-

dependent of fiscal policy, and no VAR has yet attempted it.

But if that is true, it follows that a pure monetary policy change, consisting of an interest rate

rise without changes to fiscal policy, would not have a disinflationary effect, and would follow

the Fisherian solid line.

This fiscal interpretation and underpinning of a disinflationary surprise is equally valid un-

der “active” as under “passive” monetary policy. Equation (20) holds in classic new-Keynesian

analysis under active φ > 1 policy just as it does in the fiscal theory with passive monetary pol-

icy. If active φ > 1 monetary policy selects the value of unexpected inflation, and fiscal policy

“passively” responds by changing surpluses to pay off corresponding changes in the value of the

debt, fiscal policy must still change those surpluses, or the disinflation doesn’t happen. Even
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“passive” fiscal policy must be voted on by Congress and implemented by the Treasury!

More deeply, the induced fiscal reaction is the mechanism by which monetary policy affects

aggregate demand and thus inflation, even when fiscal policy is passive. The conventional read-

ing of active monetary - passive fiscal policy regards the passive fiscal assumption as wiping out

the fiscal equation (19). Then, monetary policy becomes simply a coordination device between

multiple equilibria. But that is not the case. The fiscal equation is still present, and crucial.

When monetary policy selects an equilibrium with lower inflation, and fiscal policy “passively”

raises surpluses, at the original price level, people find government bonds undervalued. They

reduce spending on other things to try to buy government bonds, reducing aggregate demand.

The price level declines, eventually raising the value of government bonds to their proper level.

In a model with no frictions this is the only way by which a nominal interest rate change af-

fects aggregate demand and hence inflation. If fiscal policy does not cooperate, the aggregate

demand does not materialize, and the price level does not change. Monetary policy may be the

carrot that leads the fiscal horse that pulls the cart fro place to palce, but the cart does not just

jump from place to place on its own.

Thus, one may index multiple equilibria by their fiscal consequences, even if one does not

wish to select equilibria by those consequences.

3.1.3 A policy rule with an inflation target

Perhaps motivating the same disinflationary equilibria by active monetary policy rules will make

them seem more attractive? Here we compute the responses of inflation and interest rates to a

monetary policy disturbance ({π∗t } or {vit}) rather than to equilibrium interest rates {it} directly.

Merging the policy rule (21) with the frictionless Fisher equation (18), treating the govern-

ment debt valuation equation (20) as passive, determining {st}, and ignoring constants which

drop from the impulse response function, we have

Et
(
πt+1 − π∗t+1

)
= φ (πt − π∗t ) . (23)

Given the expected sequence of policy disturbances {π∗t } then, and φ > 1, any equilibrium {πt}

will explode going forward other than πt = π∗t . Ruling out such forward nominal explosions, we

have immediately that monetary policy determines inflation uniquely, on the announcement

date as well as dates going forward, with its active policy.
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The Fed can achieve any path of inflation it wishes by choice of the process for {π∗t }. Interest

rates will be it = Etπ
∗
t+1 and unexpected inflation will be π∗t+1 − Etπ∗t+1. (King (2000) innovated

this insightful parameterization of the model in terms of equilibrium π∗ and deviations from

equilibrium π − π∗.)

This freedom does little to justify a temporary inflation decline as a characterization of the

economy’s response to monetary policy, however. An unexpected inflation decline paired with

an interest rate increase would be entirely a choice by the Fed. Given this freedom, there is also

no evident reason why the Fed should want to make such a pairing, no logical or necessary tie

between the unexpected inflation decline and the interest rate rise, which on its own leads to

higher later inflation. At best such a pattern would characterize historic Fed preference, but

there is no reason the Fed is constrained to follow such a pattern in the future.

Moreover, this freedom opens the door to open-mouth policy. Suppose at date 0 the Fed

announces π∗0 = −1, π∗1,2,3,... = 0, rather than π∗0 = −1, π∗1,2,3,... = 1 (or the equivalent vit =

Etπ
∗
t+1 − π∗t disturbances). The latter generates a one-period decline followed by the interest

rate and inflation rate rise seen in the lowest dashed line of Figure 8. The former generates the

one-period decline in inflation by itself, with no change in interest rates at all! All the Fed has to

do is to announce the monetary policy disturbance. Then inflation jumps down by just enough

that the φπt part of the policy rule offsets the disturbance term and interest rates themselves

never change.

If the Fed wants disinflation, then, let it just create disinflation by an open-mouth operation,

announcing that π∗0 is lower. Why pair an instant disinflation with a subsequent interest rate

rise, and higher future inflation? If anything, it would be far more sensible to tie a decline in

unexpected inflation to a decline in actual inflation, via a lower interest rate.

This inflation-target expression of the policy rule makes clear that the Fed has two inde-

pendent and separate policy levers in the new-Keynesian active-money world: The Fed has an

interest-rate policy i∗t = Etπ
∗
t+1, which here sets expected inflation, and the Fed has an equilibrium-

selection policy φ(π∗t+1−Etπ∗t+1), enforced by the threat of inflationary or deflationary explosion

(23), which selects which of the multiple equilibria left by interest rate policy the economy will

jump to. Since one can choose the expected and unexpected components of a stochastic process

separately and freely, interest rate policy is completely independent of equilibrium-selection

policy. An open-mouth operation is pure equilibrium-selection policy. And it can be paired with

any interest-rate policy. The consequent possibility of open-mouth policy, which recurs in the

sticky price models to follow, ought to be disturbing for this whole concept for modeling the
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Fed’s influence on the economy.

Furthermore, this separation makes it clear that the standard new-Keynesian and fiscal-

theory views are observationally equivalent away from the zero bound. In equilibrium, we never

observe πt 6= π∗t , so we never observe φ. Whether the Fed made an open-mouth operation, and

fiscal policy followed passively, or whether φ = 0 and fiscal policy led the unexpected inflation

cannot be told apart based on interest rate and inflation data. At the zero bound, however, we

know that at least the downward φ threat cannot be made.

3.1.4 A policy rule with conventional disturbances

Perhaps looking at monetary policy via disturbances vit in (22) rather than π∗t in (21) will look

more reasonable. That parameterization, though algebraically equivalent, is more common in

the literature.

The vit parameterization also helps us to track down a puzzle: I showed above that the Fed

can engineer a negative disinflationary response π0 for any path of interest rates i0,1,2.... Yet

the standard wisdom is that new-Keynesian models generate a negative response to transitory

monetary policy shocks, and a positive response to persistent monetary policy shocks. As we

will see, the standard (false) wisdom comes from specifying a monetary policy disturbance {vit}

and then limiting the time-series properties of that disturbance.

Repeating the analysis with the vi paratmerized rule (22), the equilibrium condition is

Etπt+1 = φπt + vit. (24)

We solve forward to

πt = −
∞∑
j=0

φ−j+1Etv
i
t+j .

In the AR(1) case

vit = ρvit−1 + εit

we have

πt = − 1

φ− ρ
vit. (25)

We also have either from (18) or (22)

it = − ρ

φ− ρ
vit. (26)



32 COCHRANE

From (26), a positive monetary policy shock vi sends inflation down. That seems like the

result we are looking for. But in (26), that shock also sends interest rates down. Substituting out

vi from (25)-(26), we have

πt = ρit. (27)

For ρ > 0, a higher interest rate results entirely in higher inflation. If you have the opposite

impression, it comes from confusing the monetary policy disturbance vi with the interest rate i.

They go in opposite directions.

For ρ = 1, we recover the permanent interest rate rise of Figure 8. In this case, this stan-

dard new-Keynesian solution method produces a perfectly Fisherian response. Not only does

π1,2,3.. = 1, as in the solid line, but inflation jumps up immediately in the period of the shock,

π0 = 1 as well, shown in the second from the top dashed line,marked “standard NK” in Figure 8.

We will see the same behavior with price stickiness.

So, if one hoped that simple or reasonable restrictions such as an AR(1) on {vit} produce the

desired result, in fact they produce the opposite result. And again, even if it worked, it would

reflect the Fed’s choice of policy disturbance properties, and nothing really about the economy’s

response to money, interest rates, and so on.

Equation (27) shows a negative effect of interest rates on inflation for ρ < 0. Thus we see

here a stylized version of the standard false impression that in the new-Keynesian model, per-

sistent interest rates raise inflation while temporary rate rises lower inflation. When we add price

stickiness below, the cutoff for a positive vs. a negative effect is between zero and one, allowing a

negative effect for reasonable transitory (low but positive ρ) interest rate movements, but leaving

a stubbornly positive effect for persistent (high ρ) interest rate movements.

But this all depends on the AR(1) or similar time-series restrictions on the disturbance pro-

cess vit. For example, suppose we want to engineer the response of Figure 8 with a -1% impact

disinflation and a permanent rate rise. We choose π∗0 = −1, π∗1,2,3,... = 1. Done. Translated,

vit = Etπ
∗
t+1 − φπ∗t , i.e. vi0 = 1 + φ, vi1,2,3,... = 1 − φ produces this result. It exists, but it’s not an

AR(1). Likewise, the model can happily generate the other opposite of conventional wisdom – a

positive impact inflation with a transitory interest rate. It can generate an open mouth effect –

vi0 = 1 + φ, vi1,2,3... = 0 produces π∗0 = −1, π∗1,2,3... = 0. It’s a bit more hidden, but nothing about

the conventional parameterization other than the artificial AR(1) restriction ties temporary dis-

inflation to the persistence of subsequent interest rate movements.
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3.1.5 Anticipated rate rises

Many interest rate rises are announced or anticipated long in advance. Both new and old-

Keynesian models assign strong effects of anticipated interest rate rises. So understanding the

effect of anticipated interest rate changes is important for policy and understanding episodes.

VARs study unexpected interest rate movements both by historical habit – VARs were devel-

oped under the influence of rational expectations models in which only unanticipated monetary

policy had real effects – and by econometric necessity – unexpected movements are more causes

of, not responses to, other news about future inflation and output. Announcement shocks not

coincident with actual rate movements are also harder to measure.

But for policy and historical analysis, it is important to ask of models what is the effect of an

expected policy change.

The bottom panel of Figure 8 shows possible impulse-response functions when the rate rise

is announced three periods before it occurs. The response function with no inflation innova-

tion and no fiscal policy shock is the same as before. Anticipated monetary policy, or forward

guidance, matter.

Here, however, any disinflation must come only on the date of the shock, the date the policy

is announced. Unexpected disinflations must be unexpected; equilibrium selection policy can

only select among unexpected movements; fiscal shocks must truly be shocks. This fact raises

the bar for interpretation of historical episodes – the model-predicted disinflation will typically

start before the actual rate rise. This fact also emphasizes that the disinflation comes from the

equilibrium-selection part of policy, not the interest rate part, and not at all from the standard

channels in which the interest rate itself affects aggregate demand.

3.2 Long-term debt in the frictionless model

Adding long-term debt produces a stable model in which a rise in interest rates can produce a

temporary decline in inflation, with no change in fiscal surpluses. Sims (2011) makes this point

in the context of a detailed continuous time model. Cochrane (2016c) shows how to solve Sims’

model and boils it down to this central point. Cochrane (2001) analyzes the long-term debt case

in detail.

Continue with the frictionless model (18), using a constant real interest rate r and define

β ≡ 1/(1 + r). In the presence of long-term debt, the government debt valuation equation
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becomes ∑∞
j=0Q

(t+j)
t B

(t+j)
t−1

Pt
= Et

∞∑
j=0

βjst+j , (28)

where B(t+j)
t−1 is the amount of zero-coupon debt that matures at time t + j, outstanding at the

end of time t − 1 and thus at the beginning of time t, and Q
(t+j)
t = Et

(
βjPt/Pt+j

)
is the time t

nominal price of a j period discount bond.

When the Fed unexpectedly and persistently raises interest rates it, it lowers long-term bond

prices Q(t+j)
t . Debt B(t+j)

t−1 is predetermined. By assumption, primary surpluses don’t change.

Hence, the price level Pt must jump down by the same proportional amount as the decline in the

nominal market value of the debt.

By raising nominal interest rates, the Fed still raises expected inflation uniformly, it ≈ rt +

Etπt+1 still applies. Thus, we obtain a downward jump, a one-period disinflation, on the day

the higher interest rates are announced and long-term bond prices decline, followed by higher

inflation when the higher nominal interest rates occur. The path is exactly the same as the

dashed lines Figure 8 showed for contractionary fiscal policy, therefore marked “also with long-

term debt.” Like a shock to surpluses, the mechanism is straightforward “aggregate demand” or

wealth effect of government debt. People try to buy or sell undervalued or overvalued govern-

ment bonds. They drive down or up the price of everything else until the value of government

bonds matches the present value of surpluses.

In a model such as Sims (2011) with costs to swiftly changing prices, the downward jump is

replaced by a smeared-out period of disinflation. The jump in these simple models is a guide to

the cumulative value of the disinflationary period.

3.2.1 Magnitude?

Just how large a disinflation does this mechanism produce? Is it quantitatively significant, and

hence a candidate to understand the apparent patterns in the data, or to guide policy?

Suppose the interest rate i = it+j is expected to last forever. The bond price is then Q(t+j)
t =

1/(1 + i)j . Consider a geometric maturity structure,B(t+j)
t−1 = θjBt−1, so θ = 1 is a perpetuity and

θ = 0 is one-period debt, and a constant surplus st = s. Now, the government debt valuation

equation reads
∞∑
j=0

θj

(1 + i)j
Bt−1

Pt
=

1 + i

1 + i− θ
Bt−1

Pt
=

s

1− β
. (29)
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The continuous time analogue is prettier. With maturity structure B(t+j)
t = ϑe−ϑjBt,

ϑ

∫ ∞
j=0

e−ije−ϑjdj
Bt
Pt

=
ϑ

i+ ϑ

Bt
Pt

=
s

r
. (30)

Here ϑ = 0 is the perpetuity and ϑ =∞ is instantaneous debt. (Algebra in the Appendix.)

Now, suppose interest rates rise permanently and unexpectedly at time t. Denote by i∗ the

post-shock interest rate, and P ∗t the post-shock price level. Then, dividing (30) for the starred by

the nonstarred case,
P ∗t
Pt

=
i+ ϑ

i∗ + ϑ
. (31)

With this formula, we can get a back of the envelope idea of the size of the disinflation ef-

fect and its crucial determinants. The longer the maturity, the stronger the effect. In the most

extreme case, pairing this permanent interest rate rise with perpetual debt ϑ = 0 – we have

P ∗t /Pt = i/i∗. A jump in interest rates from 2% to 3% causes the price level to drop to 2/3 of its

previous value, a 33% cumulative disinflation!

However, the US doesn’t issue that much long-term debt. Debt out to a 20 year maturity

follows a geometric pattern with ϑ ≈ 0.2. In this case, a one percentage point interest rate rise

implies P ∗t /Pt = (0.2/0.21) = 0.95, a 5% drop, or a 5% cumulative disinflation.

Shorter-lived interest rate rises and announcements of future rate rises have less effect still.

In the Appendix, I show that an interest rate rise from i to i∗ that only lasts M years yields in place

of (31),
P ∗t
P
− 1 ≈

(
1− e−ϑM

)( i+ ϑ

i∗ + ϑ
− 1

)
. (32)

An interest rate rise that lasts 2 years M = 2 has only 1 − e−ϑ2 = 1 − e−0.2×2 ≈ 1/3 as large an

effect as a permanent increase.

An announcement of a future interest rate rise only affects bonds of maturity longer than the

announcement delay. An announcement of an interest rate rise from i to i∗ that starts in M years

yields in place of (31),
P ∗t
Pt
− 1 ≈ e−ϑM

(
i+ ϑ

i∗ + ϑ
− 1

)
. (33)

Thus, a permanent interest rate rise that is announced two years ahead of time has a e−(0.2×2) or

about 2/3 as much effect.

Either mechansim gives us about 2-3% cumulative disinflation for a 1% interest rate change,

and less if we combine them. This is at least in the right ballpark – not 0.2% and not 20%.



36 COCHRANE

I pursue more careful calibration of this effect to the actual US maturity structure, in the

context of a model with sticky prices and long term debt, below.

3.2.2 The answer?

Is this basic mechanism the answer we are looking for to deliver a temporary negative effect of

monetary policy on inflation?

In its favor, this basic mechanism unites interest rate policy, forward guidance, and quan-

titative easing. And all three work in a frictionless model – no monetary frictions, no pricing

frictions, and no bond-market segmentation. This is an attractive unification and simplifica-

tion. One later adds frictions for more realistic dynamics, of course.

Interest rate policy works here only by its effect on long-term bond prices, i.e. by its implied

forward guidance. So explicit forward guidance has the same effect. For example, paths such as

the temporary disinflations at t = −3, shown in dashed lines of the bottom panel Figure 8, are

achieved here entirely by “forward guidance,” i.e. an announcement at time t = −3 that interest

rates will rise at time 0.

To see how this mechanism also encompasses quantitative easing (QE), consider a very sim-

ple example. Suppose debt {B(j)
−1} due at j = 0, 1, 2, ... is outstanding at time 0. Suppose further

that the government plans neither to sell nor to roll over any more debt. It simply will pay off

each coupon {B(j)
−1} at time j from surpluses at time j.

Now suppose at time 0 the Fed unexpectedly buys back some long term debt. It announces

the plan, then buys debt at new bond prices. The price level at each date j > 0 is set by the con-

dition that primary surpluses must soak up maturing debt, since by assumption of this simple

example no new debt is issued,
B

(j)
0

Pj
= sj ; j = 1, 2, 3... (34)

Therefore bond prices at time 0 are

Q
(j)
0 = E0

[
βj
P0

Pj

]
= P0E0

[
βj

sj

B
(j)
0

]
. (35)

The price level at time 0 is set by the same condition as (34), but on this date bond purchases

add some extra cash,

B
(0)
−1 −

∞∑
j=1

(B
(j)
0 −B

(j)
−1)Q

(j)
0 = P0s0. (36)
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B are the amounts outstanding, so a positive (B
(j)
0 − B

(j)
−1) corresponds to a debt sale, and a

negative value to a purchase.

Substituting the bond price (35) in (36) and rearranging, we have the central result,

B
(0)
−1

P0
= s0 +

∞∑
j=1

βj
B

(j)
0 −B

(j)
−1

B
(j)
0

sj . (37)

By unexpectedly buying long-term bonds, the Fed lowers the right hand side of (37), thereby

raising P0, which with price stickiness may stimulate real activity as well. By lowering B(j)
0 , with

P0 higher, the Fed in (35) raises long-term bond prices and lowers long-term interest rates.

Conversely, by unexpectedly selling long-term bonds, the Fed would engineer a rise in long-

term rates, and a decrease in the price level today, exactly the downward price level jump fol-

lowed by rise in interest rates achieved by the interest rate rise or forward guidance. QE is just

the quantity view of the same mechanism.

This model also ties a disinflationary shock to the subsequent interest rate rise, in a way I

argued above that standard new-Keynesian depictions of Fed equilibrium selection by interest

rate policies do not.

However, there are some important differences between this mechanism and traditional be-

liefs, and important work on it to be done.

This model is still long-run neutral – persistently higher interest rates eventually raise infla-

tion. This mechanism does not on its own produce the traditional adaptive expectations analysis

of the 1980s – doggedly high rates slowly squeeze out inflation. (Figure 10 below illustrates the

standard view.) Sims (2011) called this mechanism “stepping on a rake.” He views the model as

a description of the failed monetary stabilizations of the 1970s, in which interest rate increases

produced temporary reductions of inflation that only came back more strongly later.

To produce a successful inflation stabilization, a model of the 1980s, one needs something

else. A natural possibility is to view the 1980s as a joint monetary-fiscal stabilization. The in-

terest rate increases of the early 1980s had these temporary effects, but they were paired with

fiscal reforms such as the 1982 and 1986 tax act, together with deregulation. Subsequent eco-

nomic growth was strong, and surpluses surged. The temporary disinflation occasioned by high

interest rates turned in to a permanent disinflation with fiscal backing.

This mechanism gives a disinflation when the interest rate rise becomes expected, not when

it actually happens. This mechanism operates only through expected future interest rates and
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by lowering long-term bond prices. The rise in current interest rates is essentially irrelevant, in

sharp contrast with standard ISLM or money supply/demand thinking. Operating in a friction-

less model, it has nothing to do with Phillips curves, i.e. higher current real rates leading to lower

output leading to less pressure on prices and wages. Most deeply, this model does not revive the

instability of the old-Keynesian model, which lies behind both traditional activist policy advice

and the traditional view of inflation stabilization by doggededly higher interest rates alone. This

mechanism offers nothing like any story told to undergraduates, FOMC members or the gen-

eral public about why higher interest rates lower inflation. The fact that it works in a completely

frictionless model, though a feature from the view of clarity and simplicity, is a fatal bug for the

purpose of describing traditional beliefs.

Nor does this mechanism easily rationalize traditional short-run policy prescriptions. It is

not necessarily possible or wise for the Fed to try to control inflation by exploiting this short-run

negative sign. Since the negative sign only appears for unexpected policy changes, by unexpect-

edly devaluing the claims of long-term bond holders, systematic policy has limited effect. And

getting the timing and dynamics just right are likely to be a challenge. Since the long-run effect

is positive and stable, there is a good case here that the Fed should keep interest rates steady

based on its long-run inflation goal and real-rate assessment, and not try to micromanage the

path of inflation with activist policy exploiting the transitory negative sign.

Finally, this mechanism rests on important and possibly tenuous fiscal foundations. By rais-

ing interest rates, the Fed raises future inflation. This is a gift to the Treasury – the Treasury can

reduce surpluses and still pay off the promised nominal value of the debt. By fixing surpluses,

I assume the Treasury stubbornly refuses the gift. The size and even sign of the effect revolve

crucially on how people think the Treasury will react.

In sum, though this model may well be the answer, and may address the data, it is not the

answer to every question, and in particular it is not a rationalization of standard beliefs.

To pursue this line, important next steps must follow. First, changes in interest rates with

fixed surpluses are a useful textbook, problem-set sort of assumption. But fixed or “exogenous”

surpluses are not necessary for the theory, and they are terrible assumptions for policy, econo-

metric, or historical analysis. Just how will the Treasury and Congress respond to inflation? If the

Fed, as here, devalues long-term bonds with a promise of future inflation, will the Treasury really

take none of that promise, and not lower surpluses even a bit? How do people expect the Trea-

sury and Congress to respond to the same events that occasion the Fed’s interest rate rise? These

are crucial assumptions to understand how interest rates and QE operations affect inflation.
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In particular, we must face the minor embarrassment that this mechanism seems to predict

that QE works to produce inflation, whereas I just argued that QE had no visible impact on infla-

tion. The story is flexible enough to account for this QE failure, of course, as the theory describes

an unrealistic partial derivative with fixed surpluses and no future rollovers. Here, only QE that

corresponds to shortening the Treasury maturity structure counts. MBS purchases have no ef-

fect. The Treasury issued debt just as fast as the Fed was buying it, so debt in private hands

changed less than we think. If the Fed promises to undo the QE in the future, then the effect

vanishes. If the Treasury is expected to roll over the debt when it comes due, then it is at least

attenuated. Perhaps this QE was accompanied by changes in fiscal expectations – surely true,

but what size and sign? Most deeply, this QE was not in fact accompanied by visible interest rate

changes, as Figure 1 makes clear, which are the mark in this model of whether it is effective.

But this smacks of the sort of epicycle argument that I dismissed with Occam’s razor. So per-

haps these stories of joint fiscal-monetary coordination for excusing the failure of QE also wipe

out the disinflationary effects of interest rate rises in other episodes as well, and the negative

sign simply isn’t true.

Second, of course, one must move beyond the extremely simple model presented here to

more detailed models capable of matching dynamics. Sims (2011) is a good example, adding

a preference for smooth consumption, a monetary policy rule with output and price reactions

and inertia, sticky prices, and a fiscal policy rule that raises surpluses in good times. He produces

a hump-shaped inflation response curve in place of my downward jump followed by rise. In a

much simpler exercise, I merge this mechanism with a standard simple new-Keynesian model

below.

More generally, this mechanism generates important ties between the effects of interest-rate

policy, the maturity structure of outstanding debt, and how fiscal policies react to inflation and

output and the maturity structure of the debt, that have yet to be faced in a serious quantitative

evaluation.

3.3 A simple model of sticky prices

The natural response to the failure of the frictionless model with short-term debt is, well, duh,

you need sticky prices to get inflation to go down after an interest rate rise. With sticky prices, a

higher nominal rate means a higher real rate, a higher real rate means lower aggregate demand,

lower output, and via the Phillips curve lower inflation.
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This intuition describes the old-Keynesian adaptive expectations model. But that model is

unstable and thus inconsistent with the quiet stable zero bound. We’re looking for a model with

long-run neutrality on top of a short-run negative sign.

Alas, as we will see here, new-Keynesian models robustly predict higher inflation in response

to monetary policy, despite price stickiness.

The points are easiest to see in the very simplified model outlined in section 2.3. The same

qualitative results hold in more complex and realistic versions. I verify in particular below that

the standard new-Keynesian model with an Etxt+1 term works in the same way as the simple

model here.

Omitting constants and the zero bound, which are not relevant here, substituting out the

output gap x and real rate r from (1)- (4), we have the equilibrium condition (5)

σκ it = −πt + (1 + σκ)πet + σκ vrt , (38)

and the interest rate rule,

it = φπt + vit. (39)

3.3.1 Adaptive expectations

In the adaptive-expectations model, πet = πt−1, we solve (38) directly for the response of inflation

to the path for interest rates as

πt = (1 + σκ)πt−1 − σκ (it − vrt ) . (40)

If we wish instead to solve for the response of inflation to a monetary policy disturbance, vi, we

substitute the rule (39) for it and solve, leading to (9), repeated here:

πt =
1 + σκ

1 + φσκ
πt−1 −

σκ

1 + φσκ
(vit − vrt ). (41)

In (40), the coefficient on lagged inflation πt−1 is greater than one, and the coefficient on the

interest rate it is negative. Thus, in response to a sustained rise in interest rates, inflation spirals

off negatively. Figure 9 illustrates.

Figure 9 includes the response for less price stickiness, κ = 1 instead of κ = 1/2. Sensibly, less

sticky prices speed up dynamics. But that just makes the explosion happen faster. The adaptive
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Figure 9: Simulation of a permanent interest rate rise in the simple old-Keynesian model. The
baseline uses κ = 1/2, σ = 1. The “less sticky” case uses κ = 1.

expectations model does not approach the frictionless limit.

This response to interest rates is the same for any value of φ, and φ < 1 vs. φ > 1 in particular.

As in the frictionless model, this response of inflation to interest rates (40) does not assume a

time-varying peg φ = 0; it simply assumes that the Fed is following whatever set of shocks is

necessary to keep equilibrium interest rates at their assumed value. The rule (41) tells us what

path of monetary policy disturbances vit is needed to generate the given path of interest rates.

φ > 1 vs. φ < 1 does not determine the stability of this response. φ > 1 just means that the Fed

would need an ever-increasing set of shocks vit is necessary to keep interest rates constant.

Why do we not observe this much feared-instability? Because governments and central banks

aren’t dumb enough to keep interest rates constant forever in the face of inflation. (Though

sometimes it takes them a while to catch on.) Likewise, a deflation spiral eventually spurs fiscal

stimulus, helicopter drops or other extreme measures.

To illustrate, Figure 10 plots the response of this simple old-Keynesian model to a permanent

monetary policy disturbance vit, simulating forward equation (41).
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Figure 10: Response to a step-function monetary policy disturbance in the simple old-Keynesian
model. The figure plots the response to a permanent 1% increase in vit. φ = 1.5, κ = 0.2, σ = 1.

Interest rates rise at first, to get disinflation going, but then quickly follow inflation in order

to stop it from going too far. This graph embodies the sequence of events Friedman (1968) (p.

6) described of an interest rate change. It also describes the conventional adaptive-expectations

view of the 1980s.

In the long run, interest rates move one for one with inflation. The model is not Fisherian,

however, as the Fisher relationship is an unstable steady state, and interest rates must initially

rise to get disinflation going. At the zero bound, the Fed is unable to lower interest rates and get

the negative of this process going.

In (40) and (41), the natural rate shock vr enters along with the interest rate and the monetary

policy disturbance, respectively. Thus we can read Figure 9 as the response of the economy to a

sustained decline in the natural rate when the interest rate does not move, as at the zero bound.

The zero bound spiral shown in Figure 4 is the same mechanism – and the absence of such a

spiral tells us that an interest rate rise is similarly not likely to have the effect shown in Figure 9.

Likewise, Figure 10 illustrates the reaction of inflation to a permanent decline in the natural
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rate with no change in the monetary policy disturbance, vi, i.e. if the Fed allows (and can allow)

the interest rate to follow the usual Taylor rule. A decline in the natural rate would set off a

protracted decline in inflation. This is the initial path of inflation in Figure 4 before the zero

bound binds and the constant interest rate unstable dynamics of Figure 10 take over from the

constant disturbance dynamics.

The model (41)-(40) makes no distinction between expected and unexpected disturbances,

and there are no forward looking terms. Hence, these responses are the same for anticipated

movements as for surprise movements, and anywhere in between, i.e. policies announced at

time t = −3, for example. The rational-expectations idea that expected and unexpected policy

have different effects is not present.

Figure 10 helps to illustrate why it is hard to tell an unstable model, whose central bank is

following active policies and not letting instabilities erupt, from a stable model. Equilibrium

interest rates and inflation rise and fall together in both cases. Add some noise, and it will be

hard to see if the interest rate fall caused the inflation fall or vice versa. That’s why the long zero

bound is such a telling experiment.

Figure 9 and Figure 10 summarize the classic view of the effects of monetary policy. Alas, the

underlying model is inconsistent with the observed stability at the zero bound. That stability

means we are looking with only a temporary negative effect of interest rates on inflation.

3.3.2 Rational Expectations

For the new-Keynesian model with rational expectations, πet = Etπt+1, (38) now implies that the

response of inflation to equilibrium interest rates is

Etπt+1 =
1

1 + σκ
πt +

σκ

1 + σκ
(it − vrt ) . (42)

Substituting in the policy rule (39), the response to a monetary policy disturbance is (also previ-

ously given in (11)),

Etπt+1 =
1 + φσκ

1 + σκ
πt +

σκ

1 + σκ
(vit − vrt ). (43)

Again, we can calculate the path of inflation corresponding to a given path of equilibrium

interest rates in (42), without specifying what path of monetary policy disturbances vit and sys-

tematic responses φπt produced the interest rate path. Again, that inflation path is independent

of the policy rule φ, and the set of disturbances vi that generated the interest rate path, neither
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of which is present in (42). Again, (42) does not necessarily represent the response to a time-

varying peg (φ = 0) – though it can.
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Figure 11: Simulation of an interest rate rise or natural rate fall in the simple new-Keynesian
model. The baseline uses κ = 1/2, σ = 1, the “less sticky” case uses κ = 1. Dashed lines indicate
potential multiple equilibria.

In (42) the coefficient in front of it is positive, and the coefficient in front of πt is less than one.

The model has a positive, stable inflation response to an increase in interest rates, rather than

a negative, unstable response. Figure 11 presents this response. And it is Fisherian, both in the

short and long run. The whole reason that we are here – the hope that adding price stickiness to

the frictionless model illustrated by Figure 8 would generate a model with a short-run inflation

decline – fails, at least so far.

Already, the new-Keynesian model reverses the hallowed doctrine that interest rate pegs are

unstable. Now it undoes the widespread presumption that higher interest rates temporarily

lower inflation when prices are sticky.

Here too, vrt and it enter (42) together, so we can read Figure 11 as the response of inflation

to a natural rate vr fall, when interest rates do not or cannot move. The natural-rate fall raises

inflation. Higher inflation with a fixed nominal rate produces a lower real rate. Thus, infla-
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tion accommodates needed changes in the natural real rate, albeit slowly, all by itself, without

the need for active Fed action or announcements. Contrariwise, a rise in the natural rate with

no change in interest rates leads to a steady decline in inflation, all on its own, to produce the

higher real rate with unchanged nominal rates. One might read the history of slowly decreasing

inflation during recovery at the zero bound as an instance of this mechanism.

Figure 11 includes the case of less price stickiness, κ = 1 in place of κ = 1/2. Again, dynamics

happen more quickly. But in this case, unlike the old-Keynesian adaptive expectations model,

dynamics smoothly approach the frictionless limit, in which it = r + Etπt+1 and expected infla-

tion rises immediately to match the rise in nominal interest rate. This is an attractive property.

(Difficulties with the frictionless limit happen in new-Keynesian models when one ties down

the equilibria by choices of future inflation and one introduces time - 0 jumps. Then small

changes in the future inflation imply large jumps in today’s inflation, and those changes get

bigger as price stickiness is reduced or the horizon increases. Some of these issues are discussed

with Figure 19 below. Cochrane (2016b) discusses the issue at length. This calculation smoothly

approaches a frictionless limit, in a way the old-Keynesian model above does not. That does

not mean that all calculations in the new-Keynesian literature smoothly approach fricitionless

limits. Many do not.)

As in the frictionless model of Figure 8, this rational-expectations sticky-price model only ties

down expected inflation, so one can add any unpredictable shock δt+1 to the ex-post versions of

(42) and (43), i.e. the version with πt+1, not Etπt+1 on the left-hand side. One cannot expect

unexpected jumps, so for an impulse-response function, multiple equilibria only introduce the

possibility of an unexpected jump on the date people learn the new policy.

Unlike the frictionless case, unexpected jumps have lasting effects. To the solutions of (42)

with π0 = 0 we can add

πt =

(
1

1 + σκ

)t
π0 (44)

for any value of π0.

I indicate such multiple equilibria by dashed lines in Figure 11. On the date of the announce-

ment, inflation could jump to any of the dashed lines, and would be expected to then continue

on that line. For example, in the traditional case that the interest-rate rise is a surprise at date 0,

inflation at date 0, rather than being 0 (solid line), could jump down to the dashed line at its kink,

and then start to rise. In the case of a preannounced rate rise, inflation could jump down to the

dashed line at that earlier date. In this way, the graph covers the results of any announcement
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date.

As in the frictionless case, we might obtain the transitory negative effect with such a down-

ward jump coincident with the announcement of a rate rise.

Again, each such jump has an associated change in fiscal policy, whether “actively” or “pas-

sively” achieved, so I label them “with fiscal shocks.” Now, such jumps have protracted effects,

and begin to look more like a source of smooth temporary disinflation. But adding fiscal shocks

to produce a temporary negative response makes no more sense here than in the frictionless

case.

(The solid δ = 0 line corresponds to no change in the present value of surpluses. However,

higher nominal rates now imply higher real rates, and therefore a lower present value if surpluses

themselves do not change. Thus, the previous definition of “monetary policy” as a change in

interest rates with no change in surpluses would include an upward jump in inflation on the date

of announcement. As the sign is not going to help us, I leave quantification of this mechanism

to the fuller model below.)

Perhaps transitory interest rate changes naturally produce a negative response – the standard

wisdom? If the equilibrium interest rate follows a transitory path,

it = ρit−1 + εt,

the response of inflation to a time-0 interest rate shock is, from (42),

πt =
σκ

1 + σκ

ρt −
(

1
1+σκ

)t
ρ− 1

1+σκ

i0; t = 1, 2, 3... (45)

It’s always positive, and typically hump-shaped. The corresponding plot basically just pulls

down the right end of Figure 11. Again, this result holds for any φ, and the response is pos-

itive for any ρ > 0. Transitory interest rate movements are not going to give us a temporary

disinflation. We really will have to try to add a downward jump.

3.3.3 Policy disturbances

Perhaps if we specify a policy disturbance sequence rather than an equilibrium interest rate, a

downward jump will seem more plausible?

In the new-Keynesian model (43), φ > 1 induces instability. The coefficient on πt is then
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greater than one. We solve (43) forward to

πt+1 = − σκ

1 + σκ

∞∑
j=0

(
1 + σκ

1 + φσκ

)j+1

Et+1(vit+1+j − vrt+1+j). (46)

This solution describes how we pick the multiple equilibrium δt+1, so it offers hope to pick one of

the downward jumps. I dated the equation at t+ 1 to emphasize this point. (We do not similarly

solve (41) forward for φ < 1 because there is no jump variable, or undetermined expectation.

That response just becomes explosive.)

If the disturbance vit follows an AR(1)

vit = ρvit−1 + εt,

we can solve (46) at time t to give

πt = − σκ

1− ρ+ (φ− ρ)σκ
vit. (47)

From the policy rule (39), the interest rate follows

it =
1− ρ(1 + σκ)

1− ρ+ (φ− ρ)σκ
vit. (48)

Both it and πt follow AR(1) responses. Using (48) to substituting out vit in (48), we can express

the relation between inflation and interest rates as

πt =
σκ

ρ(1 + σκ)− 1
it. (49)

In the case of a permanent change, ρ = 1, these formulas simplify to

πt+1 = − 1

φ− 1
vi; (50)

it = − 1

φ− 1
vi; (51)

πt = it. (52)

The negative sign in (47) and (50) may lead to some optimism: A positive policy disturbance

sends inflation down. But it also sends interest rates down, so the relation between interest rates

and inflation remains positive. Again, don’t confuse the response to a monetary policy shock
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with a response to interest rates.

Thus in this standard φ > 1 solution of the new-Keynesian model a permanent (ρ = 1) mon-

etary policy shock gives rise to a completely Fisherian response. Inflation rises instantly and

follows the interest rate exactly, as shown in the “standard NK” line of Figure 11. It’s even more

Fisherian than the δ = 0 solutions. Despite price stickiness, this instant response is the same as

in the frictionless case of Figure 8.

This solution combines the δ = 0 path illustrated by solid lines in Figure 11 with a unit posi-

tive δ0 unexpected inflation shock at time 0. It’s not a different solution, it’s just one of the mul-

tiple equilibria of that original solution. This unexpected inflation shock, which corresponds

to a loosening of fiscal policy, drives inflation up immediately and fully. It is the wrong sign to

generate our hoped-for disinflation. Standard new-Keynesian models are doubly Fisherian.

Returning to the ρ < 1 case, for sufficiently persistent monetary policy, ρ > 1/(1 + σκ), the

coefficient on the right hand side of (49) remains positive, so higher interest rates correspond

uniformly to higher inflation, just as in the permanent case.

For sufficiently transitory monetary policy, however, ρ < 1/(1 + σκ), (49) shows that a higher

interest rate with an AR(1) decay at rate ρ results in uniformly lower inflation, also following an

AR(1) decay, the long-sought traditional sign. (A reader wishing a graph can look ahead at the

bottom right panel of Figure 15. Though the calculations in that figure use the full standard

model, the results are visually the same as for this simplified model.) Here, also, the monetary

policy disturbance vit acts in the same direction as the interest rate.

This result embodies the conventional wisdom that the new-Keynesian model produces a

negative response for a transitory policy shock. This sign occurs for ρ > 0, unlike the frictionless

case in which ρ < 0 was necessary for a negative response.

This isn’t the answer we’re looking for, strictly speaking. It generates a negative response

to a temporary interest rate rise, but it does not generate a temporary negative response to a

sustained interest rate rise. Still perhaps it is good enough?

At the boundary ρ = 1/(1+σκ), an instructive case reappears – the open-mouth effect. Here,

interest rates it do not move at all. Inflation simply jumps up or down on the Fed’s announce-

ment that a monetary policy shock has occurred. (See the bottom left panel of Figure 15.) With

price stickiness, the inflation jump persists with an AR(1) pattern. This case emphasizes how

much “monetary policy” in the standard new-Keynesian model is about the Fed’s equilibrium-

selection powers, not about interest rate movements.
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However, the appearance of a link between the persistence and sign of monetary policy is

again an artifact of the vit and AR(1) disturbance parameterization. In fact, the Fed can, with a

suitable choice of disturbances, select any unexpected inflation consistent with any persistence

of equilibrium interest rates.

As in the frictionless case, we can see both facts most easily by parameterizing the policy rule

as a time-varying inflation target rather than a vit disturbance,

it = i∗t + φ(πt − π∗t ).

This parameterization cleanly separates interest-rate policy i∗t from equilibrium-selection policy

φ(πt − π∗t ).

While one can calculate responses to arbitrary disturbances {i∗t }, {π∗t }, the equilibrium in-

terest rate may then not come out to it = i∗t and the equilibrium inflation may not come out

to πt = π∗t . If we parameterize the disturbances so that they obey the first order conditions of

the rest of the model, we have that convenient result. Thus, as the policy rule in the frictionless

model satisfied i∗t = r + Etπ
∗
t+1, let the two policy disturbances here satisfy i∗t = rt + Etπ

∗
t+1.

Using (2) and (3) we have

rt =
1

σκ
(Etπt+1 − πt) + vrt ,

so write the policy rule

it =

[
Etπ

∗
t+1 +

1

σκ

(
Etπ

∗
t+1 − π∗t

)
+ vrt

]
+ φ(πt − π∗t ). (53)

Substituting the rule (53) in (42) we obtain, rather than (43),

Et
(
πt+1 − π∗t+1

)
=

1 + σκφ

1 + σκ
(πt − π∗t ). (54)

Thus, the Fed induces explosive dynamics for any πt 6= π∗t , and ruling out such explosions

πt = π∗t

is the unique equilibrium. Despite sticky prices, the Fed can still achieve any path of inflation it

wishes, both expected and unexpected.

Furthermore, the path of unexpected inflation is indepndent from the path of interest rates.

There is no necessary tie between the persistence of interest rates and the sign of the inflation



50 COCHRANE

response. Equilibrium interest rates follow

it = i∗t = Etπ
∗
t+1 +

1

σκ

(
Etπ

∗
t+1 − π∗t

)
+ vrt . (55)

Thus, choosing an interest rate path determines Etπ∗t+1, but the Fed can independently choose

π∗t+1 − Etπ∗t+1 the next period.

For example, to produce a response function in which interest rates follow an AR(1),

it = ρti0; t = 0, 1, 2, ...

The Fed chooses a disturbance {π∗t } that results in this AR(1) for {i∗t } = ρti0. From (55),

E0π
∗
t+1 =

σκ

1 + σκ
ρti0 +

1

1 + σκ
E0π

∗
t . (56)

Iterating forward,

E0π
∗
t =

(
1

1 + σκ

)t
π∗0 +

σκ

1 + σκ


(

1
1+σκ

)t+1
− ρt+1

1
1+σκ − ρ

 i0. (57)

But the choice π∗0 is unconstrained. The Fed can choose whatever instantaneous response of

inflation it wishes, for any value of ρ, and still produce the AR(1) interest rate response. Equation

(57) is no more or less than the full set of solutions indexed by π∗0 , shown by dashed lines for ρ = 1

in Figure 11. We derived the second term directly in (45) as the response to any AR(1) interest

rate path with no unexpected inflation. The first term just adds the results of an unexpected

inflation, (44). Values of π0 < 0 will result in temporary disinflations; values of π0 > 0 will

speed up the Fisherian response. But there is no tie between the persistence of the interest rate

response ρ and the sign of the inflation response.

Clearly the i∗t , π
∗
t rule (53) is just a reparameterization of the vit rule (39). For any {π∗t }we can

construct

vit =
1 + σκ

σκ
Etπ

∗
t+1 +

(
φ− 1

σκ

)
π∗t + vrt

and vice versa. So by choosing a suitable {vit}, the Fed can similarly produce any sign of the

inflation response for any persistence or other property of the interest rate response.

Furthermore, as in the frictionless case, it’s even easier in the π∗t parameterization to con-

struct and interpret an open mouth operation. The Fed simply announces that its new inflation
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target will be

π∗t = π∗0

(
1

1 + σκ

)t
and it happens. From (55), you can verify immediately that the interest rate does not move.

(Campbell and Weber (2016) describe similar open-mouth operations.)

Now, perhaps this is our world. Monetary policy at the zero bound has seemed to evolve

into central banker statements accompanied by no actual changes in interest rates or asset pur-

chases. Central banks have long moved interest rates in fact by simply announcing a change in

rate, with actual open market operations following much later if at all. (For example, see Brash

(2002).) These open mouth operations are doubly removed from action, since the central bank

can apparently move inflation without even moving interest rates.

Perhaps inflation really has little to do with economics; supply and demand, intertempo-

ral substitution, money, and so forth. Perhaps inflation really is predominantly a multiple-

equilibrium question. Perhaps “monetary” policy affects inflation entirely by government offi-

cials making statements, with implicit never-observed off-equilibrium threats, that cause jumps

from one equilibrium to another, validated by passive fiscal policy. Perhaps changes to interest

rates, though economically irrelevant and even counterproductive in the long run, evolved as

some sort of communication and signaling equilibrium to indicate a policy shock.

If so, again, sufficient becomes necessary. The quest of this paper – a simple, transparent,

baseline economic model of the effect of interest rates on inflation – is over, with a negative

result and a disquieting implication for the status of monetary policy in the arsenal of robust

and well-understood phenomena.

In sum, the sticky price model works very much like the frictionless model. The intuition that

with sticky prices, a higher nominal interest rate produces a higher real interest rate, which de-

presses aggregate demand, and via the Phillips curve reduces inflation, simply does not describe

this model.

3.4 Full new-Keynesian model

The claim that the frictionless and simplified models capture the behavior of real new-Keynesian

needs verification. And we need to see how the real model behaves.
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I use the standard optimizing sticky-price model,

xt = Etxt+1 − σ(it − Etπt+1) (58)

πt = βEtπt+1 + κxt (59)

it = φπt + vit (60)

it = i∗t + φ(πt − π∗t ) (61)

where xt denotes the output gap, it is the nominal interest rate, and πt is inflation. The last two

equations give two equivalent parameterizations of an interest rate policy rule.

The solution of this model for a given interest rate path is derived in the Appendix. Inflation

and output are two-sided geometrically-weighted distributed lags of the interest rate path,

πt+1 =
σκ

λ1 − λ2

it +
∞∑
j=1

λ−j1 it−j +
∞∑
j=1

λj2Et+1it+j

+
∞∑
j=0

λ−j1 δt+1−j (62)

κxt+1 =
σκ

λ1 − λ2

(1− βλ−1
1

) ∞∑
j=0

λ−j1 it−j +
(
1− βλ−1

2

) ∞∑
j=1

λj2Et+1it+j


+ (1− βλ−1

1 )
∞∑
j=0

λ−j1 δt+1−j , (63)

where

λ1, 2 =
(1 + β + σκ)±

√
(1 + β + σκ)2 − 4β

2
. (64)

We have λ1 > 1 and λ2 < 1. Here, δt+1, with Etδt+1 = 0, is an expectational shock indexing

multiple equilibria.

Once again, this calculation represents the response of inflation to equilibrium interest rates,

i.e. to any disturbances that produce the given response of equilibrium interest rates, with any

value of φ. I do not assume a time-varying peg φ = 0, nor do I assume active fiscal policy, though

the calculation is also valid in those cases. One can, and I will later, substitute it = φπt + vit to

derive the response to policy shocks, or to find the policy shock sequence consistent with a given

interest rate path.
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3.4.1 Interest rate response

Figure 12 presents the response of inflation and the output gap to a step function rise in the

interest rate, using (62)-(63), and choosing the basic solution δ0 = 0. I use parameters

β = 0.97, κ = 0.2, σ = 1. (65)
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Figure 12: Response of inflation and output to a step function interest rate change in the stan-
dard IS - Phillips curve new-Keynesian model. The solid lines show the response to an expected
change. The dashed lines show the response to an unexpected change. Parameters β = 0.97,
κ = 0.2, σ = 1.

Inflation rises throughout the episode. Mathematically, that rise is a result of a two-sided

moving average with positive weights in (62).

Output declines around the interest rate rise. When the nominal interest rate is higher than

the inflation rate, the real rate is high. Output is low when current and future real interest rates

are high via intertemporal substitution. Equivalently, the forward-looking Phillips curve (59)

says that output is low when inflation is low relative to future inflation, i.e. when inflation is
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rising.

Output eventually rises slightly, as the steady state of the Phillips curve (59) with β < 1 gives a

slight increase in the level of output when inflation increases permanently. Using β = 1, there is

no permanent output effect, and all graphs are otherwise visually indistinguishable. The positive

inflation effect does not require a permanent output effect.

The solid lines of Figure 12 plot the responses to a pre-announced interest rate rise. The

dashed line plots the response to an interest rate rise announced at the same date as the rise,

date zero. Announced and surprise interest rate paths are the same after the announcement

day. The response to an interest rate change announced at any time before zero jumps up to

match the anticipated-policy reaction on the day of announcement. In this way, the solid lines

capture the response for any announcement day.

In this class of models, expected monetary policy matters. Expected and unexpected policy

have identical effects after the announcement date because the interest rate shock it − Et−1it

does not appear as a separate right hand variable in the model’s solutions (62)-(63), as it does in

information-based Phillips curves such as Lucas (1972).

Output and inflation move ahead of the expected interest rate rise. “Forward guidance” mat-

ters, and outcomes are affected by expectations, even when those expectations are not realized.

In sum, price stickiness smooths the Fisherian response of the frictionless model seen in

Figure 8, but does not change its character. One might have hoped that price stickiness would

deliver the traditional view of a temporary decline in inflation. It does not.

The model does, however, generate the output decline that conventional intuition and most

empirical work associates with monetary policy tightening. Raising interest rates to cool off

a booming economy, and lowering interest rates to stimulate a slow economy may still make

sense. Doing so just has a different effect on inflation than we might have thought. However,

this effect depends on the rather contentious forward-looking Philips curve, which gives lower

output when inflation is increasing.

The sign of the response is not affected, and magnitudes not greatly affected, by changes

in the parameters. There isn’t much you can do to an S shape. The parameters κ and σ enter

together in the inflation response. Larger values speed up the dynamics, smoothly approaching

the step function of the frictionless model as their product rises. Larger values of β slightly slow

down the dynamics. Larger σ on its own gives larger output effects with the same pattern.
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3.4.2 Mean-reverting rates

Perhaps transitory interest rate movements produce a negative sign? Figure 13 plots responses

to an AR(1) interest rate shock.
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Figure 13: Response of inflation and output to a mean-reverting interest-rate path. Dashed lines
are the response to an unexpected change. Solid lines are the response to an expected change.

The responses in Figure 13 are similar to those of Figure 12 in the short run, with a long-run

return to zero. The weights in the two-sided moving average (62) are positive, and the same

for any interest rate process. They do not give a negative response for any uniformly positive

interest rate path, no matter its time series properties.

Figure 13 serves as an important reminder however: VARs that estimate transitory interest

rate responses do not give us evidence on the long-run Fisher hypothesis. The long zero bound

tells us something that we could not observe in the transitory interest rate changes typical of the

previous era.
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3.4.3 Multiple equilibria

There are multiple equilibria, indexed by the expectational shock {δt}. As first displayed in Fig-

ure 8, one might recover a short-run negative inflation response by pairing the announcement

of a rate increase with a negative multiple-equilibrium shock δ.

The top panel of Figure 14 plots a range of multiple equilibrium responses to the unantici-

pated step function in interest rates considered in Figure 12. Each equilibrium is generated by a

different choice of the expectational shock δ0 that coincides with the interest rate shock at date

zero. The bottom panel of Figure 14 presents multiple equilibrium responses to an interest rate

rise announced at time t = −3. These responses are chosen to have the same value of inflation

at t = 0 as in the top panel. Letters identify equilibrium choices for discussion.

Equilibrium A has a positive additional inflation shock, δ0 = 1%. Equilibrium B chooses δ0

to produce 1% inflation at time 0, π0 = 1%. Equilibrium C chooses δ0 to have no fiscal con-

sequences, explained below. Between C and D lies the original fundamental equilibrium, with

δ0 = 0, as graphed in Figure 12. Equilibrium D chooses δ0 to produce no inflation at time 0,

π0 = 0. Equilibrium E chooses δ0 = −1%.

The figure shows graphically that the model may have too many equilibria, but all of them

are stable, and all of them are Fisherian in the long run, with inflation converging to the higher

nominal interest rate.

In equilibrium B, inflation jumps instantly to the full increase in nominal interest rates, and

stays there throughout. Output also jumps immediately to the steady-state value. Thus, despite

price stickiness, the model can produce a super-neutral or super-Fisherian response, in which

an interest rate rise instantly implies inflation with no output dynamics.

Equilibrium A shows that even more inflation is possible. With a sufficiently large expec-

tational shock, inflation can actually increase by more than the interest rate change, and then

settle down, and output can increase as well.

Equilibrium D adds a small negative expectational shock δ0, so that the initial inflation re-

sponse is precisely zero. One may be troubled by inflation jumps, since inflation seems to have

inertia in the data. It can be inertial in the model as well. (In continuous time, the no-jump

equilibrium D is the same as the δ = 0 equilibrium.)

Equilibrium E verifies that the model can produce a temporary decline in inflation coinci-

dent with the interest rate rise. Equilibrium E achieves that result by pairing a negative expec-
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tational or sunspot shock with the positive interest rate or expected inflation shock. The output

responses, not shown line up with the inflation responses, and equilibrium E produces a jump

down in output as well, that recovers.

Is there a convincing argument to prefer equilibria such as E, and to view this result as an

embodiment of the conventional belief that raising interest rates temporarily lowers inflation?

The issue is not what shock δt we will see on a particular date. The question is what shock δt

we will expect to see on average, and caused by the Fed’s announcement of an interest rate rise.

For that reason, we do not want to fit the correlation of interest rates and unexpected in-

flation empirically. Our goal is to find economics for an inflation decline, not to fit the most

central prediction of monetary economics through a free parameter, the correlation of expected

and unexpected inflation shocks. As above, if unexpected disinflation comes from fiscal policy

tightening, historically coincident with interest-rate increases, that does not mean that future

monetary policy, not coincident with fiscal policy, will have the same effect.

3.4.4 Fiscal index

Each equilibrium choice has a fiscal policy consequence. For each equilibrium choice, then, I

calculate the percentage amount by which long-run real primary surpluses must rise or fall for

that equilibrium to emerge. Figure 14 presents that number alongside the initial inflation value

of each equilibrium.

Again, making this calculation requires no assumption whether fiscal policy is active or pas-

sive. We can index equilibria by the “passive” fiscal policy it requires even if we do not select

equilibria that way. And, as above, the fiscal expansion or contraction is crucial to producing the

aggregate demand that each inflation jump requires.

To make this calculation, I start with the valuation equation for government debt,

Bt−1

Pt
= Et

 ∞∑
j=0

βj
u′(Ct+j)

u′(Ct)
st+j

 , (66)

where Bt−1 denotes the face value of debt outstanding at the end of period t − 1 and beginning

of period t, Pt is the price level, u′(C) is marginal utility and st is the real net primary surplus.

In this case, consumption, equal to output, varies, and real interest rates vary. Higher real in-

terest rates lower the present value of surpluses even when surpluses themselves do not change.
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Equivalently, higher real interest rates mean higher debt service costs, which if not met by higher

surpluses mean less surplus devoted to repaying debt, and causes inflation. This discount-rate

effect is the major change between this model and the frictionless model’s analysis of the fiscal

consequences of unexpected inflation.

Starting from a steady state with constant surplus s, I calculate the fractional permanent

change in surplus ∆s, i. e. st = S∆s, that is required of the right hand side of expression (66) for

each response function. The calculation is described in the Appendix.

This calculation is simplified in many ways. I specify one-period nominal debt. Here, the

objective is to focus on surpluses corresponding to the jumps in the standard model. I study

long-term debt in the sticky-price model below. Second, in reality output changes affect primary

surpluses, as taxes rise more than spending in booms, and fall more than spending in recessions.

We do not need to assume exogenous or fixed surpluses to make these fiscal calculations, or to

use the fiscal theory. But some of these effects may represent a change in timing of surpluses –

borrowing during recessions that is repaid later during booms – rather than permanent changes

that affect the real value of government debt, so adding them in is subtle. Third, inflation also

raises revenue due to a poorly indexed tax code. Most of all, perhaps, we could almost as plausi-

bly specify that “monetary policy” changes interest rates without changing the present value of

the surplus, rather than specify that it does not change surpluses themselves. Realistic monetary

- fiscal coordination is not a light topic. A serious calculation of the fiscal impacts of monetary

policy requires considerable detail on all these lines. The point here is not quantitative realism,

but to capture some of the important effects and to show how one can use fiscal considerations

to evaluate different equilibrium possibilities.

The super-neutral equilibrium B in which inflation rises instantly by 1%, also marked “∆s =

−1.00” in Figure 14, corresponds to a 1% decline in long-run surpluses. The 1% jump in inflation

devalues outstanding nominal debt by 1%, and since output is constant after the shock there is

no real interest rate change. Equilibrium A, with a larger inflation shock, corresponds to a larger

than 1% decline in long-run surpluses.

Equilibrium D has no change in inflation at time 0, and so there is no devaluation of out-

standing nominal debt. However, the rise in real interest rates means that the government incurs

greater financing costs. These costs require a small permanent rise in surpluses.

In between, at equilibrium C, I find the shock δ0 that requires no change in surpluses at all,

so ∆s = 0 by construction. Here, the devaluation effect of an inflation shock just matches the

higher financing costs imposed by higher real interest rates. The original equilibrium with no



60 COCHRANE

expectational shock, δ0 = 0, implies a small but nonzero change in surpluses, to offset the real

interest rate effect.

In the frictionless model, with a constant interest rate, all three equilibria are the same and

have no inflation shock at time 0. However, at least in this simple calibration, the difference

between unexpected inflation C, D, and ∆ = 0 is not large. Ignoring real interest rate effects, and

discounting surpluses at a constant rate does not make a first-order difference. One does quite

well grafting the simple constant-interest-rate FTPL formulas on to the new-Keynesian model.

The difference between equilibria C, δ = 0, and D also punctures one more hope for a nega-

tive inflation response. Now, by changing real interest rates, monetary policy has a fiscal effect.

Monetary policy changes the present value of surpluses even if it cannot affect surpluses them-

selves. And this effect is an important part of current (2017) policy discussions. If the Fed were

to raise real interest rates 1 %, at 100% debt to GDP ratio, that would raise interest costs and the

deficit by 1% of GDP, or nearly $200 billion dollars. This interest-expense channel is a possible

fiscal-theoretic channel for the impact of monetary policy, stressed most recently by Sims (2016).

Alas, the sign is wrong for our quest. Raising real interest rates lowers the present value of

surpluses, and pushes inflation up. C and δ = 0 have positive, not negative, inflation.

Equilibrium E, in which inflation temporarily declines half a percentage point after the inter-

est rate shock, requires an 1.54% rise in permanent fiscal net-of-interest surpluses. Disinflation

raises the value of nominal debt, which must be paid. To generate a disinflation coincident with

the interest rate rise, we must have a contemporaneous fiscal contraction as well, whether ar-

ranged actively or passively. Sticky prices make the needed fiscal contraction larger, not smaller.

The fiscal contraction required to produce -1% disinflation is now larger than 1%, because it

must overcome the inflationary effect of higher real interest rates.

Though it now produces a prettier, more drawn out response, generating a negative effect

of monetary policy by pairing an interest rate rise with a contemporaneous fiscal contraction to

produce an unexpected disinflation is no more attractive here than in the frictionless case.

Turning to the anticipated shocks in the bottom panel of Figure 14, we see the effects of

multiple equilibria that are stable forward and hence unstable backward. If we want the same

inflation variation on date zero, the multiple equilibria have to jump to much larger values on

earlier dates. The same sized jumps at time t = −3 will imply smaller variation in inflation when

interest rates actually rise at t = 0.

Larger inflation shocks at time t = −3 mean that the fiscal changes required to support most
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of the equilibria increase as we move the announcement back in time. For example, the origi-

nally super-neutral equilibrium which required a 1% decline in surpluses in Figure 14 now re-

quires a 4.11% surplus decline, because of the larger inflation shock. And equilibrium E, selected

to generate a 1% decline in inflation when interest rates rise 1%, now requires a 5.6% permanent

rise in fiscal surpluses rather than 1.54%.

The exceptions to this rule are the original equilibrium choice δ = 0, the equilibrium choice C

or ∆s = 0 with no fiscal impact, and an equilibrium (not shown) that always chooses no inflation

on the announcement date, t-3 in this case. All of these equilibria have smaller fiscal impacts

as interest rates are announced earlier in time, they all converge to the same point, and they are

all stable backward. Cochrane (2016b) argues these feature is useful for equilibrium selection, if

one does not want to take a fiscal theory approach. Here, they all lead to Fisherian responses.

Choosing equilibria with no jump in inflation is also an attractive rule. Equilibrium D in

Figure 14 has this property, and one can construct an equilibrium with no change in inflation

upon announcement for the t = −3 shock of the bottom panel of Figure 14. We do not see

inflation jumps in the data, and new-Keynesian models are often specified so that inflation must

be set one or more periods in advance to reproduce that fact. This choice also is stable, and has

limited fiscal impact, as the announcement horizon moves backward. And it leads always to

positive subsequent inflation.

In sum, the principles of small fiscal requirements, sensible behavior as announcements

come earlier than actual rate changes, or limited jumps in inflation all push one to the view

that equilibria near the original δ = 0 equilibrium are sensible, and the others less so.

3.4.5 Policy rules

Perhaps in this full model, spelling out an underlying policy rule can make a disinflationary equi-

librium like E more attractive. If monetary policy picks unexpected inflation and fiscal policy is

passive, then pairing the announcement of an interest rate rise with a fiscal contraction, as in

equilibrium E, might more sense as a description of monetary policy than does viewing the fis-

cal contraction as a coincidental action by fiscal authorities. More generally, doesn’t the standard

new-Keynesian model produce a negative sign? That nagging doubt needs to be addressed.

Start with the standard three-equation model, with the standard expression of the policy rule,
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(58) (59) and (60), with φ > 1, together with an AR(1) policy disturbance,

vit+1 = ρvit + εit+1

The government debt valuation equation (66) is still part of the model, but determines surpluses

{st} by passive fiscal policy.

Figure 15 plots the response of inflation and interest rates to an unexpected monetary policy

shock vit for this model.
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Figure 15: Response of inflation and interest rates to an AR(1) monetary policy shock vi with
persistence ρ in the standard three-equation new-Keynesian model. β = 0.95, κ = 1/2, σ = 1,
φ = 1.5.

The top left panel plots the response to a permanent shock, ρ = 1. This shock produces

an immediate and permanent rise in the equilibrium interest rate. This is the same response

as equilibrium choice B of Figure 14. The passive fiscal policy produces the needed 1% fiscal

expansion. This standard new-Keynesian exercise produces a super-neutral response, inflation
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rising even faster and sooner than the δ = 0 equilibrium, or the equilibrium C with no fiscal

response. This is the same response as in the frictionless model and the simple model of Figure

12, which alerts you to the fact that pricing frictions are not central to this model’s response.

As in the simpler models, the disturbance vit in this parameterization of the policy rule falls

though equilibrium interest rates i and inflation π rise. The rule it = φπt + vit becomes 2 =

1.5(2) − 1. Inflation has a negative response to the disturbance, though not to actual interest

rates. Confusion between the disturbance, which is not measurable in this model, and the path

of interest rates may be one reason for a false impression that this standard model delivers a

negative sign.

The top right panel of Figure 15 plots the response of inflation to a persistent ρ = 0.9 shock.

Interest rates rise, inflation rises, and one still sees a Fisherian result. The unexpected inflation

shock is still positive, so it is more Fisherian than the response to an AR(1) interest rate rise with

no unexpected inflation, graphed in Figure 13. The policy rule is still hurting, not helping, the

quest for a negative sign.

The bottom right panel shows that for a sufficiently short-lived shock, ρ = 0.3 < 1/λ1, interest

rates and inflation finally go in opposite directions. The disturbance vi exceeds the endogenous

response φπ, so the negative shock produces negative interest rates. This calculation represents

the standard wisdom that a sufficiently temporary shock produces a negative inflation response,

and this (at last) is the standard result to reference that the standard model can produce a nega-

tive response.

This case combines a swiftly mean-reverting process for the interest rate, as graphed in Fig-

ure 13, with a strong contemporaneous fiscal contraction like case E of Figure 14. In (62) if inter-

est rates i mean-revert quickly enough, the central terms will be small. Then, if we add a large

enough δ shock at time zero, we produce a negative inflation response.

As in the simple models, however, the appearance of a link between the persistence of in-

terest rates and the sign of the response is an artifact of the parameterization of the policy rule

and the AR(1) time-series process for its disturbance. The Fed can produce here too any sign

together with any interest rate persistence by a suitable choice of disturbances. Fundamentally

the Fed still has separate and independent interest rate policy and equilibrium-selection policy

tools. The negative sign comes entirely from equilibrium-selection policy. Again, this freedom

denies our goal – there is no logical link at all between a rise in interest rates and an unexpected

disinflation generating a negative sign.
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We get a sense of this result already in the bottom left panel of Figure 15, which plots the

inflation response in the knife-edge case ρ = 1/λ1. In this case, naturally lying between positive

and negative interest rate responses, the monetary policy shock is a pure open-mouth operation.

The endogenous effect φπt just offsets the shock vit so inflation moves with no change at all in

interest rates. The Fed just announces the policy shock, inflation moves, and the Fed doesn’t

actually do anything. This is pure equilibrium-selection.

As in the simple models, these facts are clearer if we parameterize the policy rule by an

interest-rate target and an inflation target, (61) rather than a conventional disturbance (60),

it = i∗t + φ(πt − π∗t ) rather than it = φπt + vit.

Eliminating xt from (58)-(59), we have

σκit = Et [−πt + (1 + β + σκ)πt+1 − βπt+2] . (67)

It is again convenient to restrict the two disturbances to obey the model first order conditions.

Define i∗t by

σκi∗t = Et
[
−π∗t + (1 + β + σκ)π∗t+1 − βπ∗t+2

]
. (68)

Subtract the former from the latter, and use the policy rule it − i∗t = φ(πt − π∗t ),

0 = Et
[
(1 + σκφ)(πt − π∗t )− (1 + β + σκ)(πt+1 − π∗t+1) + β(πt+2 − π∗t+2)

]
. (69)

Factoring the lag polynomial, and we have

0 = Et(1− ν−1
1 L−1)(1− ν−1

2 L−1)(πt − π∗t )

with

ν−1
i =

(1 + β + σκ)±
√

(1 + β + σκ)2 − 4β(1 + σκφ)

2(1 + σκφ)

For φ > 1, we have ‖νi‖ > 1. The only solution is therefore the forward looking one,

πt = π∗t

at every date.

The Fed can, by choice of the monetary policy disturbance, obtain any path of inflation it

wishes. Again, with the two instruments, expected inflation Etπ
∗
t+j and unexpected inflation

π∗t − Et−1π
∗
t , the Fed can independently choose the interest rate path and the unexpected infla-
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tion. There is no link between unexpected inflation and the path of interest rates.

Examples with unexpected disinflation and persistent rates, or unexpected inflation and

transitory rates are as straightforward to calculate here as in the simple model or frictionless

model. And again, one can construct vit = i∗t − φπ∗t shocks to deliver the same results.

An open mouth policy is just as easy. Suppose the Fed, starting at i∗t = 0, π∗t = 0 for t < 0,

shocks monetary policy for t ≥ 0 to

π∗t = δ0λ
−t
1 . (70)

Here, δ0 is a constant indexing how large the monetary policy shock will be. This is a pure, tem-

porary, change in the Fed’s inflation target. Equivalently, suppose the Fed starting at vit = 0 for

t < 0, shocks monetary policy for t ≥ 0 to

vit = −δ0φπλ
−t
1 . (71)

This is a pure, temporary, monetary policy disturbance. From (62) you can see immediately that

this shock produces a jump in inflation, which melts away, and no change in interest rates, as

graphed in the lower left hand panel of Figure 15.

A disinflation produced by an unexpected inflation shock, preceding a period of rising in-

terest rates, would be entirely a choice by the Fed, having nothing to do with the economy’s

response to interest rates.

Again, the heart of the argument is equilibrium selection by making the economy unstable.

If φ < 1, so λ2 < 1, then there is a family of solutions,

Et(πt+τ − π∗t+τ ) = λt2(πt − π∗t )

and any πt − Et−1πt can occur. But if φ > 1 so λ2 > 1, then any deviation of πt − π∗t will explode.

Ruling out explosions, it won’t happen. Many other equilibrium selection schemes achieve the

same purpose, for example see Atkeson, Chari, and Kehoe (2010) and the discussion in the on-

line appendix to Cochrane (2011b).

This construction also verifies that the solution method using equations (62)-(63), solving for

inflation given a path of interest rates, does not assume a peg, φ = 0, or fiscal theory. For any

φ, we can construct an active policy rule, a set of i∗t , π
∗
t or a set of vit that generates any of the

equilibria displayed in Figure 14.

The fact of adding a policy rule, then, doesn’t help us to choose equilibria. It does not link
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unexpected inflation to interest rates and expected inflation in a useful way. It does not justify

the equilibrium with a disinflationary unexpected inflation married to higher interest rates, our

one hope for a negative sign.

3.5 Long term debt and sticky prices

When prices are sticky, nominal interest rate changes imply real interest rate changes, which

affect the present value of surpluses. Allowing real interest rate variation and long-term debt,

the government debt valuation formula becomes

∞∑
j=0

Q
(t+j)
t

B
(t+j)
t−1

Pt
= Et

∞∑
j=0

βj
u′(Ct+j)

u′(Ct)
st+j = Et

∞∑
j=0

(
j−1∏
k=0

1

1 + rt+k

)
st+j . (72)

The first equality is the general formula; the second is an approximation reflecting the linearized

nature of the new-Keynesian model we are working with, in which risk premiums do not vary

over time.

As before, the only effect of active fiscal policy will be to select an equilibrium, i.e. to deter-

mine the value of unexpected inflation. Otherwise, the sticky-price dynamics are unaffected.

To review, in the frictionless model with one-period debt, Q(t)
t = 1 is the only bond price

on the left side of (72), and real interest rates r on the right are constant. Hence, a change in

nominal interest rates with no change in fiscal surpluses leaves (72) unchanged, and there is no

jump in the price Pt when the interest rate change is announced.

To a first, expectations-hypothesis, approximation,

Q
(t+j)
t = Et

j−1∏
k=0

1

1 + it+k

When we add long-term debt in the frictionless model, a rise in expected future nominal rates i

lowers bond prices Q. With nothing else changed in (72), Pt falls.

With one-period debt and sticky prices, now higher nominal interest rates mean higher real

interest rates on the right hand side of (72). Higher real rates lower the present value of surpluses,

which results in a positive shock to the price level Pt, as seen in equilibrium C of Figure 14.

Merging long-term debt and sticky prices adds the last two mechanisms. Higher nominal

rates lower bond prices, which results in a lower Pt. But to the extent that higher nominal rates
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mean higher real rates, the present value of surpluses on the right hand side of (72) is also lower,

which mutes the disinflationary effect. If prices are perfectly sticky, so that real interest rates

equal nominal rates it+k = rt+k, then right and left hand sides of (72) move one for one, and

there is again no effect.

In sum, we expect that sticky prices will mute the disinflationary effect of an interest rate

rise in the presence of long-term bonds. Sticky prices should also provide smoother and more

realistic dynamics.

To calculate the response function merging the standard new-Keynesian sticky price model

with the fiscal theory and long-term debt, I suppose interest rates start at their 2014 values, and

I compute the market value of the debt. I use the 2014 zero-coupon U.S. Treasury debt out-

standing provided by Hall and Sargent (2015) for B(j)
t−1, and the 2014 zero coupon yield curve

{Y (j)} from Gürkaynak, Sack, and Wright (2007) for bond prices Q(j)
t =

(
1/Y

(j)
t

)j
. I calculate

the nominal market value of the debt as
∑∞

j=0Q
(j)
t B

(j)
t−1.

I then suppose forward rates all rise by the interest rate response function, and I calculate

the new nominal market value of the debt. I calculate the present value of an unchanged sur-

plus using the government debt valuation formula (72), and the model implied path of real in-

terest rates. That consideration chooses a single value of unexpected inflation at the time of the

shock, equivalently of the multiple equilibria δt, on the announcement date. Equations are in

the Appendix.

The top left panel of Figure 16 presents the responses of inflation and output to an unex-

pected and permanent interest rate increase. The devaluation of long-term debt now produces

a 1.2% disinflation despite no change in surpluses. Inflation is stable, so eventually rises to meet

the long-term interest rate. However, the muliple periods of negative inflation now mean that

the price level displays a hump-shaped response (not shown). This is the most hopeful graph in

this paper for an economically based model that gives the desired response function for mone-

tary policy changes.

In this model, the output gap is related to expected future inflation. After the unexpected

downward jump at time 0, the larger expected future inflation produces a sharp -4% output

contraction.

Compare to Figure 12, with a +0.4% inflation on the date of inflation rise, and a -1% out-

put gap, or compare to the multiple equilibria in Figure 14. The devaluation effect of long

term bonds is exactly equivalent to a fiscal contraction past equilibrium E of figure 14 – again,
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Figure 16: Response to interest rate rises with long-term debt and sticky prices. I use the 2014
maturity structure of the debt to find the jump in price level that implies no change in primary
surpluses. The line “inflation, no r effect” in the first panel ignores the effect of rising real rates
in devaluing future surpluses. ρ = 0.7.
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dynamics are the same after the initial inflation shock. The longer period of high real inter-

est rates here drives the output gap down to -4% rather than -1%. (From the IS curve (58),

xt = −σEt
∑∞

j=0(it+j − πt+j+1).)

The dashed line marked “inflation, no r effect” ignores the change in real interest rates on the

right hand side of (72), to show the effect of sticky prices in moderating the long-term-debt disin-

flationary mechanism. Here, I ignore the effect of rising interest rates in calculating the present

value of the surplus, but otherwise leave model dynamics the same. We see that in the original

calculation, higher real rates substantially lower the present value of surpluses, and make a big

moderating difference to the initial disinflation. Models with this mechanism thus produce less

disinflation from nominal interest rate rises when they have more sticky prices. However, this

calculation also emphasizes the delicacy of fiscal assumptions. One can read it also as saying

that the fiscal authority is partly passive, agreeing to raise surpluses to pay off higher real interest

rates on the debt, though not agreeing to raise surpluses to pay off the real consequences of price

level jumps. Such behavior would induce the larger disinflation.

The top right panel of Figure 16 shows the response when the interest rise is announced three

years in advance. Higher interest rates now only affect bonds with three year or higher maturity.

Thus, the downward inflation rate jump is smaller, only 1%. However, there is still a substantial

period of negative inflation, so the price level response (not shown) continues downward from

period -3 to 0, only then starting to rise. Output suffers a less severe contraction, bottoming out

at 2% not 4%.

As in the frictionless model, fiscal effects happen only on the day of announcement. This is

an important consideration in evaluating this channel. It will not rescue the old-Keynesian view

that the interest rate rise itself sets off the disinflation.

The effects get uniformly smaller as the interest rate rise is expected further and further in

the future. When the interest rate rise is expected after the maturity of the longest bond, the

disinflationary effect vanishes entirely. Thus, this fiscal channel sensibly predicts smaller effects

of expectations further in the future, and does not suffer from the forward-guidance puzzle.

The bottom panels of Figure 16 presents the response to an unexpected (left) and expected

(bottom) AR(1) rate rise, more typical of actual policy movements. The unexpected transitory

rate rise on the left, is the (small) slice of variation that is potentially recovered by VARs. (Though

VARs don’t attempt to orthogonalize monetary and fiscal policy shocks, ∆s = 0 as I do here.) The

disinflation effect is now smaller still, less than 0.5% in both cases. The AR(1) interest rate rise

has less effect on longer term bonds than a permanent rate rise.
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In sum, long-lived interest rate rises can produce disinflations on the same order of mag-

nitude as the interest rate rises, and thus has the potential to explain the perceived effects of

monetary policy.

3.6 Money

Perhaps monetary distortions, in addition to pricing distortions, will give us the traditional re-

sult. Perhaps when interest rate increases were accomplished by reducing the supply of non-

interest-bearing reserves, that reduction in money and liquidity services produced a temporary

decline in inflation. Such a finding would explain traditional beliefs, but it would warn us that

raising interest rates by raising the rate paid on abundant excess reserves will not have the same

temporary disinflationary effect as history suggests.

I introduce money in the utility function, nonseparable from consumption, so that changes

in money, induced by interest rate changes, affect the marginal utility of consumption, and thus

the intertemporal-substitution equation.

Woodford (2003) (p. 111) begins an analysis of this specification. But Woodford quickly aban-

dons money to produce a theory that is independent of monetary frictions, and does not work

out the effects of monetary policy with money. If theory following that choice now does not

produce the desired outcome, perhaps we should revisit the decision to drop money from the

analysis.

The detailed presentation is in the Appendix. The bottom line is a generalization of the

intertemporal-substitution condition (58), to:

xt = Etxt+1 + (σ − ξ)
(m
c

)
Et
[(
it+1 − imt+1

)
− (it − imt )

]
− σ (it − Etπt+1) . (73)

The presence of money in the utility function has no effect on firm pricing decisions and hence

on the Phillips curve (59).

Here,−ξ is the interest-elasticity of money demand. A typical number for the semi-elasticity

of money demand d log(m)/di, with i in percent, is -0.05 to -0.1 (see Lucas (1988), especially

Figure 4, and the last paragraph, and Figure 6 here.) This number suggests values no more than

two to four times greater at current interest rates. Since higher elasticity ξ reduces the size of the

effects, I use a deliberately low value ξ = 0.1. The valuem/c is the steady state ratio of real money

holdings to consumption. The larger this value, the more important monetary distortions. The
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quantity imt is the interest rate paid on money.

Equation (73) differs from its standard counterpart (58) by the middle, change-in-interest

rate term. Equation (73) reverts to (58) if utility is separable between money and consumption

(σ − ξ) = 0, if m/c goes to zero, or if money pays the same interest rate as bonds i = im.

The expressionm/c (it−imt ) represents the proportional interest costs of holding money. The

middle term following (σ − ξ) represents the expected increase or decrease in those costs. An

expected increase in interest costs of holding money induces the consumer to shift consump-

tion from the future, when holding the money needed to purchase consumption goods will be

relatively expensive, towards the present. It acts just like a lower real interest rate to induce an

intertemporal reallocation of consumption.

The presence of expected changes in interest rates brings to the model a mechanism that one

can detect in verbal commentary: the sense that changes in interest rates affect the economy as

well as the level of interest rates.

However, monetary distortions only matter in this model if there is an expected change in

future interest rate differentials. Expected, change, and future are all crucial modifiers. A higher

or lower steady state level of the interest cost of holding money does not raise or depress today’s

consumption relative to future consumption. An unexpected change in interest costs has no

monetary effect at all, since Et (it+1 − it) = 0 throughout.

The model solution is essentially unchanged. The extra term in the intertemporal substi-

tution equation (73) amounts to a slightly more complex forcing process involving expected

changes in interest rates as well as the level of interest rates. One simply replaces it in (62)-(63)

with zt defined by

zt ≡ it −
(
σ − ξ
σ

)(m
c

)
Et
[(
it+1 − imt+1

)
− (it − imt )

]
.

The slight subtlety is that this forcing process is the change in expected interest differentials. Lag

operators must apply to the Et as well as what’s inside. Inflation depends on past expectations

of interest rate changes, not to past interest rate changes themselves.

I present results for the traditional specification that the interest on money imt = 0, so that

increases in the nominal interest rate are synonymous with monetary distortions. This case

also generates the largest effects. The top panels of Figure 17 plot the response functions to our

expected and unexpected interest rate step with money distortions m/c = 0, 2, 4.
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Figure 17: Responses of inflation and output to an interest rate rise; model with money. The
three cases are m/c = 0, 2, 4. Solid lines are an expected interest rate rise, dashed lines are an
unexpected rise.
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For the unexpected interest rate rise, shown in dashed lines, the presence of money makes

no difference at all. The dashed lines are the same for all values of m/c, and all the same as

previously, and the model remains stubbornly Fisherian. This is an important negative result. In

this model based on forward looking behavior and thus intertemporal substitution, money can

only affect the response to expected future nominal interest rate changes.

The response to an expected interest rate rise, shown in solid lines, is affected by the mon-

etary distortion. As we increase the size of the monetary distortion m/c, inflation is lower in

the short run. For m/c = 4, we get the desired shape of the impulse response function. The

announced interest rate rise produces a temporary decline in inflation, and then eventually the

Fisher effect takes over and inflation increases.

Since interest rates are higher after time 0, the consumer has an incentive to shift consump-

tion to times before 0, i.e. to consume when the interest costs of holding the necessary money

are lower. Higher output corresponds to decreasing inflation, and vice versa, so this pattern of

output corresponds to lower inflation before time 0 and higher inflation afterward.

Them/c = 4 curve seems like a success, until one ponders the size of the monetary distortion

– non-interest bearing money holdings equal, on average, to four years of output. This model is

not carefully calibrated, but m/c = 4 is still an order of magnitude or more too large. One may

be tempted to look at larger and larger monetary aggregates, but those all pay interest. Interest

spreads enter together withm/c in (73), so trading largerm/c for a lower interest spread does not

help.

Raising σ, which multiplies m/c in (73), can substitute for a large m/c, though σ also magni-

fies the last term, which induces Fisherian dynamics. σ = 4, m/c = 2 produces about the same

inflation decline as σ = 1,m/c = 4 produced in Figure 17, though it speeds up dynamics as well.

Alas, σ = 1 was already above most estimates and calibrations. A coefficient σ = 4 implies that a

one percentage point increase in the real interest rate induces a four percentage point increase

in consumption growth, which is well beyond most estimates. And m/c = 1 is already at least

twice as big as one can reasonably defend.

Since expected changes in interest rates are the crucial mechanism in this model, perhaps

putting in more reasonable interest rate dynamics can revive the desired inflation dynamics?

The bottom panels of Figure 17 shows the response function to an AR(1) interest rate path. In

response to an unexpected shock, shown in dashed lines, the presence of money uniformly raises

inflation. The expected decline in interest costs posed by the AR(1) reversion after the shock

shifts consumption from the present to the future. Low output corresponds to an expected rise
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in inflation. Since the rise in interest rates was unexpected, it has no effect on inflation or output.

The response to an expected interest rate increase now has the same pattern, but less disin-

flation – the m/c = 4 case bottoms out at a bit less than -0.2% in the bottom panel of Figure 17

rather than -0.4% in the top panel.

In sum, these calculations show what it takes to produce the standard view: For an antici-

pated interest rate rise only, money in the model can induce lower inflation than a model with-

out monetary frictions produces. If we either have very large money holdings subject to the

distortion, or a very large intertemporal substitution elasticity, the effect can be large enough to

produce a short-run decline in inflation. Adding money to the model in this way has no effect

on responses to an unexpected permanent interest rate rise, and thus does nothing to address

typical VAR evidence or the widespread view that unexpected interest rate changes have disin-

flationary effects.

The mechanism is quantitatively small. Relative to the effects of actual changes in real in-

terest rates, the distortions to intertemporal incentives from greater or lesser costs of holding

money are second-order.

Also, this mechanism does not give rise to classic intuition. Interest costs of money hold-

ings only affect “demand” if people expect higher or lower interest costs in the future than they

experience today. The level of interest costs has no effect.

3.7 A backward-looking Phillips curve

Empirically, lags seem important in Phillips curves. The forward-looking Phillips curve (59)

specifies that output is higher when inflation is high relative to future inflation, i.e. when in-

flation is declining. Though all Phillips curves fit the data poorly, especially recently, output is

better related to high inflation relative to past inflation, i.e. when inflation is rising (Mankiw and

Reis (2002)).

Theoretically, the pure forward-looking Phillips curve is not central. Though it does some

violence to the “economic” criterion for the simple baseline theory that we are searching for,

we should check if the short or long-run neo-Fisherian conclusions can be escaped by adding

past inflation to the Phillips curve. More deeply, one should expect that the sign and stability

properties that are central to the argument here are robust to perturbations of the model. And

they are.

The simplest approach is to consider a static Phillips curve. This specification is the β →
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0 limit of the three equation model (58)-(59). Kocherlakota (2016) provides detailed micro-

foundations for a static Phillips curve.

So consider

xt = Etxt+1 − σ(it − Etπt+1) (74)

πt = κxt. (75)

The equilibrium is simply

Etπt+1 =
1

1 + σκ
πt +

σκ

1 + σκ
it (76)

and hence

πt = σκ
∞∑
j=1

1

(1 + σκ)j
it−j +

∞∑
j=0

1

(1 + σκ)j
δt−j . (77)

This is exactly the same as the dynamics we found for a static IS curve and fully forward-

looking Phillips curve, xt = −σ(it − Etπt+1); πt = Etπt+1 + κxt in equation (42). The dynamics

are stable, and inflation responds positively to interest rates throughout. Figure 11 already plots

the response function for the static Phillips curve case (74)-(75) - and inflation rises smoothly

throughout.

We can even include a backwards-looking accelerationist Phillips curve, which one may feel

more realistic, throwing out forward-looking price setting. Consider a Phillips curve based on

firm expectations πet ,

πt = πet−1 + κxt

and were expectations evolve adaptively as

πet = (1− λ)
∞∑
j=0

λjπt−j .

Substituting the output gap from the usual intertemporal IS curve (74) ,

(πt − πet−1) = (Etπt+1 − πet )− σκ(it − Etπt+1)

(1 + σκ)Etπt+1 = πt + πet − πet−1 + σκit

(1 + σκ)Etπt+1 = πt + (1− λ)

 ∞∑
j=0

λj∆πt−j

+ σκit
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Figure 18: Impluse-response with backward-looking Phillips curve. Model xt = Etxt+1 − σ(it −
Etπt+1), πt = (1− λ)

∑∞
j=0 λ

jπt−j + κxt. σ = κ = 1, λ = 0.9.

Figure 18 plots the impulse-response function for this model. It is Fisherian throughout.

Unlike the standard model with forward-looking Phillips curve in Figure 12, the interest rate rise

increases output as well. By giving the “right” positive (old-Keynesian) sign of the relationship

between output and inflation, it also gives the “wrong” positive sign of the relationship between

interest rates on output, as well as on inflation.

In sum, neither forward-looking IS curve nor forward-looking Phillips curves are essential to

producing a short and long run Fisherian response.

4 Policy

To summarize for the purposes of policy implications, the evidence suggests that the zero bound

is stable and quiet. There is no deflation spiral and no sunspot volatility. Large interest-paying

reserves do not cause inflation. There is a simple economic model, the new-Keynesian model
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with fiscal theory, that is consistent with this interpretation. In that theory an interest rate peg

or passive φ < 1 policy would also be stable and quiet, as long as fiscal policy retains people’s

confidence. The evidence suggests that contrary classic doctrines were wrong.

The implication of this fact is that persistently higher interest rates will lead to higher infla-

tion in the long run, a form of long-run neutrality. Is there a negative short run effect? There is as

yet no simple economic model for standard beliefs regarding such an effect. There is as yet only

the fiscal theory / long-term debt channel, which is far from the views underlying standard pol-

icy beliefs. This excursion should at least reduce one’s confidence in a simple view that higher

interest rates, when they occur, will lower inflation.

If this is right, what are the consequences for policy going forward?

First, we should not unduly fear the zero bound! Much current policy discussion regards the

past zero bound as a narrow scrape with the deflation spiral, and argues for a higher inflation

target, or dry powder in the arsenal of unconventional monetary policy and large fiscal stimulus

to prevent the spiral from breaking out should we return to the zero bound in the next recession

or crisis.

Second, we should not unduly fear the large balance sheet, or at least the large interest-

paying reserves that a large balance sheet gives rise to. They do not cause inflation. They also

have important financial stability benefits. Deposits backed by reserves are less prone to run.

We have discovered that abundant, safe, government-provided, interest-paying electronic

money will not cause inflation. The Treasury could equally well provide “reserves” in the form of

abundant fixed-value floating-rate highly liquid debt (see Cochrane (2015), Cochrane (2014d)).

The Fed does not need to act as the worlds’ largest money market fund, transforming longer-

term government debt into floating-rate government debt. There is no need to keep Treasury

debt artificially illiquid for price-level control. Much current policy discussion by contrast sees

large reserves as permanently stimulative, in urgent need of reduction, and many commentators

wish for a return to a small amount of non-interest-bearing reserves, in order to ensure control

of inflation.

Third, we can live the Friedman (1969) rule and enjoy the Friedman-optimal quantity of mo-

neny. Not only can we have Friedman-optimal interest-bearing reserves, we can have a per-

manently zero, or very low interest rate, if we wish. Such a rate would not only reduce socially

wasteful shoe-leather costs, as Friedman envisaged, it would remove a lot of needless cash man-

agement, bill paying and collection hurry, inflation-induced capital income taxation, distortions
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due to sticky prices under nonzero inflation, and other distortions.

Policy can keep a low rate, insensitive to economic conditions and to inflation. When the real

rate rises, inflation will eventually decline to accommodate the real rate, all on its own, and vice

versa.

But the policy implications are not so dramatic.

Though the Fed can keep a low peg (so long as fiscal policy cooperates), that does not mean

that the Fed should keep a low peg. In the presence of price stickiness, inflation may take a long

time to adjust to the real rate, and output would be affected in the meantime.

The Fed can instead vary the nominal interest rate, raising the nominal rate in good eco-

nomic times when it thinks the natural rate is higher, and vice versa. Such a policy would result

in less inflation variation, and under sticky prices, it would plausibly result in less volatile output

as well.

One may distrust the Fed’s ability to divine changes in the “natural” rate. Stability opens up

an exciting and novel alternative possibility. The Fed could target the spread between indexed

and non-indexed debt. It could, for example, decree that one-year Treasury inflation protected

securities shall trade at one percentage point lower yield than one-year Treasury bills, and offer

to buy and sell at that price differential, ignoring the overall level of interest rates. This strategy

would nail down expected inflation but allow the level of the real interest rate to adjust automat-

ically to market forces. It operates much like an expected CPI standard, with CPI futures taking

the place of gold to define the value of the currency. If an interest peg is unstable such a stan-

dard would not work – the Fisherian steady state would be unstable, and interest and inflation

rates would spiral away. But stability implies that expected inflation would have to adjust to the

interest-spread target – as always with the fiscal footnote that the Treasury must back the fiscal

consequences of large rearrangements of indexed vs. nonindexed debt. it = rt + Etπt+1 implies

Etπt+1 = it − rt.

In the other direction, nothing in this analysis denies that the Fed can try to diagnose and

offset shocks all over the economy, varying nominal interest rates accordingly, as well as with

forward guidance and quantitative easing as analyzed above. It can try to fine-tune the inflation

and output path using complex DSGE models, exploiting all the frictions, dynamics, and irra-

tionalities it feels it understands, along with the fiscal/long term debt channel described above.

The rules vs. discretion, fine-tune vs. leave the hot/cold water shower handles alone debate can

continue undeterred.
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Thus, observed policy need not change much. We may continue to see Taylorish responses

to output and inflation, plus deviations to respond to other concerns such as exchange rates,

financial stability, and so forth.

There are some lessons. Most of all, “active” policy rules are not necessary for inflation sta-

bility or determinacy. But the latter were questionable anyway, and unobserved in equilibrium.

Writing the rule in the form it = i∗t +φπ(πt−π∗t )+φx(xt−x∗t ), where i∗t , π∗t and x∗t represent equi-

librium values, the active policy represents only conjectural deviations from equilibrium never

seen in equilibrium. Observed policy consists of the correlations between i∗t , π∗t and x∗t . Thus,

this lesson is important for academic papers and deep foundations, but has little impact on ac-

tual policy making and interest rates. Fed officials think in terms of actual interest rates and not

active deviations from equilibrium. (see the quote below from Fed Chair Janet Yellen).

More directly relevant to policy, my long and negative search for a simple economic model

that delivers one implies that one’s faith in the exploitable negative sign of interest rates on in-

flation should be at least subdued.

We should pay more attention to the fiscal foundations of price stability, but that isn’t re-

ally the Fed’s job. If the time comes for a major disinflation, it will have to come from a joint

monetary-fiscal stabilization as before. That could look like the 1980s, inaugurated by high in-

terest rates, or it could look like Sargent’s ends of inflations, in which fiscal reform ends inflation

and high rates together.

Again affecting economics more than policy, the new-Keynesian plus fiscal theory framework

means that monetary economics is now like regular economics. We can start with a simply sup-

ply and demand frictionless benchmark, in which the price level is determinate, and there is a

role for interest rate policy, forward guidance and quantitative easing. Then we can add frictions

to taste, to match dynamics. So far, interest rate based monetary economics could not be built

on a frictionless foundation, and even MV=PY relied on a swiftly-vanishing monetary friction.

However, there are some important limits to this analysis and important warnings that must

be sounded. It would be simple to interpret these results to say that all a country needs to do to

raise inflation is to raise its interest rate, and therefore all a country like Brazil or Turkey needs to

do that wishes to lower its inflation rate is to lower its interest rate. That is a dangerous conclu-

sion.

First, such an interest rate move must be persistent and credible. You can’t just try the waters.

Second, it must wait out a potential move in the other direction, via the long-term debt effect, or
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if the many complications discussed below can generate one, via other effects. We have analyzed

the simple underlying economic model, but real-world dynamics demand real-world frictions.

Third and most importantly the fiscal backing and fiscal coordination must be there especially

for disinflation. Lowering nominal rates cannot cure a fundamentally fiscal inflation.

In 2008 the US and Europe did lower interest rates, and lower inflation followed albeit slowly.

But the flight to quality of US and European government debt came first. Just why is a topic

for later – lower discount rates rather than high expected surpluses are a likely culprit – but it is

undeniable that there was a huge shift in demand towards government debt, and interest rates

went down on their own. Likewise, many countries have seen monetary stabilization plans of all

sorts fall apart when the fiscal cooperation was lacking. The government debt valuation formula

is an integral part of the model, and just lowering interest rates will not work with fiscal trouble

brewing.

Likewise, it does not follow from the analysis here that the US, Europe and Japan can just

peg low interest rates and sleep soundly. The government debt valuation equation holds, in all

models. The question is how it holds, and how long it will continue to hold, without requiring

a burst of inflation or deflation. A high value of government debt corresponds to high expected

surpluses or low discount rates – investors willing to hold government debt despite very poor

prospective real returns. At the current moment, low discount rates, revealed in part by low

real interest rates – seem like a much more likely source of high values. But low discount rates

can evaporate quickly, especially when debt is largely short term and frequently rolled over. A

change in discount rate provokes exactly the same sort of unexpected inflation that a change in

fiscal surpluses provokes. And like such a change, there is nothing a central bank can do about

it.

Some historic interest rate pegs, like exchange rate pegs and the gold standard, lasted a sur-

prisingly long time. Many interest rate pegs fell apart when their fiscal foundations fell apart.

With short term debt, that can happen in what feels like “speculative attack” “bubble” or “run”

to central bankers. Inflation’s resurgence can happen without Phillips curve tightness, and can

surprise central bankers of the 2020s just as it did in the 1970s, just as inflation’s decline surprised

them in the 1980s, and just as its stability surprised them in the 2010s.



INFLATION AND INTEREST RATES 81

5 Occam

There are many ways one could try to save traditional theories in face of the long quiet zero

bound. There are many additional ingredients one could add to try to produce a temporary

negative inflation response to interest rates, in a model that is consistent with the long quiet

zero bound.

In this section, I take up a number of these possibilities. I argue that some popular ones are

implausible. But they are mostly logical possibilities, that we cannot disprove with the evidence

before us. Most are complex, ex-post patches. Sometimes patches turn out to be correct, as did

foreshortening of fast-moving objects, and elliptical planetary orbits. Occam’s razor reminds us,

however, that more often complex patches fail when there is a clear simple alternative, as did

epicycles and ether drift.

5.1 Offsetting instabilities?

Perhaps the economy really is unstable as in old-Keynesian/monetarist models, but fiscal stimu-

lus, inflationary quantitative easing, and deftly-timed forward guidance just offset a deflationary

spiral, in Europe and Japan as well as the US. If skillfully walked, the tightrope between abysses

looks quiet.

Perhaps. Or perhaps stability and quiet are just what they seem to be.

5.2 Really slow unstable dynamics?

Perhaps the economy really is unstable as in old-Keynesian/monetarist models, but the dynam-

ics are much slower than we previously thought. If so, the deflation spiral is still waiting to break

out any day, even in Japan. Likewise, perhaps the “long-run stability” of velocity, even at low

interest differentials, is much longer-run than previously thought. If so, velocity will recover and

inflation will finally break out.

Perhaps. But perhaps not. First, this speculation is ex-post rationalization. The broad con-

sensus of people using old-Keynesian policy models was and remained throughout that a de-

flation spiral was a danger. Many monetarists did clearly expect quantitative easing to lead to

inflation.

This observation is praise, not criticism. The models clearly made those predictions. People
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should commended for offering the advice that their models present. The models were also

broadly consistent with prior data. But now the telling experiment has been run, and the models

failed. We all understand the dangers of patching a model every time it fails.

Second, patches such as very “sticky” wages are not yet fully worked out, and compared more

broadly with macroeconomic or microeconomic data. Job churn is a problem for decade-long

stickiness. That is especially so for old-Keynesian models that dominate policy thinking but have

vanished from academic journals.

Occam suggests, perhaps not: perhaps the economy is stable at an interest rate peg.

5.3 Sunspot volatility?

Perhaps the new-Keynesian prediction of higher inflation volatility under passive policy can be

patched. The next few subsections take up this issue.

Sunspots being ephemeral, “there weren’t any sunspot shocks” is an irrefutable ex-post ex-

planation of quiet. And the solution with φ < 1 is not the same as the solution with φ > 1 and

added δt sunspots, so “sunspots were small” could work as well.

However, this approach involves a bonfire of previous writing. The new-Keynesian literature

clearly warns that passive φ < 1 monetary policy causes inflation volatility. That proposition is

one of the model’s central empirical successes, explaining the greater volatility of the 1970s vs.

the 1980s. If we throw out the prediction of higher volatility under passive policy in the 2010s,

we are hard pressed not also to throw out that central success.

For example, Clarida, Gaĺı, and Gertler (2000), who found φ < 1 in the 1970s, φ > 1 in the

1980s, attribute the reduction of inflation volatility to that fact, writing (p. 149)

...the pre-Volcker [φ < 1] rule leaves open the possibility of bursts of inflation and

output that result from self-fulfilling changes in expectations. ... On the other hand,

self-fulfilling fluctuations cannot occur under the estimated rule for the Volcker-Greenspan

[φ > 1] era since, within this regime, the Federal Reserve adjusts interest rates suffi-

ciently to stabilize any changes in expected inflation.

Again on p. 177, they write

... the pre-Volcker rule may have contained the seeds of macroeconomic insta-

bility that seemed to characterize the late sixties and seventies. In particular, in the
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context of a calibrated sticky price model, the pre-Volcker rule leaves open the pos-

sibility of bursts of inflation and output that result from self-fulfilling changes in ex-

pectations.

Benhabib, Schmitt-Grohé, and Uribe (2001) likewise write (p. 167)

Perhaps the best-known result in this literature is that if fiscal solvency is pre-

served under all circumstances,[ i.e. passive fiscal policy] ... a passive monetary pol-

icy, that is, a policy that underreacts to inflation by raising the nominal interest rate

by less than the observed increase in inflation, destabilizes the economy by giving

rise to expectations-driven fluctuations.

They write again in Benhabib, Schmitt-Grohé, and Uribe (2002), summarizing a “growing body

of theoretical work,”

Taylor rules contribute to aggregate stability because they guarantee the unique-

ness of the rational expectations equilibrium, whereas interest rate feedback rules

with an inflation coefficient of less than unity, also referred to as passive rules, are

destabilizing because they render the equilibrium indeterminate, thus allowing for

expectations-driven fluctuations.

(Both sets of authors use “stability” to mean “quiet,” i.e. “low volatility,” not as I have used the

term.)

Benhabib, Schmitt-Grohé, and Uribe (2002) survey many other similar opinions, along with

policy prescriptions to avoid the zero inflation state, all motivated by the prediction of extra

volatility at that state. Indeed, without extra sunspot volatility, low inflation is welfare-improving

in this model. It is both Friedman-optimal, and reduces pricing distortions. The fear of sunspot

volatility is the main reason these and other authors have for the effort to find policies that avoid

the zero bound and return us to permanently higher inflation.

Is there some feature of policy at the long quiet zero bound that eliminated sunspot shocks,

but did not eliminate those shocks in the 1970s? There is much opinion that expectations are

“anchored.” But anchored by what? And why was that force absent in the 1970s? The 1970s did

not lack from promises by Federal Reserve and other government officials. We even had those

cute little WIN (whip inflation now) buttons. If anchoring was going to work this time, why did

economic researchers not know that fact, and opine not to worry about the zero bound?
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5.4 Selection from future actions

In much new-Keynesian zero-bound literature such as Werning (2012) or Eggertsson and Mehro-

tra (2014), expectations of future active, destabilizing, policy rules take the place of responses to

current inflation to select equilibria while interest rates are stuck at zero. In these models, even-

tually, either deterministically or stochastically, the economy leaves the zero bound. A desta-

bilizing policy rule selects a unique locally-bounded equilibrium in that future state. Modelers

then tie equilibria during the zero-rate period to the following equilibria, and thereby eliminate

indeterminacies during the zero bound.

One could use this kind of selection scheme to argue that the new-Keynesian model does not,

after all, predict sunspot volatility at the zero bound. The point of the literature is different, to

match data, or to study policies such as forward guidance and fiscal stimulus at the zero bound,

and selection by future active policies just helps authors not to bother with multiple equilibria.

But it is a possibility.

Here is a concrete example, using the simple model (1)-(4) with r∗ = 0. From time t = 0 to

t = T , there is a negative natural rate shock, vrt = −2%. At time t = T the natural rate shock

passes so vrt = 0, t > T , provoking a zero-bound exit. The Fed follows a constrained active Taylor

rule (4), so interest rates and inflation follow

it = max [π∗ + φπ(πt − π∗), 0] (78)

πt = (1 + σκ)Etπt+1 − σκ(it − vrt ). (79)

Fiscal policy is passive.

Figure 19 shows possible paths of inflation and interest rate in this model. The thick line in

the middle is the selected equilibrium. It fairs in to the inflation target π∗ = 2% at t = T . The

alternative equilibria are de-selected even in the stable region, when it = 0 for t < T , by the fact

that they diverge from the inflation target π∗ for t > T .

This equilibrium-selection scheme has many troubles. As in all active monetary policy rules,

“anchoring” of inflation expectations does not occur because the Fed is expected to stabilize in-

flation around the inflation target, but because the Fed is expected to destabilize inflation should

it diverge from the target. Now this threat is removed from current events to the far future – not

“eat your spinach or there won’t be dessert,” but “eat your spinach or there won’t be dessert next

year.”
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Figure 19: Selection by future and contingent policy rules. Top: Inflation. Bottom: Interest
rates. The solid line is the selected equilibrium. The dashed lines are alternative equilibria.
There is a natural rate shock vr = −2% from time t = 0 to t = T = 10. The Fed follows a rule
it = max [π∗ + φπ(πt − π∗), 0]. The simple new-Keynesian model reduces to πt = (1+σκ)Etπt+1−
σκ(it − vrt ). σ = 1, κ = 1/2, φ = 2, π∗ = 2%.
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Furthermore, equilibria in which inflation undershoots the time - T target π∗ return back to

zero inflation and zero interest rates. They are locally unstable around the target π∗ and thus

πt = π∗ is the only locally bounded equilibrium, but they are not globally unstable, so πt = π∗ is

not the only globally bounded equilibrium. The rationale for ruling them out is tenuous.

Figure 19 also illustrates a predictive failure of this model, highlighted by Werning (2012) and

Cochrane (2016b). It predicts a jump to deflation at t = 0 when the shock hits, which then rapidly

improves. This did not happen.

Figure 19 likewise illustrates some of the policy paradoxes of this model, highlighted by Wern-

ing (2012), Wieland (2015), and Cochrane (2016b). Small changes in expectations of future infla-

tion at time T on the right move initial time 0 inflation around a lot. The further in the future T

is, the larger the effect at time 0. And as price stickiness is reduced, the dynamics happen faster,

implying larger deflation and greater effect of such promises.

In a stochastic setting, the sensitivity of inflation at time 0 to small changes in expectations at

time T might easily produce greater inflation volatility at the zero bound in this model, relative to

normal times that active policy picks equilibria immediately. It’s not obvious that, were someone

to use this argument to quiet inflation at the zero bound relative to it = φπt policy, that it would

work.

Does all concrete action of monetary policy really vanish, leaving only expectations of far-

future off-equilibrium threats behind? Did Japan really avoid deflation in 2001 because people

expected some sort of explosive promises around a 2% inflation target to emerge and select

equilibria, maybe sometime in 2025 when Japan finally exits zero rates?

Even Fed Chair Janet Yellen Yellen (2016) is unsure that promises of future Taylor rules anchor

inflation today:

...[H]ow does this anchoring process occur? Does a central bank have to keep ac-

tual inflation near the target rate for many years before inflation expectations com-

pletely conform? ...Or does ...a change in expectations requir[e] some combination of

clear communications about policymakers’ inflation goal, concrete policy actions,...,

and at least some success in moving actual inflation toward its desired level ...?

Moreover, she clearly states here that anchoring results because a Taylor rule will, in the future,

stabilize inflation around the target, in the old-Keynesian tradition, not destabilize inflation to

produce determinacy as shown in Figure 19. If she doesn’t believe the dynamics of Figure 19,

why should people in the economy expect such a thing?
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Finally, if now, why not in the 1970s? If inflation is quiet now because people know that after

we exit the bound, active policy will return to select equilibria, why did people in the 1970s not

know that sooner or later an era of active policy would return, as, the story goes, it did? Working

backwards, that expectation should have removed self-confirming fluctuations in the 1970s, and

Clarida, Gaĺı, and Gertler (2000) should have found nothing.

This search for equilibrium selection might be more attractive if a simpler solution were not

at hand. The fiscal theory picks one equilibrium of the zero-bound new-Keynesian model di-

rectly. Expectations are anchored by the present value of future surpluses, not by what people

believe the Fed might do to select equilibria after a jump to a higher-interest rate regime. The

fiscal theory plus new-Keynesian model does not display policy paradoxes. Each equilibrium

corresponds to an innovation in the present value of surpluses, and moving to a larger inflation

at time t requires a larger change in the present value of surpluses at time t. The model also has

a smooth frictionless limit.

5.5 Seven years of bad luck

Perhaps we weren’t really at the zero bound. Perhaps people expected interest rates to recover in

the very near future. Perhaps time T in the previous graph was always a year or less, addressing

the concerns of the last section. Perhaps we were in a stochastic version of the the right hand,

“active,” unique locally bounded equilbrium of Figure 5, one that just briefly touched zero. Per-

haps the appearance of a zero bound just represents the proverbial seven years of bad luck, or

25 in Japan’s case; one bad draw after another.

This view formed the basis of several comments at the conference. As other examples, Swan-

son and Williams (2014) measure the responsiveness of 1 and 2 year treasury bills to macro news,

and conclude that they remained responsive from 2008 to 2010, indicating expectations of active

policy and a soon-forthcoming exit, only becoming suggestive of a zero bound in late 2011. That

still leaves 2011-2017, however. Garcı́a-Schmidt and Woodford (2015) write similarly

...no central banks have actually experimented with date-based forward guidance

that referred to dates more than about two years in the future; and while the period

in which the U.S. federal funds rate target has remained at its lower bound has (as of

the time of writing) lasted for more than six years, there was little reason for anyone

to expect it to remain at this level for so long when the lower bound was reached at

the end of 2008.
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The first sentence is a bit misleading. The zero bound is usually thought of as a constraint, not a

choice. Forward guidance is only a commitment that should the economy improve the Fed will

nonetheless keep rates low, but if the economy does not improve one nonetheless expects zero

interest rates even without forward guidance.

A similar puzzle occurs in matching a standard new-Keynesian model such as Figure 15, in

which only transitory interest rate changes (with an AR(1) response) cause disinflation, to the

standard intuition that 1980-1995 represented a disinflation created by a sustained high-interest

policy. There, one has to argue that 1980 to 1995 represented 15 years of good luck, continual

expectations of a return to high interest rates, continually confounded by events. Bordo, Erceg,

Levin, and Michaels (2007), Bordo, Erceg, Levin, and Michaels (2017) document such a view,

contrasting the successful high-growth post-civil war deflationary return to a gold standard with

the 1980s. They document survey expectations of a return to inflation, and with it higher interest

rates, throughout the 1980s. Their main point is to account for the recessions of the early 1980s

vs. the post civil war growth, however.

It is possible that long stretches of data do not represent the impulse response function of

interest rates to inflation, as expectations were always somewhere else. But each year that passes

makes a bad luck story harder to maintain, relative to the simple alternative that maybe we are

seeing just what we seem to see, a stable and at least long-run Fisherian response.

5.6 Learning and other selection devices

Perhaps multiple zero-bound new-Keynesian equilibria with passive fiscal policy, as illustrated

in the left hand equilibrium of Figure 5, can be ruled out by additional equilibrium-selection

rules.

Adding some concept of “learnability” to select equilibria is a popular choice. McCallum

(2009a) (also McCallum (2009b)) claims that applying the e-stability concept in Evans and Honkapo-

hja (2001) to this situation, the active, right hand equilibrium of Figure 5 is learnable, while the

left hand “passive” equilibrium and the multiple equilibria leading to it are not.

Cochrane (2009) disagrees, and argues that learnability leads exactly to the opposite conclu-

sion. The parameter φ and monetary policy shock are not identified from macroeconomic data

in the active equilibrium. The policy rule represents an off-equilibrium threat not measurable

from data in an equilibrium. There is no way for a child, observing that eating spinach is always

followed by dessert, to learn if not eating spinach would be followed by no dessert. However, in
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the stable passive money equilibrium, φ < 1 is measurable. (See also Cochrane (2011a) p. 2-6 for

an extended discussion of additional learnability concepts and their ability to prune equilibria.)

That debate concerns whether an individual, waking up in a rational expectations equilib-

rium, can learn the parameters of that equilibrium, enough to form the proper expectations

for his or her own behavior. Christiano, Eichenbaum, and Johannsen (2016) explore a differ-

ent concept of learning, whether if all people in an economy learn, the resulting equilibrium

approaches rational expectations and if so which rational expectations equilibrium. Like Mc-

Callum, they conclude that the active, right-hand, equilibrium is learnable, and that the passive

zero bound equilibrium, and multiple equilibria leading to it, are not. Likewise, Garcı́a-Schmidt

and Woodford (2015) advocate a concept of convergence to rational expectations that they call

“reflective” equilibrium, and claim that active-money equilibria are the limits of such reflective

equilibria, and passive-money equilibria are not.

This is not the place for a long analysis, but this view has two problems for the point at hand –

whether passive-fiscal new-Keynesian models predicted more volatile inflation during the long

period of near-zero rates. First, the argument is too strong. If the left-most, zero-bound, equilib-

ria simply cannot happen, then what do we make of these long stretches at zero interest rates?

The only hope, it seems, is to pair this view with the above view that we weren’t really at the zero

bound, because everyone expected the economy to jump back to a comfortably active region in

no more than a year or so, and the appearance of a zero bound is just a sequence of bad shocks.

As above, Garcı́a-Schmidt and Woodford (2015) are explicit on this point. Second, if multiple

equilibria under passive policy cannot occur, that conclusion is true of the 1970s as well as the

2010s. We must again throw out Clarida, Gaĺı, and Gertler (2000), Benhabib, Schmitt-Grohé, and

Uribe (2002) and related literature.

More generally, Atkeson, Chari, and Kehoe (2010) argue that by using “sophisticated poli-

cies,” the central bank can prune equilibria at any time, zero bound or no zero bound, and thus

eliminate indeterminacies. Similarly, Benhabib, Schmitt-Grohé, and Uribe (2002) and related

zero bound literature crafts policies on top of the policy rule that can, they claim, avoid the zero

bound and attendant multiple equilibria. But the question is not so much can a central bank or

government make equilibrium-selection threats – threats understood, believed, and learned by

people – but did our central banks and governments make such threats, did people know it, and

did economists know it, and did not worry about inflation volatility at the zero bound before

that volatility failed to materialize.

There are hundreds of other principles one could add to models to select among multiple
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rational-expectations equilibria. And they will, in general lead to different results. One might

hope is that selection will be robust to which principle one uses, a hope expressed by Garcı́a-

Schmidt and Woodford (2015). Yet here my debate with McCallum is instructive. When re-

searchers with different priors approach this question, they come to diametrically opposed an-

swers. Robustness across papers is subject to selection bias.

At this stage in the debate, one can at least say that the view, don’t worry about the zero

bound and multiple equilibrium volatility at the zero bound because it can’t happen, was not

commonplace in the new-Keynesian literature before 2008.

The other way to select equilibria is to remove the assumption of passive fiscal policy, which

deletes one simple equation that selects equilibria transparently. It is at least a lot simpler.

5.7 Irrational expectations

Why be so religious about rational expectations? This question reverberated throughout the

conference. Bad luck is the same as slow learning, and more generally the analysis in this paper

ties stability to rational expectations.

First, it’s not so easy. The simple adaptive expectations model gave the traditional sign of the

response of inflation to interest rates, but it is unstable at the zero bound. We’re looking for a

simple model that gives the traditional sign, but is consistent with the quiet lower bound. That’s

harder to find.

Second, the problems highlighted in this paper stem from the basic sign and stability prop-

erties of models. If we had a model with the basic sign and stability properties, then sprinkling

in some less than rational expectations to get dynamics right would be more attractive. Putting

irrational expectations or other irrationality deeply at the heart of the sign and stability of mon-

etary policy is more worrisome.

Gabaix (2016) is an excellent and concrete example. Gabaix uses a model of rational inat-

tention to argue that people and firms pay less attention to expectations of future income and

future prices than they should, modifying the standard three-equation model to

xt = MEtxt+1 − σ(it − Etπt+1) (80)

πt = MfβEtπt+1 + κxt (81)

it = φπt + vit. (82)
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where M and Mf are less than one. For sufficiently low M and Mf , Gabaix produces traditional

explosive dynamics under a peg, and therefore he produces a negative sign of interest rates on

inflation. In this way, Gabaix’ model can be seen as a behaviorally micro-founded version of the

old - Keynesian model studied above.

Kocherlakota (2017) and McKay, Nakamura, and Steinsson (2016) likewise advocate discount-

ing the future income in the IS curve to (80), though with a less behavioral interpretation. Both

authors cite the puzzling power of forward guidance. However, Cochrane (2016b) shows that the

forward-guidance puzzle is driven by equilibrium selection rules in new-Keynesian models.

But to get the traditional sign, Gabaix and Kocherlakota must change the stability properties

of the model. As one starts to lower M and Mf , nothing happens at all until the eigenvalues

cross one. Cochrane (2016a) finds that one needs quite a lot of irrationality, M less than a half,

together with substantial price stickiness σκ less than about a half, to cross that boundary. Thus,

Gabaix’s result is bounded away from rationality, and bounded away from the frictionless price

limit. A little bit of irrationality or price stickiness will not do.

Gabaix’ model also remains unstable, and so does not accommodate the long quiet zero

bound without a rather complex patch (section 5.3, and appendix section 9.2). It would be es-

thetically more pleasing if long-run neutrality were a result of the simple form of a model, and

dynamics the result of patches rather than the other way around.

So the model that uses irrational expectations to deliver a temporary negative sign, on top of

a frictionless long-run neutral benchmark, has yet to be delivered.

It is certainly not necessary or wise to insist on rational expectations at every data point, and

in particular to understand short-run responses to particular historical events far outside the

norm of experience – though economic historians remind us that events “far outside” experi-

ence, like financial crises, are in fact common.

But we are looking here for the opposite side of that coin – the fundamental, underlying,

long-lasting, simple and basic economic nature of monetary policy; the central mechanism on

which all of policy analysis depends. Are we really satisfied if that foundation relies crucially on

non-economic behavior? Viewed either as introducing irrational expectations or as fundamen-

tally changing our model of intertemporal choice, is it really wise to do such major surgery to

economics to accommodate one data point?

The question is not a set of sufficient conditions. The question is the minimum necessary

conditions for the basic sign and stability of monetary policy. If irrationality is necessary for
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a negative sign, that verifies my tentative conclusion – that there is no such simple economic

model. And placing irrational expectations so deeply in the foundations of monetary economics,

if that is the answer, it paints a revolutionary picture.

Suppose, for example, that a negative effect of interest rates on inflation occurred a few times

because people were irrational in their expectations. Lucas’ admonition is worth remembering

however that if policy makers try to exploit this sort of thing, people sooner or later catch on,

and it stops working. A monetary theory whose basic sign and stability depends on irrational

behavior is ephemeral.

If it true, then the Federal Reserve should write in its next report to Congress that the sign

of the Fed’s attempts to control inflation does not rely on simple money supply and money de-

mand rational economics, but instead relies deeply and essentially on a super-rational Federal

Reserve offsetting an instability that occurs from people’s stupidity, and an interest rate policy

that manipulates people’s irrationality for their own good. Likewise, if this is the case, economics

textbooks need to be rewritten in the same way. An honest advocate for irrational expectations

in this paper’s context should advocate both.

5.8 More complex models

Since the quiet zero bound point depended on the stability and determinacy properties of mod-

els, whether eigenvalues are above or below one and how many expectations are determined,

more complex models do not easily change that result.

It is more likely that one can get a temporary negative sign of interest rates on inflation, with-

out adopting the fiscal-theory plus long-term debt mechanism, out of a model consistent with

long run stability by adding ingredients to the forward-looking new-Keynesian structure. The

general path is fairly clear: a model with two backward-looking roots can produce a response

function that is temporarily negative and then positive, without relying on a downward jump.

The models in this paper are also quite simple by the standards of calibrated or estimated

new-Keynesian models, such as Smets and Wouters (2003), Christiano, Eichenbaum, and Evans

(2005) Woodford (2003) Sections 5.1-5.2, Rotemberg and Woodford (1997), Negro, Giannoni, and

Schorfheide (2015), and so forth. (Unfortunately we do not know how these models behave for

the experiments of this paper. How do they behave in response to a long-lasting interest rate

rise? How sensitive are their predictions to parametric restrictions of the monetary policy shock

process?)
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So, a natural next step – the sort of thing macroeconomists do all the time when trying to

reverse-engineer impulse-response functions – would be to add ingredients such as extensive

borrowing or collateral constraints, hand-to-mouth consumers, a lending channel, or other fi-

nancial frictions, habits, durable goods, housing, multiple goods and other nonseparabilities,

novel preferences, labor / leisure choices, production, capital, variable capital utilization, adjust-

ment costs, alternative models of price stickiness, informational frictions, market frictions, pay-

ments frictions, more complex monetary frictions, timing lags, individual or firm heterogeneity,

and so forth. Going further, perhaps we can add fundamentally different views of expectations

and equilibrium, as in Gabaix (2016) and Garcı́a-Schmidt and Woodford (2015) discussed above,

or Angeletos and Lian (2016) (see also the extensive literature review in the latter). I survey a few

such models in section 7 below.

But following these paths abandons the qualifier “simple,” and with irrational expectations

“economic” to our quest for a simple economic model that delivers the basic sign and stability

properties of monetary policy. In our quest, this path means that more complex ingredients are

necessary, not just sufficient to deliver the central result. Doing so admits that there is no simple,

rational economic model one can put on a blackboard, teach to undergraduates, summarize in

a few paragraphs, or refer to in policy discussions to explain at least the signs and rough out-

lines of the operation of monetary policy–nothing like, say, the stirring and simple description

of monetary policy in Friedman (1968).

As with irrationality, if this is the answer, an honest Fed should explain in its next monetary

policy report that there is no simple explanation it can give why raising interest rates will combat

inflation, that this effect is necessarily a big-black-box outcome, and successful policy is depen-

dent on the Fed’s technocratic understanding of the above list. It should explain that without

these ingredients, if the economy worked by explainable economic mechanisms, the interest

rate lever would move inflation in the opposite direction. And honest textbooks should say the

same thing. Necessary vs. sufficient, dynamic wrinkles vs. a basic underlying model, frosting vs.

cake, are crucial distinctions.

Such an intellectual outcome would also be unusual in macroeconomics. The standard

new Keynesian approach views the complex models or even behavioral modifications as refine-

ments, building on (58)-(59). The refinements help to match the details of model dynamics with

those observed in the data, but the simple model is thought to capture the basic message, signs,

stability and intuition. Except we just found out it does not. The standard real business cycle

approach views complex models as refinements, building on the stochastic growth model, but
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that simple model can still capture the basic story. The large multi-equation Keynesian mod-

els developed in the 1970s built on simple ISLM models to better match details of the data, but

modelers felt that the simple ISLM model captured the basic signs and mechanisms – indeed,

many analysts feel the basic ISLM model is better than its explicit computerized elaborations.

And this is healthy. Economic models are quantitative parables, and one rightly distrusts

macroeconomic predictions that crucially rely on the specific form of poorly-understood fric-

tions.

So, I stop here, because if we go down this path, we first agree that no simple economic model

delivers the desired sign and stability. We agree that the conclusion of this paper is verified.

The world may well have such a negative sign, due to either irrationality or more complex

ingredients. Nothing in this analysis denies that possibility, and let me dispel any impression of

an unscientific hostility to adding frictions to macro models.

But if complex frictions are necessary for the basic sign and stability, rather than being used

to layer real-world dynamics on top of a simple economic model that gets the simple facts right,

that circumstance radically changes the nature of monetary policy. And one must admit that

the scientific basis on which we analyze policy, and offer advice to public officials and public at

large, becomes more tenuous.

5.9 VAR evidence

If theory and experience point to a positive reaction of inflation to interest rates, perhaps we

should revisit the empirical evidence behind the standard contrary view. The main formal ev-

idence we have for the effects of monetary policy comes from vector autoregressions (VARs).

There are several problems with this evidence.

First, the VAR literature almost always pairs the announcement of a new policy with the

change in the policy instrument, i.e. an unexpected shock to interest rates. That habit makes

most sense in the context of models following Lucas (1972) in which only unanticipated mon-

etary policy has real effects, and in the context of regressions of output on money, rather than

interest rates, in which VARs developed (Sims (1980)).

But in the world, most monetary policy changes are anticipated. VARs may still want to find

rare unexpected rate movements, as part of an identification strategy to find changes in policy

that are not driven by changes of the Fed’s expectations of future output and inflation, but that

is a small part of the historical variation. Furthermore, every single interest rate change is de-



INFLATION AND INTEREST RATES 95

scribed by the Federal Reserve as a reaction to some other event in the economy. They never say

“and we added a quarter percent for the heck of it,” or “so that economists could see what would

happen.”

Moreover, in the models presented here, anticipated monetary policy has strong effects. In

particular, the models with money presented here, as in Figure 17, only had a chance of deliver-

ing the standard inflation decline if the interest rate rise was anticipated. An empirical technique

that isolates unexpected interest rate has great difficulty to find that theoretical prediction.

Second, the analysis of multiple equilibria in Figure 14 found that inflation declines occur

when an interest rate rise is paired with a fiscal policy tightening. As discussed there, it is plausi-

ble that whatever motivates the Fed to raise or lower interest rates also motivates fiscal authori-

ties to change course. It is plausible therefore that rate shocks in our data set are like equilibrium

E of Figure 14. But we want to know what happens if monetary policy moves without coincident

fiscal policy changes. VARs have to date made no attempt to orthogonalize monetary policy

shocks with respect to fiscal policy, especially expected future fiscal policy which is what mat-

ters here.

Third, VARs typically find that the interest rate responses to an interest rate shock are transi-

tory, as are those of Figure 13. As a result, they provide no evidence on the long-run response of

inflation to permanent interest rate increases.

Fourth, and most of all, the evidence for a negative sign is not strong, and one can read much

of the evidence as supporting a positive sign. From the beginning, VARs produced increases

in inflation following increases in interest rates, a phenomenon dubbed the “price puzzle” by

Eichenbaum (1992). A great deal of effort has been devoted to modifying the specification of

VARs so that they can produce the desired result, that a rise in interest rates lowers inflation.

Sims (1992), studying VARs in five countries notes that “the responses of prices to interest

rate shocks show some consistency - they are all initially positive.” He also speculates that the

central banks may have information about future inflation, so the response represents in fact re-

verse causality. Christiano, Eichenbaum, and Evans (1999) take that suggestion. They put shocks

in the order output (Y), GDP deflator (P), commodity prices (PCOM), federal funds rate (FF), to-

tal reserves (TR), nonborrowed reserves (NBR), and M1 (M) (p. 83). With this specification (their

Figure 2, top left), positive interest rate shocks reduce output. But even with the carefully chosen

ordering, interest rate changes have no effect on inflation for a year and a half. The price level

then gently declines, but remains within the confidence interval of zero throughout. Their Fig-

ure 5, p.100, shows nicely how sensitive even this much evidence is to the shock identification
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assumptions. If the monetary policy shock is ordered first, prices go up uniformly. The inflation

response in Christiano, Eichenbaum, and Evans (2005) also displays a short run price puzzle,

and is never more than two standard errors from zero.

Even this much success remains controversial. Hanson (2004) points out that commodity

prices which solve the price puzzle don’t forecast inflation and vice versa. He also finds that the

ability of commodity prices to solve the price puzzle does not work after 1979. Sims (1992) was

already troubled that commodities are usually globally traded, so while interest rate increases

seem to lower commodity prices, it’s hard to see how that could be the effect of domestic mone-

tary policy.

Ramey (2015) surveys and reproduces much of the exhaustive modern literature. She finds

that “The pesky price puzzle keeps popping up.” Of nine different identification methods, only

two present a statistically significant decline in inflation, and those only after four or more years

of no effect have passed. Four methods have essentially no effect on inflation at all, and two

show strong, statistically significant positive effects, which start without delay. Strong or reliable

empirical evidence for a short-term (within 4 years) negative inflation effect is absent in her

survey.

The Christiano, Eichenbaum, and Evans (1999) procedure may seem fishy already, in that so

much of the identification choice was clearly made in order to produce the desired answer, that

higher interest rates lead to lower inflation. Nobody spent the same effort seeing if the output

decline similarly represented reverse causality, Fed reaction to news of future output, because

the output decline fits priors so well. Uhlig (2006) defends this imposition of priors on identi-

fication. If one has strong theoretical priors that positive interest rate shocks cause inflation to

decline, then it makes sense to impose that view as part of shock identification, in order to better

measure that and other responses. (Uhlig’s eloquent introduction is worth reading and contains

an extensive literature review.)

But imposing the sign only makes sense when one has that strong theoretical prior; when,

as when these papers were written, existing theory uniformly specifies a negative inflation re-

sponse and nobody is considering the opposite. In the context of this paper, when theory spec-

ifies a positive response, when only novel and as yet unwritten theories produce the negative

sign, and we are looking for empirical evidence on the sign, following identification procedures

that implicitly or explicitly throw out positive signs does not make sense. And even imposing the

sign prior, Uhlig like many others finds that “The GDP price deflator falls only slowly following a

contractionary monetary policy shock.”



INFLATION AND INTEREST RATES 97

With less strong priors, positive signs are starting to show up. Belaygorod and Dueker (2009)

and Castelnuovo and Surico (2010) find that VAR estimates produce positive inflation responses

in the periods of estimated indeterminacy. Belaygorod and Dueker (2009) connect estimates to

the robust facts one can see in simple plots: Through the 1970s and early 1980s, federal funds

rates clearly lead inflation movements. Dueker (2006) summarizes.

And even all of this evidence comes from the period in which the Fed kept a small amount of

non-interest-bearing reserves, the money multiplier plausibly bound, and the Fed implemented

interest-rate changes by changing the quantity of reserves. We want to know how inflation will

behave in the current regime, in which the Fed will change interest rates by changing the interest

it pays on super-abundant reserves, with no open market operations at all.

6 Fiscal theory objections

I collect here quick answers to some of the most common theoretical and empirical objections

to fiscal theory arguments. Many of the these objections came up at the conference. Though

each theoretical objection is addressed elsewhere (see in particular Cochrane (2005), Cochrane

(1998)) since they reappear, it is worth uniting the relevant responses briefly in one place.

The simplest summary: The government debt valuation equation underlying the fiscal the-

ory is the same as the present value relation underpinning the theory of finance. Any theoretical

or empirical objection one has to the fiscal theory is exactly the same objection to price equals

present value of dividends. If one is a “budget constraint,” so is the other. If one is a knife-

edge case that “collapses under the tiniest reasonable perturbation,” so is the other. If one is

only sustained by strange off-equilibrium promises, so is the other. If one requires “exogenous”

surpluses, the other requires “exogenous” dividends. (Neither is the case.) Yes, we do not have

an easy independent measure of expected surpluses and discount rates, so we do not have an

easy fiscal-theory “test” by calculating an independent prediction for the price level. Yes, we do

not have an easy independent measure of expected dividends and discount rates, so we do not

have an easy present-value model “test” by calculating a prediction for stock prices. Each equa-

tion holds, almost trivially – all they need is the absence of arbitrage. One can always discount

by expected returns. Thus, neither is testable by itself, and neither allows an easy rejection by

looking at time series. No, the fiscal theory cannot be easily invalidated by noting that times

of high deficits and debt are not always associated with inflation. No, the present value model

cannot be easily invalidated by noting that times of high or low dividends and book values do
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not always correspond to high or low prices. Yes, stock market values are often puzzling given

available dividend forecasts, and discount rates are a bit nebulous. Yes, the currently high value

of government debt is puzzling given available surplus forecasts, and discount rates are a bit

nebulous.

These facts have not kept the present value model from being useful, and at the cornerstone

of finance – and its controversies – for decades. Expect of the fiscal theory no less, but also no

more. The fiscal theory is, like the present value model, not easily dismissed nonsense. But the

fiscal theory, like the present value model, will likely pose challenges to understand the data,

and warring and hard-to-test stories. It will not be easy either way.

6.1 Exogenous surpluses?

The fiscal theory of the price level does not require that surpluses are “exogenous,” just as price

= present value of dividends does not require that dividends are “exogenous.”

Though it is often useful to think through models and events by thinking of the price level,

stock price, or consumption, as determined “given” surpluses, dividends, income, and discount

rates, the latter quantities are all economically endogenous and co-determined. Equilibrium

conditions do not have a causal structure, as useful as it is to think that way at times.

In particular, the fiscal theory still determines the price level if one models surpluses result-

ing from proportional taxes. If Ptst = τPtyt, then the right hand side of the government debt

valuation equation becomes τyt+j in place of st+j . The only P is still on the left hand side and

thus still determined. Including taxes and spending that respond to output and inflation all can

leave the basic theory intact. These modifications may well change the quantitative predictions

a lot, of course, but those are for another day. Only in the knife-edge case that surplus responses

to the price level Pt on the right just cancel those on the left, if the supply and demand curves

overlap, then the theory fails.

Like the present value equation, the government debt valuation equation is not a “budget

constraint.” The government is not assumed to be a large actor that can “threaten to violate its

budget constraint at off equilibrium prices.” Nobody can violate budget constraints. The govern-

ment debt valuation equation is an equilibrium condition, deriving ultimately from consumer’s

first order and transversality conditions. If consumers valued government debt directly, perhaps

wishing to wallpaper living rooms with it, then the government would not have to repay debt,

and the valuation equation would not hold. It is not a “budget constraint” of the government
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any more than the present value equation is a “budget constraint” on businesses, that forces

them to raise dividends in response to prices. For this reason I call the central equation the “gov-

ernment debt valuation equation” rather than the common but misleading term “government

intertemporal budget constraint.”

6.2 Tests?

The government debt valuation equation holds in equilibrium in all regimes – “active” or “pas-

sive.” Therefore active and passive regimes are observationally equivalent. There is no test for

Granger causality, no regression of surpluses on debt or interest rates on inflation, no relation-

ship among time series drawn from the equilibrium of an economy, that can distinguish fiscally

active and passive, or monetary active and passive regimes. That fact drives the style of analy-

sis in this paper – only by looking across regimes, or from experiments such as the zero bound

episode, can we tell theories apart.

Like price = present value of dividends, the government debt valuation holds under very

weak conditions – absence of arbitrage, law of one price. A test necessarily involves auxiliary

hypotheses, about discount rates, cash flows, information, etc.

Therefore, one does not productively address data or distinguish models by “testing” the gov-

ernment debt valuation equation, any more than one can “test” price = present value of divi-

dends, or “test” whether MV=PY describes how money causes inflation or how nominal GDP

drives money demand. There is a reason Friedman and Schwartz wrote a whole book, not one

definitive Granger-causality test. That’s not bad news, it just places fiscal theory exactly in the

frustrating but productive realm of the rest of macroeconomics and finance.

6.3 Responses to debt, on and off equilibria

In particular, the fiscal theory does not require that fiscal surpluses are set “independently” of

outstanding debt, an assumption cited in Christiano’ critique at the conference. No. Fiscal the-

oretic governments borrow money, pay it off, and pay back more when debts are larger, just as

one would expect.

In a passive-fiscal regime, the government raises surpluses to pay back debts arising from

any cause. If a bubble or sunspot causes the price level to decline 50%, the government doubles

taxes to repay that windfall to bondholders. An active-fiscal government ignores this kind of
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debt revaluation. But it does respond to other increases in debt, in particular raising surpluses

to pay off debts accumulated from fighting wars and recessions, or rising real interest rates.

This distinction between on-equilibrium and off-equilibrium responses underlies the new-

Keynesian active-money view, so anyone happy with new-Keynesian equilibrium selection should

be happy with the fiscal theory as well. Following King (2000), write the policy rule in a new-

Keynesian model as

it = i∗t + φπ(πt − π∗t ) (83)

where i∗t , π∗t are equilibrium values the Fed desires to select. As before, this is just a convenient

rewriting of the usual rule it = φπt + vit. As we have seen, a threat φ > 1 selects πt = π∗t , it = i∗t as

the unique locally bounded equilibrium. How a central bank’s observed interest rate i∗t responds

to observed equilibrium inflation π∗t is a separate issue from how the central bank responds

by off-equilibrium (it − i∗t ) to off-equilibrium inflation (πt − π∗t ). In general – without further

restrictions on the policy rule – correlations among equilibrium values are separate from how

the central bank responds to a sunspot inflation.

The same argument applies to the fiscal theory. The government can commit to repaying any

“on-equilibrium” debt, but to defaulting or inflating away “off-equilibrium” debt. Write

Bt−1

Pt
= Et

∞∑
j=0

βjst+j . (84)

If surpluses respond to any change in debt,

st = ŝt + α(Bt−1/Pt) (85)

then, yes, fiscal policy is “passive,” surpluses adjust on the right hand side of (84) for any price

level, and the government debt valuation equation drops out of equilibrium determination. But

if we write the fiscal rule in form analogous to (83)

st = ŝt + α(Bt−1/P
∗
t ) (86)

where ∗ denotes the government’s desired equilibrium, then we see exactly the same response in

equilibrium – the government pays off its debts – but no response to off-equilibrium price level

bubbles or sunspots. As Taylor-rule off-equilibrium interest rate rises select a unique equilib-

rium, so fiscal-rule off-equilibrium inaction selects a unique equilibrium. And there is no way

to tell apart (85) from (86) using data from a given equilibrium, since Pt = P ∗t in equilibrium.



INFLATION AND INTEREST RATES 101

Specification (86) is reasonable. A government following (86) pays off debts it incurs, for

example, to finance wars or fight recessions. If the government wants to borrow real resources

and keep a stable price level P ∗, then such commitment is vital. But a government could and

arguably should refuse to accommodate bubbles and sunspots in the price level.

This is also a reasonable model of the gold standard. By following a gold standard, the gov-

ernment announces that it will raise surpluses to pay back debts at the gold value of the cur-

rency, no more and no less. And we have seen cases in which governments do not always rally

surpluses to unexpected inflations and deflations. For example, the US in the 1930s went off the

gold standard and defaulted on the gold clause in its bonds after a sharp deflation.

6.4 Understanding data

The second and more interesting category of objections (since it has not been extensively an-

swered in a long literature) is, how can the fiscal theory match data and historical episodes? In

this analysis, the obvious unanswered question is, why is the present value of surpluses so high,

and why is it so quiet (not volatile)? I have been careful to write that the zero bound or an inter-

est rate peg can be stable and quiet, not that either is stabile and quiet. Quiet depends on quiet

expectations of fiscal policy.

The short answer is, I don’t know. I don’t attempt a separate measurement of expected sur-

pluses, and of their discount rate, to produce an independent measure of what the price level or

volatility of inflation should be by the fiscal theory.

We know this will not be a trivial exercise. Despite the half century in which the same present

value model has dominated finance, attempts to independently measure expected dividends

and discount rates, to compute the present value model’s prediction for stock prices, and to

compare those actual prices have not been productive. And yet the present value model remains

the indispensable organizing principle for understanding asset values.

The analysis in this paper stops with the claim that the fiscal theory model can account for

the quiet zero bound, in a way that the other models cannot. I do not claim it is proved, passes

additional tests, such as an independent measurement of surpluses and discount rates would

provide, or addresses every other event in history. Those would be nice, but not necessary for

the claim.

The fiscal theory is at least consistent with the fact that the zero bound does not appear to

be a state variable for inflation dynamics. The low volatility of revisions to the present value of
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surpluses, and low volatility of inflation before and after the zero bound are the same. So there

is no particular fiscal theory puzzle about the zero bound. We only need to account for the fact

that the volatility of surplus and discount rate expectations did not change much. In fact, there

is a glimmer that inflation volatility seems lower at the zero bound than before, so perhaps quiet

nominal rates are leading to quieter real rates and therefore quieter present values of debt and

inflation.

6.5 What about Japan? And Europe? And the US?

Since the valuation equation holds, our question is how. Does it require such laughable forecasts

and discount rates that it is a useless abstraction? The answer is no.

Japan’s debt approaches 200% of GDP, and 20 years of deficit spending have not produced

desired inflation. Doesn’t the fiscal theory predict hyperinflation for Japan? Europe is north of

100% debt to GDP ratio, and the US fast approaching. Present value of surpluses? What sur-

pluses? The CBO’s deficit forecasts have even primary deficits exploding.

The fiscal theory does not predict that high debts or high deficits must correlate with high

inflation. The discounted present value of surpluses relative to debt is a far different object than

todays raw debt or deficit.

Despite awful projections, it is not unreasonable for bond markets to believe – for now –

that the western world’s debt problems will be solved successfully. The CBO’s deficit forecasts

are “if something doesn’t change” forecasts, and include straightforward policies that can turn

surpluses around – mild pro-growth economic policies, mild entitlement reforms. The same

angst over debt-fueled inflation emerged in the late 1970s and early 1980s – Sargent and Wallace

(1981) “unpleasant monetarist arithmetic” being only the most famous example. The US largely

repaid greater debts after WWII, and the UK in the 1800s. A debt crisis leading to inflation will

be a self-inflicted wound, not an economic necessity.

More importantly, in my view, the fiscal theory needs to digest the main lesson of asset pric-

ing – discount rates vary a lot, and are vitally important to understand valuations.

Real interest rates are zero or negative throughout the western world, even at very long hori-

zons. From this perspective, the fiscal theory puzzle is not the lack of inflation. The fiscal theory

puzzle is the lack of deflation. Consider a constant discount rate r and an economy growing at
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rate g, and hence primary surpluses st = τyt growing at g. Then,

Bt
Pt

= Et

∫ ∞
j=0

e−rjst+jdj = Et

∫ ∞
j=0

e(g−r)jdjst =
st

r − g
(87)

or, the ratio of surplus to real value of the debt is r− g. The discount rate r matters as much as g.

If r declines, the value of the debt rises, so P declines.

So, to understand low current inflation, the salient fact is the extraordinarily low expected

real return on government debt. Debt is valuable despite poor fiscal prospects, not because of

great ones. This little calculation also highlights the warning above – 1/(r − g) is very sensitive

to r and g. A little higher r not accompanied by g could change our quiet inflation quickly.

6.6 What about 2008? And cyclical inflation?

Discount rate variation is likely also to be crucial to understanding episodes such as 2008, and

the cyclical correlation of inflation.

Fall 2008. Output falls sharply. Deficits expand into the trillions. The growth slowdown and

continuing entitlement problems make future deficits seem even worse. And inflation... falls.

How is that consistent with the government debt valuation equation? In every recession, low

inflation correlates with large deficits, and vice versa. Isn’t the sign wrong?

Again, it is a mistake to confuse current with expected future deficits. A government fighting

a war borrows today and simultaneously commits to higher future taxes to pay off the debt –

precisely because it does not want to create inflation, and it does want to raise revenue from

its bond sales. Our government’s fiscal stimulus programs always include at least lip service

to future deficit reduction. The surplus should not be modeled as an AR(1), but as a series in

which a dip today portends a rise in the future. (Cochrane (2001) pursues this point in detail.)

Contrariwise, “helicopter drop” plans to deliberately create inflation come with commitments

not to repay the debt.

But future surpluses also didn’t get a lot better in 2008. The answer to a sharp disinflation

must then be the discount rate. Both nominal and real interest rates dropped sharply in 2008. A

“flight to quality” further lowered the expected return of government bonds relative to corporate

bonds. People were trying to hold more government bonds – and to hold less private assets and

to spend less to get government bonds.

This mechanism helps as well to understand the general cyclical correlation of inflation. In
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any recession, output falls, deficits rise, and yet inflation falls. Why? In part, people understand

that current deficits correspond to larger future surpluses. But the most important part of the

effect is likely that people are willing to hold claims to the same surplus at lower rates of return

in a recession than they are in a boom.

6.7 What about 1951?

What about all the failed interest rate pegs? The plausible answer, and warning: Fiscal policy.

For example, Woodford (2001) analyzes the US peg of the 1940s and early 1950s. He cred-

its fiscal-theoretic mechanisms for the surprising stability of the interest rate peg – it did last a

decade, and more if you count zero rates in the Great Depression. In his view, it fell apart when

the Korean war undermined fiscal policy. Other countries whose pegs fell apart after WWII mo-

tivating Friedman (1968) were facing difficult fiscal problems. Most historic pegs were enacted

along with price controls, exchange controls, and monetary controls as devices to reduce in-

terest payments on the debt (that was explicit in the US case) and to help otherwise difficult

fiscal policy. In most historic pegs, central banks were trying to hold down rates that otherwise

wanted to rise, by lending out money to banks at low rates, and with financial repression to

force people to hold government debt they did not want to hold. Our central banks are taking

in money from banks who can’t find better opportunities elsewhere, thus apparently holding

interest rates above what they otherwise want to be, in the face of overwhelming demand for

government debt. Countries whose pegs fell apart had problems financing current deficits. We

have doomsaying forecasts of deficits decades from now. The lessons of historical pegs under

vastly different fiscal circumstances do not necessarily apply to all pegs or zero bound episodes.

Interest rate pegs, like exchange rate pegs, live on top of solvent fiscal policy or not at all. For

this reason too I have been careful to state the conclusion as “an interest rate peg can be stable.”

None of this discussion is proof, nor is it intended as such. The point is that there exists a

vaguely plausible reconciliation of the data with the government debt valuation equation; that

merely citing the episodes does not disprove the fiscal theory.

7 Literature

The doctrines of inflation instability or indeterminacy are longstanding. Milton Friedman (1968)

gives the classic statement that an interest rate peg is unstable, and that higher interest rates lead
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to temporarily lower inflation. Friedman writes (p.5) that Monetary policy “cannot peg interest

rates for more than very limited periods...” Friedman’s prediction also comes clearly from adap-

tive expectations: (p. 5-6):

“Let the higher rate of monetary growth produce rising prices, and let the pub-

lic come to expect that prices will continue to rise. Borrowers will then be willing to

pay and lenders will then demand higher interest rates-as Irving Fisher pointed out

decades ago. This price expectation effect is slow to develop and also slow to disap-

pear.”

Friedman stressed the effect of money growth on output rather than interest rates, via ISLM’s

IS or modern intertemporal substitution. But the bottom line dynamics from interest rate to

inflation does not depend on this view of the mechanism. The very Keynesian model of Figure 9

captures completely Friedman’s description of inflation instability and interest rate policy under

adaptive expectations.

Friedman was heavily influenced by recent history of his time:

These views [ineffectiveness of monetary policies] produced a widespread adop-

tion of cheap money policies after the war. And they received a rude shock when

these policies failed in country after country, when central bank after central bank

was forced to give up the pretense that it could indefinitely keep “the” rate of interest

at a low level. In this country, the public denouement came with the Federal Reserve-

Treasury Accord in 1951, although the policy of pegging government bond prices was

not formally abandoned until 1953. Inflation, stimulated by cheap money policies,

not the widely heralded postwar depression, turned out to be the order of the day.

We do not know how Friedman might have adapted his views with our recent 8 years of experi-

ence, or Japan’s 20 in mind, rather than the inflations of the immediate WWII aftermath.

Taylor (1999) provides a clear statement that old-Keynesian (backward-looking, adaptive ex-

pectations) models are unstable, and that Taylor rules induce stability.

The doctrine that inflation is indeterminate under an interest rate peg or passive policy, un-

der rational expectations, started with Sargent and Wallace (1975). The basic point: fixing it with

it = rt+Etπt+1 leaves πt+1−Etπt+1 indeterminate. Their point is quite different from Friedman’s

instability. Indeterminacy, instability, and volatility are distinct concepts, frequently confused.

The fiscal theory of the price level goes back to Adam Smith:



106 COCHRANE

“A prince who should enact that a certain proportion of his taxes should be paid

in a paper money of a certain kind might thereby give a certain value to this paper

money” – Wealth of Nations, Book 2, Ch. II.

Monetary economists have long recognized the importance of monetary-fiscal interactions. The

modern resurgence and deep elaboration owes much to Sargent and Wallace (1981) and Sargent

(2013). Leeper (1991) shows how the fiscal theory can uniquely determine the price level under

passive monetary policy. Sims (1994) clearly states that the fiscal theory and rational expecta-

tions overturn Friedman’s doctrine of instability, as well as Sargent and Wallace’s indeterminacy:

“A monetary policy that fixes the nominal interest rate, even if it holds the interest

rate constant regardless of the observed rate of inflation or money growth rate, may

deliver a uniquely determined price level.”

The observation that interest rate pegs are stable in forward-looking new Keynesian models

also goes back a long way. Woodford (1995) discusses the issue. Woodford (2001) is a clear state-

ment, analyzing interest rate pegs such as the WWII US price support regime, showing they are

stable so long as fiscal policy cooperates.

Benhabib, Schmitt-Grohé, and Uribe (2002) is a classic treatment of the zero-rate liquidity

trap. They note that the zero bound means there must be an equilibrium with a locally passive

φπ < 1 Taylor rule, with multiple stable equilibria. However, they view this state as a pathol-

ogy, not a realization of the optimal quantity of money and optimal (low) level of markups, and

devote the main point of their paper to escaping the “trap” via fiscal policy.

Schmitt-Grohé and Uribe (2014) realize that inflation stability means the Fed could raise the

peg and therefore raise inflation. To them this is another possibility for escaping a liquidity trap.

They write

“The paper... shows that raising the nominal interest rate to its intended target

for an extended period of time, rather than exacerbating the recession as conven-

tional wisdom would have it, can boost inflationary expectations and thereby foster

employment.”

The standard model here with a forward-looking Phillips curve disagrees that raising infla-

tion raises employment, but that is not a robust feature.

Belaygorod and Dueker (2009) and Castelnuovo and Surico (2010) estimate new-Keynesian

DSGE models allowing for switches between determinacy and indeterminacy. They find that the
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model displays the price puzzle – interest rate shocks lead to rising inflation, starting immedi-

ately – in the indeterminacy region φπ < 1, as I do.

The possibility long periods of low rates cause deflation, so raising interest rates will raise in-

flation, has had a larger recent airing in speeches and the blogosphere. (See Williamson (2013),

Cochrane (2013, 2014c), Smith (2014).) Minneapolis Federal Reserve Chairman Narayana Kocher-

lakota (2010) suggested it in a famous speech:

“Long-run monetary neutrality is an uncontroversial, simple, but nonetheless pro-

found proposition. In particular, it implies that if the FOMC maintains the fed funds

rate at its current level of 0-25 basis points for too long, both anticipated and actual

inflation have to become negative. Why? It’s simple arithmetic. Let’s say that the real

rate of return on safe investments is 1 percent and we need to add an amount of an-

ticipated inflation that will result in a fed funds rate of 0.25 percent. The only way to

get that is to add a negative number – in this case, 0.75 percent.

To sum up, over the long run, a low fed funds rate must lead to consistent–but

low–levels of deflation.”

To be clear, Friedman (1968) disagrees. Friedman views the Fisher equation as an unstable

steady state. Kocherlakota, seeing recent experience, views it as a stable one. Friedman’s “long-

run neutrality” is that a permanent rise inM gives rise to a permanent rise inP , but a permanent

rise in i will lead to explosive P and π. A permanent rise in Ṁ gives rise to a permanent rise in Ṗ

and therefore of both i and π, but not the other way around. Kocherlakota’s “long-run neutrality”

is that a permanent rise in i will lead to a permanent rise in π. The difference between a stable

and an unstable steady state is key.

Cochrane (2014b) works out a model with fiscal price determination, an interest rate target,

and simple k-period price stickiness. Higher interest rates raise inflation in the short and long

run, just as in this paper, but the k-period stickiness leads to unrealistic dynamics.

Following Woodford (2003), many authors also tried putting money back into sticky-price

models. Benchimol and Fourçans (2012) and Benchimol and Fourçans (2015) study a CES money

in the utility function specification as here, in a detailed model applied to the Eurozone. They

find that adding money makes small but important differences to the estimated model dynam-

ics. Ireland (2004) also adds money in the utility function. In his model, money also spills over

into the Phillips curve. (See p. 974.) However, he finds that maximum likelihood estimates lead

to very small influences of money, a very small if not zero cross partial derivative ucm.
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Ireland’s Phillips curve comes from quadratic adjustment costs. Andrés, López-Salido, and

Vallés (2006) find a similar result from a Calvo-style pricing model. Their estimate also finds no

effects of money on model dynamics.

Many authors have noted that the stability, absence of deflation, and subsequent quiet (lack

of volatility) of inflation is a puzzle, along with other puzzles in accounting for the great reces-

sion. Homburg (2015) points out Japan’s “benign liquidity trap” and the puzzle it poses for stan-

dard models. He advocates a repair with pervasive credit constraints.

Hall (2011) analyzes many features leading to the large fall in output. As for inflation, he

argues for the “near-exogeneity” of the rate of inflation.

Quite a few recent contributions fall in the category of section 5.8 that adds a long list of

ingredients and frictions to match recent experience and address this and related theoretical

puzzles.

Eggertsson and Mehrotra (2014) is a good example of the “secular stagnation” view. They

select equilibria by expectations of active policy once the zero bound passes, as analyzed in

section 5.4 here. In their model, the stagnation would be cured if the Fed would only commit

to a pure peg – expectations of return to active policy are the central problem. (See Cochrane

(2014a).)

Christiano, Eichenbaum, and Trabandt (2014) use a detailed nonlinear new-Keynesian model,

designed to match quantity variables in the slow recovery as well as inflation. They have four big

shocks – a “financial wedge,” a “consumption wedge,” a TFP shock, and changes in government

consumption. Their monetary policy includes an active rule with zero bound constraint, for-

ward guidance about keeping interest rates low after the recovery, and, in the taxonomy of this

paper, a return to active policy which selects equilibria.

Farhi and Werning (2017) add agent heterogeneity, incomplete markets, uninsurable idiosyn-

cratic risk, occasionally-binding borrowing constraints, and bounded rationality in the form of

level-k thinking. They are however not aimed at explaining the quiet zero bound or reviving the

negative sign but to “a powerful mitigation of the effects of monetary policy” and the forward

guidance puzzle.

Negro, Giannoni, and Schorfheide (2015) is an ambitious attempt to account for quiet infla-

tion during the great recession, combining more frictions and ingredients than I can compactly

summarize here. For their central purpose, understanding why inflation did not fall more, the

key assumption is the form of Phillips curve and measurement of marginal costs. For the issues
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here, they rely on expectations of future active policy to select equilibria at the zero bound, and

many years of bad luck.

8 Concluding comments

The observation that inflation has been stable or gently declining and quiet at the zero bound

is important evidence against the classical view that an inflation is unstable at the zero bound,

and by implication at an interest rate peg, and the new-Keynesian view that these lead to sunspot

volatility. If an interest rate peg is stable, then raising the interest rate should raise inflation, at

least eventually.

Conventional new-Keynesian models predict that inflation is stable. Adding the fiscal theory

of the price level, or related rules for selecting nearby equilibria, removes indeterminacies and

sunspots and leads to a very simple monetary model consistent with our recent experience.

Those models also predict that raising interest rates will raise inflation, both in the long and

short run. My attempts to escape this prediction by adding money, backward looking Phillips

curves, multiple equilibria all fail.

The new-Keynesian model plus fiscal theory and long-term debt does produce a tempo-

rary negative inflation response to unexpected interest rate increases. It is ”simple,” and ”eco-

nomic,” but quite novel relative to standard monetary models. It does not produce the standard,

adaptive-expectations view of a permanent disinflation such as the 1980s, nor does it justify pol-

icy exploitation of the negative sign, especially in systematic, Taylor-principle form.

It is likely that the negative sign can be found by adding more complex ingredients, includ-

ing abandoning rational expectations. But that path makes those assumptions necessary, at the

foundation of monetary economics, rather than sufficient, small perturbations that get dynam-

ics right.

This paper was also a search for a simple model that captures the effects of monetary policy,

but overcomes the critiques of active and instability-inducing Taylor rules in forward-looking

models. The new-Keynesian plus fiscal theory model in this paper satisfies that criterion.

A review of the empirical evidence finds weak support for the standard theoretical view that

raising interest rates lowers inflation, and much of that evidence is colored by the imposition of

strong priors of that sign.

I conclude that a positive reaction of inflation to interest rate changes is a possibility we, and
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central bankers, ought to begin to take seriously. At least our faith in a stable exploitable negative

relationship coincident with the actual raising of rates ought to be weakened.

The fact of quiet inflation and the theory here rehabilitate interest rate pegs as a possible

policy. We can live the Friedman rule of low interest, low inflation, and enormous reserves. Real

policies may choose a time-varying peg if central banks think they can offset shocks (vit here may

react to vrt ), and may desire headroom of higher inflation to do that. But there is no need to fear

catastrophe of inflation from the former policy configuration.

However, that quiet depends on fiscal foundations. The large demand for government debt

which provides the fiscal foundations of this quiet (under either “active” or “passive” views),

driven by low discount rates not strong fiscal policies, could evaporate as unexpectedly as it

arrived.
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Benchimol, Jonathan and André Fourçans. 2012. “Money and risk in a DSGE framework: A Bayesian

application to the Eurozone.” Journal of Macroeconomics 34:95–111.

———. 2015. “Money and monetary policy in the Eurozone: an empirical analysis during crises.” Macroe-

conomic Dynamics Forthcoming.
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9 Algebra Appendix to “Michelson-Morley, Fisher, and Occam: The

Radical Implications of Stable Quiet Inflation at the Zero Bound.”

9.1 Formulas for delayed and temporary rate rises

Here I work out the algebra for impulse response functions of the fiscal theory with long term

debt model, with an announcement M years ahead of the interest rate rise, and an interest rate

rise that only lasts M years, in both continuous and discrete time, Equations (32)-(33).

An interest rate rise from i to i∗ that only lasts M years, continuous time:
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An announcement of an interest rate rise from i to i∗ that starts in M years, continuous time:

[
ϑ

∫ M

0
e−ije−ϑjdj + ϑ

∫ ∞
M

e−iM−i
∗(j−M)e−ϑjdj

]
Bt
P ∗t

=
s

r

ϑ

[
e−(i+ϑ)M

i∗ + ϑ
+

1− e−(i+ϑ)M

i+ ϑ

]
Bt
P ∗t

=
s

r

P ∗t
Pt

=

(
e−(i+ϑ)M

i∗ + ϑ
+

1− e−(i+ϑ)M

i+ ϑ

)
/

(
1

i+ ϑ

)
P ∗t
P
− 1 = e−(i+ϑ)M

(
i+ ϑ

i∗ + ϑ
− 1

)
≈ e−ϑM

(
i+ ϑ

i∗ + ϑ
− 1

)
An interest rate rise from i to i∗ that only lasts M years, discrete time:M−1∑

j=0

θj

(1 + i∗)j
+
∞∑
j=M

θM

(1 + i∗)M
θ(j−M)

(1 + i)(j−M)

 Bt−1

P ∗t
=

s

1− β
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1−
(

θ
1+i∗

)M
1− θ

1+i∗
+

(
θ

1+i∗

)M
1− θ

1+i

 Bt−1

P ∗t
=

s

1− β

Thus,

P ∗t
Pt
− 1 =

1−
(

θ
1+i∗

)M
1− θ

1+i∗
+

(
θ

1+i∗

)M
1− θ

1+i

 /

(
1

1− θ
1+i

)
− 1

P ∗t
Pt
− 1 =

(
1−

(
θ

1 + i∗

)M) 1
1− θ

1+i∗

1
1− θ

1+i

− 1


P ∗t
Pt
− 1 =

(
1−

(
θ

1 + i∗

)M)(1 + i∗

1 + it

1 + i− θ
1 + i∗ − θ

− 1

)
P ∗t
Pt
− 1 ≈

(
1− θM

)( 1 + i− θ
1 + i∗ − θ

− 1

)
An interest rate rise from i to i∗ that starts in M years, discrete time:M−1∑

j=0

θj

(1 + i)j
+
∞∑
j=M

θM

(1 + i)M
θ(j−M)

(1 + i∗)(j−M)

 Bt−1

P ∗t
=

s

1− β

1−
(

θ
1+i

)M
1− θ

1+i

+

(
θ

1+i

)M
1− θ

1+i∗

 Bt−1

P ∗t
=

s

1− β

Thus,

P ∗t
Pt
− 1 =

1−
(

θ
1+i

)M
1− θ

1+i

+

(
θ

1+i

)M
1− θ

1+i∗

 /

(
1

1− θ
1+i

)
− 1

P ∗t
Pt
− 1 =

(
θ

1 + i

)M ( 1

1− θ
1+i∗

− 1

1− θ
1+i

)(
1

1− θ
1+i

)

P ∗t
Pt
− 1 =

(
θ

1 + i

)M (1 + i∗

1 + i

1 + i− θ
1 + i∗ − θ

− 1

)
P ∗t
Pt
− 1 ≈ θM

(
1 + i− θ
1 + i∗ − θ

− 1

)
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9.2 Sticky-price model solution

Here I derive the explicit solutions (62)-(63), for inflation and output given the equilibrium path

of interest rates. The simple model (58)-(59) is

xt = Etxt+1 − σ(it − Etπt+1)

πt = βEtπt+1 + κxt.

The model with money generalizes the IS equation only, to (73)

xt = Etxt+1 + (σ − ξ)
(m
c

)
Et
[(
it+1 − imt+1

)
− (it − imt )

]
− σ (it − Etπt+1) .

We can treat the two cases simultaneously by defining

zt ≡ it −
(
σ − ξ
σ

)(m
c

)
Et
[(
it+1 − imt+1

)
− (it − imt )

]
and writing the IS equation as

xt = Etxt+1 − σ (zt − Etπt+1) .

One must be careful that lags of zt are lags of expected interest rate changes, not lags of actual

interest rate changes.

Expressing the model in lag operator notation,

Et(1− L−1)xt = σEtL
−1πt − σzt

Et(1− βL−1)πt = κxt

Forward-differencing the second equation,

Et(1− L−1)(1− βL−1)πt = Et(1− L−1)κxt

Then substituting,

Et(1− L−1)
(
1− βL−1

)
πt = σκEtL

−1πt − σκzt

Et
[
(1− L−1)

(
1− βL−1

)
− σκL−1

]
πt = −σκzt

Et
[
1− (1 + β + σκ)L−1 + βL−2

]
πt = −σκzt.
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Factor the lag polynomial

Et(1− λ1L
−1)(1− λ2L

−1)πt = −σκzt

where

λi =
(1 + β + σκ)±

√
(1 + β + σκ)2 − 4β

2
.

Since λ1 > 1 and λ2 < 1, reexpress the result as

Et
[
(1− λ−1

1 L)(1− λ2L
−1)λ1L

−1πt
]

= σκzt

Et
[
(1− λ−1

1 L)(1− λ2L
−1)πt+1

]
= σκλ−1

1 zt

The bounded solutions are

πt+1 = Et+1
λ−1

1

(1− λ−1
1 L)(1− λ2L−1)

σκzt +
1

(1− λ−1
1 L)

δt+1

where δt+1 is a sequence of unpredictable random variables, Etδt+1 = 0. I follow the usual

practice and I rule out solutions that explode in the forward direction.

Using a partial fractions decomposition to break up the right hand side,

λ−1
1(

1− λ−1
1 L

)
(1− λ2L−1)

=
1

λ1 − λ2

(
1 +

λ−1
1 L

1− λ−1
1 L

+
λ2L

−1

1− λ2L−1

)
.

So,

πt+1 =
1

λ1 − λ2
Et+1

(
1 +

λ−1
1 L

1− λ−1
1 L

+
λ2L

−1

1− λ2L−1

)
σκzt +

1

(1− λ−1
1 L)

δt+1

or in sum notation,

πt+1 = σκ
1

λ1 − λ2

zt +
∞∑
j=1

λ−j1 zt−j +
∞∑
j=1

λj2Et+1zt+j

+
∞∑
j=0

λ−j1 δt+1−j . (88)

We can show directly that the long-run impulse-response function is 1:

1

(1− λ−1
1 )(1− λ2)

σκ

λ1
= − σκ

(1− λ1)(1− λ2)

= − σκ

(1− (λ1 + λ2) + λ1λ2)
= − σκ

(1− (1 + β + σκ) + β)
= 1.
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Having found the path of πt, we can find output by

κxt = πt − βEtπt+1.

In lag operator notation, and shifting forward one period,

κxt+1 = Et+1

[
(1− βL−1)πt+1

]
κxt+1 =

σκ

λ1 − λ2
Et+1

[
(1− βL−1)

(
1 +

λ−1
1 L

1− λ−1
1 L

+
λ2L

−1

1− λ2L−1

)
zt

]
+ Et+1

(1− βL−1)

(1− λ−1
1 L)

δt+1.

We can rewrite the polynomials to give

κxt+1 =
σκ

λ1 − λ2
Et+1

[
1− βλ−1

1

1− λ−1
1 L

+
(1− βλ−1

2 )
(
λ2L

−1
)

1− λ2L−1

]
zt + Et+1

[
1− βλ−1

1

1− λ−1
1 L

]
δt+1.

(In the second term, I use Et
[
βL−1δt+1

]
= 0) or, in sum notation,

κxt+1 =
σκ

λ1 − λ2

(1− βλ−1
1

) ∞∑
j=0

λ−j1 zt−j +
(
1− βλ−1

2

) ∞∑
j=1

λj2Et+1zt+j

+

+
(
1− βλ−1

1

) ∞∑
j=0

λ−j1 δt+1−j .

9.3 Impulse response function – explicit solution

The solution (88) is

πt+1 =
σκ

λ1 − λ2

it +

∞∑
j=1

λ−j1 it−j + Et+1

∞∑
j=1

λj2it+j

+

∞∑
j=0

λ−j1 δt+1−j

λ1 =
(1 + β + σκ) +

√
(1 + β + σκ)2 − 4β

2

λ1 =
(1 + β + σκ)−

√
(1 + β + σκ)2 − 4β

2

While it is straightforward to calculate and simulate the solution for a given path of interest

rates, it is useful also to have a formula for the response to a step function. We want to find the

impulse-response function to it = 0, t < 0, and it = i, t = 0, 1, 2, ... The interest rate rise is
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announced at time−M , so only δ−M 6= 0. That response is,

t < −(M + 1) : πt+1 = 0

−(M + 1) ≤ t ≤ 0 : πt+1 =
σκ

λ1 − λ2

(
λ−t2

1− λ2

)
+ λ

−(t+1+M)
1 δ−M

0 < t : πt+1 =
σκ

λ1 − λ2

(
1

1− λ2
+
λ−1

1 (1− λ−t1 )

1− λ−1
1

)
+ λ

−(t+1+M)
1 δ−M

Proceeding in the same way, the solution for x is

κxt+1 =
σκ

λ1 − λ2

(1− βλ−1
1 )

∞∑
j=0

λ−j1 it−j + (1− βλ−1
2 )Et+1

∞∑
j=1

λj2it+j

+(1−βλ−1
1 )

∞∑
j=0

λ−j1 δt+1−j

so the impulse-response function to it = 0, t < 0, and it = i, t = 0, 1, 2, ..announced at time−M ,

is,

t < −(M + 1) : xt+1 = 0

−(M + 1) ≤ t ≤ −1 : κxt+1 =
σκ

λ1 − λ2
(1− βλ−1

2 )
λ−t+1

2

1− λ2
+ (1− βλ−1

1 )λ
−(t+1+M)
1 δ−M

0 ≤ t : κxt+1 =
σκ

λ1 − λ2

(
(1− βλ−1

1 )
1− λ−(t+1)

1

1− λ−1
1

+ (1− βλ−1
2 )

λ2

1− λ2

)
+ λ

−(t+1+M)
1 δ−M

The interest rate is then

rt = it − Etπt+1.

For the impulse-response function, the expected and actual values are the same, except at −M ,

where though π−M 6= 0, E−M−1π−M = 0. Hence,

t ≤ −(M + 1) : rt = 0 (89)

−M ≤ t < 0 : rt = − σκ

λ1 − λ2

(
λ−t2

1− λ2

)
− λ−(t+1+M)

1 δ−M (90)

t = 0 : rt = i− σκ

λ1 − λ2

(
λ−t2

1− λ2

)
− λ−(t+1+M)

1 δ−M (91)

0 < t : rt = i− σκ

λ1 − λ2

(
1

1− λ2
+
λ−1

1 (1− λ−t1 )

1− λ−1
1

)
− λ−(t+1+M)

1 δ−M (92)
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9.4 Three-equation model solution

I solve the three-equation model of Figure 15 by standard methods, incorporating the Taylor

rule in to monetary policy rather than conditioning on the equilibrium interest rate and then

constructing the underlying Taylor rule. Both methods give the same answer, but a conventional

calculation is more transparent in this case, and it verifies that both approaches give the same

answer.

While one can solve the model quickly via matrix techniques, here I use lag operator tech-

niques to write the solution for inflation analytically.

The model is

xt = Etxt+1 − σ(it − Etπt+1)

πt = βEtπt+1 + κxt

it = φπt + v̂it

vit = ρvit−1 + εit

Substituting the Taylor rule,

xt = Etxt+1 − σ(φπt + vit − Etπt+1)

πt = βEtπt+1 + κxt

Expressing the model in lag operator notation,

Et(1− L−1)xt = σEt
(
L−1 − φ

)
πt − σvit

Et(1− βL−1)πt = κxt

Forward-differencing the second equation,

Et(1− L−1)(1− βL−1)πt = Et(1− L−1)κxt

Then substituting into the first equation,

Et(1− L−1)
(
1− βL−1

)
πt = σκEt

(
L−1 − φ

)
πt − σκvit
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Et

[
1− 1 + β + σκ

1 + σκφ
L−1 +

β

1 + σκφ
L−2

]
πt = − σκ

1 + σκφ
vit.

Factor the lag polynomial

Et(1− λ1L
−1)(1− λ2L

−1)πt = − σκ

1 + σκφ
vit

where

λ =
1 + β + σκ±

√
(1 + β + κσ)2 − 4β (1 + φσκ)

2 (1 + σκφ)

These lag operator roots are the inverse of the eigenvalues of the usual transition matrix. The

system is stable and solved backward for λ > 1; it is unstable and solved forward for λ < 1.

The standard three-equation model uses φ > 1 so both roots are unstable, λ1 < 1 and λ2 < 1.

Then, we can write

Et(1− λ1L
−1)(1− λ2L

−1)πt = − σκ

1 + σκφ
vit

πt = −Et
1

(1− λ1L−1)(1− λ2L−1)

σκ

1 + σκφ
vit

πt = Et
1

λ1 − λ2

(
−λ1

1− λ1L−1
+

λ2

1− λ2L−1

)
σκ

1 + σκφ
vit

πt =
σκ

1 + σκφ

1

λ1 − λ2
Et

−λ1

∞∑
j=0

λj1v
i
t+j + λ2

∞∑
j=0

λj2v
i
t+j


Using the AR(1) form of the disturbance vi,

πt =
σκ

1 + σκφ

1

λ1 − λ2

−λ1

∞∑
j=0

λj1ρ
j + λ2

∞∑
j=0

λj2ρ
j

 ı̂t

πt =
σκ

1 + σκφ

1

λ1 − λ2

(
− λ1

1− λ1ρ
+

λ2

1− λ2ρ

)
vit

πt =
σκ

1 + σκφ

1

λ1 − λ2

(
λ2 (1− λ1ρ)− λ1 (1− λ2ρ)

(1− λ1ρ) (1− λ2ρ)

)
vit

πt = − σκ

1 + σκφ

(
1

(1− λ1ρ) (1− λ2ρ)

)
vit

Thus, to produce Figure 15, I simply simulate the AR(1) impulse-response, for {vit}, calculate πt

by the last equation, and calculate it = φπt + vit.
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9.5 Impulse-response with long-term debt and price stickiness

I develop the exact nonlinear formulas for the value of surpluses and a linear approximation.

The linear approximation turns out to be quite accurate in this application.

An interest rate rise from time t = 0 onwards is announced at time t = −M . I calculate for

each value of the inflation shock δ−M the percent change in a constant surplus corresponding to

that shock. Writing the surplus as se∆s, the value of nominal debt before the shock satisfies

∞∑
j=0

(
j−1∏
k=0

1

1 + f (k)

)
B(j)

P−M
=

∞∑
t=−M

βt−Ms. =
1

1− β
s.

where
{
B(j)

}
is the observed maturity structure of the debt, and the observed forward rates are

f (j), (f (j)
t is the forward rate at time t for loans from t + j to t + j + 1; f (0)

t = it is the one-period

interest rate). After the shock, nominal interest rates increase by i, the price level jumps from

P−M to P ∗−M , with

eπ
∗
−M = eπ−M+δ−M =

P ∗−M
P−M

.

Here, π−M denotes the solution with δ = 0, so actual inflation after the shock is announced

is π∗−M = π−M + δ−M . The basic solution for inflation (88) includes a jump in inflation when

the shock is announced, and I have defined δ as additional unexpected changes in inflation.

Surpluses rise to se∆s, giving

∞∑
j=0

(
M−1∏
k=0

1

1 + f (k)

)(
j−1∏
k=M

1

1 + f (k) + i

)
B(j)

P ∗−M
=

∞∑
t=−M

β(t−M) u′(Ct)

u′(C−M )
se∆s (93)

To easily calculate the multiperiod discount factor on the right hand side, I use

u′(Ct)

u′(Cτ )
=
e−γ(c+xt)

e−γ(c+xτ )
= e−

1
σ

(xt−xτ )

Dividing pre and post shock values of (93), s cancels and

eπ−M+δ−M =

∑∞
j=0

(∏M−1
k=0

1
1+f (k)

)(∏j−1
k=M

1
1+f (k)+i

)
B(j)∑∞

j=0

(∏j−1
k=0

1
1+f (k)

)
B(j)

∑∞
t=−M β(t−M)∑∞

t=−M β(t−M)e−
1
σ

(xt−x−M )
e−∆s.

Conversely, then, we can find the surplus required to support a given time -M shock δ−M –

whether that surplus comes from active or from passive fiscal policy – by solving for ∆s,
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e∆s =

∑∞
j=0

(∏M−1
k=0

1
1+f (k)

)(∏j−1
k=M

1
1+f (k)+i

)
B(j)∑∞

j=0

(∏j−1
k=0

1
1+f (k)

)
B(j)

∑∞
t=−M β(t−M)∑∞

t=−M β(t−M)e−
1
σ

(xt−x−M )
e−(π−M+δ−M ).

(94)

For each choice of δ−M , then, I find the solution for inflation and interest rates by (90)-(92);

I compute the product of real rates in the bottom right term of (94), and I compute the required

percentage change in surplus ∆s. To find the fiscal-theory / long-term debt solution, I search

for the δ−M that produces ∆s = 0. It is important to treat the numerator and denominator of the

last term of (94) equally. If one truncates the denominator, truncate the numerator at the same

point.

9.6 Linearized valuation equation

To linearly approximate (94), write

e∆s ≈ V
∑∞

t=−M β(t−M)∑∞
t=−M β(t−M)e−

1
σ

(xt−x−M )
e−(π−M+δ−M ). (95)

1 + ∆s ≈ (1 + v)

∑∞
t=−M β(t−M)∑∞

t=−M β(t−M)
(
1− 1

σ (xt − x−M )
)(1− (π−M + δ−M )). (96)

1 + ∆s ≈ (1 + v)
1

1−
∑∞
t=−M β(t−M) 1

σ
(xt−x−M )∑∞

t=−M β(t−M)

(1− (π−M + δ−M )). (97)

∆s ≈ v +

∑∞
t=−M β(t−M) 1

σ (xt − x−M )∑∞
t=−M β(t−M)

− (π−M + δ−M ). (98)

∆s ≈ v + (1− β)

∞∑
t=−M

β(t−M) 1

σ
(xt − x−M )− (π−M + δ−M ). (99)

In numerical experimentation, it turns out that the exact and linearized approach produce

almost exactly the same answer to the first few decimals. So, the nonlinearity of long-term

present values is not an issue for this magnitude – a few percent at most – of interest rate varia-

tion.
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For one-period debt, v is unchanged so we have

∆s ≈ −∆Et (πt) +
1− β
σ

∞∑
j=0

βj∆Et (xt+j − xt) (100)

where ∆Et ≡ Et − Et−1 and t is the date of the announcement of a new policy.

The first term of (100) captures the fact that unexpected inflation devalues outstanding gov-

ernment debt. In the second term, (xt+j − xt)/σ is the real interest rate between time t and time

t+ j. So this term captures the fact that if real rates rise, the government must pay more interest

on the debt.

9.7 The Model with Money

This section derives the model with money (73). The utility function is

maxE

∫ ∞
t=0

e−δtu(ct,Mt/Pt)dt.

The present-value budget constraint is

B0 +M0

P0
=

∫ ∞
t=0

e−
∫ t
s=0 rsds

[
ct − yt + st + (it − imt )

Mt

Pt

]
dt

where

rt = it −
dPt
Pt

and s denotes real net taxes paid, and thus the real government primary surplus. This budget

constraint is the present value form of

d(Bt +Mt) = itBt + imt Mt + Pt(yt − ct − st).

Introducing a multiplier λ on the present value budget constraint, we have

∂

∂ct
: e−δtuc(t) = λe−

∫ t
s=0 rsds,

where (t) means (ct,Mt/Pt). Differentiating with respect to time,

−δe−δtuc(t) + e−δtucc(t)
dct
dt

+ e−δtucm(t)
dmt

dt
= −λrt e−

∫ t
s=0 rsds
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where mt ≡Mt/Pt. Dividing by e−δtuc(t), we obtain the intertemporal first order condition:

− ctucc(t)

uc(t)

dct
ct
− mtucm(t)

uc(t)

dmt

mt
= (rt − δ) dt. (101)

The first-order condition with respect to M is

∂

∂Mt
: e−δtum (t)

1

Pt
= λe−

∫ t
s=0 rsds (it − imt )

1

Pt

e−δtum (t) = e−δtuc(t) (it − imt )

um (t)

uc(t)
= it − imt . (102)

The last equation is the usual money demand curve.

Thus, an equilibrium ct = yt satisfies

−ctucc(t)
uc(t)

dct
ct
− mtucm(t)

uc(t)

dmt

mt
= −δdt+

(
it −

dPt
Pt

)
dt (103)

um (t)

uc(t)
= it − imt (104)

B0 +M0

P0
=

∫ ∞
t=0

e−
∫ t
s=0 rsds

[
st + (it − imt )

Mt

Pt

]
dt (105)

The last equation combines the consumer’s budget constraint and equilibrium c = y. I call it the

government debt valuation formula.

9.7.1 CES functional form

I use a standard money in the utility function specification with a CES functional form,

u(ct,mt) =
1

1− γ

[
c1−θ
t + αm1−θ

t

] 1−γ
1−θ

.

I use the notationm = M/P , with capital letters for nominal and lowercase letters for real quan-

tities.

This CES functional form nests three important special cases. Perfect substitutes is the case

θ = 0 :

u(ct,mt) =
1

1− γ
[ct + αmt]

1−γ .
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The Cobb-Douglas case is θ −→ 1:

u(ct,mt) −→
1

1− γ

[
c

1
1+α

t m
α

1+α

t

]1−γ
. (106)

The monetarist limit is θ →∞:

u(ct,mt)→
1

1− γ
[min (ct, αmt)]

1−γ .

I call it the monetarist limit because money demand is then Mt/Pt = ct/α, i.e. α = 1/V is

constant, and the interest elasticity is zero. The separable case is θ = γ:

u(ct,mt) =
1

1− γ

[
c1−γ
t + αm1−γ

t

]
.

In the separable case, uc is independent of m, so money has no effect on the intertemporal sub-

stitution relation, and hence on inflation and output dynamics in a new-Keynesian model under

an interest rate target. Terms in (θ − γ) or (σ − ξ) with σ = 1/γ and ξ = 1/θ will characterize de-

viations from the separable case, how much the marginal utility of consumption is affected by

money.

With this functional form, the derivatives are

uc =
[
c1−θ
t + αm1−θ

t

] θ−γ
1−θ

c−θt

um =
[
c1−θ
t + αm1−θ

t

] θ−γ
1−θ

αm−θt .

Equilibrium condition (104) becomes

um (t)

uc(t)
= α

(
mt

ct

)−θ
= it − imt . (107)

The second derivative with respect to consumption is

ucc
uc

= (θ − γ)
1[

c1−θ
t + αm1−θ

t

]c−θt − θc−1
t

−cucc
uc

= −
(θ − γ) c1−θ

t − θ
[
c1−θ
t + αm1−θ

t

]
[
c1−θ
t + αm1−θ

t

]



130 COCHRANE

−cucc
uc

=
γc1−θt + θαm1−θ

t

c1−θ
t + αm1−θ

t

−cucc
uc

= γ

[
1 + θ

γα
(
mt
ct

)1−θ
]

[
1 + α

(
mt
ct

)1−θ
] .

The cross derivative is

mucm
uc

= (θ − γ)
αm1−θ

t

c1−θ
t + αm1−θ

t

= (θ − γ)
α
(
mt
ct

)1−θ

1 + α
(
mt
ct

)1−θ .

or, using (107)

mucm
uc

= (θ − γ)

(
mt
ct

)
(it − imt )

1 +
(
mt
ct

)
(it − imt )

.

9.7.2 Money demand

Money demand (107) can be written

mt

ct
=

(
1

α

)−ξ
(it − imt )−ξ . (108)

where ξ = 1/θ becomes the interest elasticity of money demand, in log form, and α governs the

overall level of money demand.

The steady state obeys
m

c
=

(
1

α

)−ξ
(i− im)−ξ . (109)

so we can write money demand (108) in terms of steady state real money as

mt

ct
=
(m
c

)( it − imt
i− im

)−ξ
, (110)

avoiding the parameter α. (Throughout, numbers without time subscripts denote steady state

values.)

The product m
c (i− im) , the interest cost of holding money, appears in many subsequent
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expressions. It is
m

c
(i− im) =

(
1

α

)−ξ
(i− im)1−ξ .

With ξ < 1, as interest rates go to zero this interest cost goes to zero as well.

9.7.3 Intertemporal Substitution

The first order condition for the intertemporal allocation of consumption (103) is

−ctucc(t)
uc(t)

dct
ct
− mtucm(t)

uc(t)

dmt

mt
= −δdt+ (it − πt) dt

where πt = dPt/Pt is inflation. This equation shows us how, with nonseparable utility, monetary

policy can distort the allocation of consumption over time, in a way not captured by the usual

interest rate effect. That is the central goal here. In the case of complements, ucm > 0 (more

money raises the marginal utility of consumption), larger money growth makes it easier to con-

sume in the future relative to the present, and acts like a higher interest rate, inducing higher

consumption growth.

Substituting in the CES derivatives,

γ
1 + θ

γα
(
mt
ct

)1−θ

1 + α
(
mt
ct

)1−θ
dct
ct
− (θ − γ)

α
(
mt
ct

)1−θ

1 + α
(
mt
ct

)1−θ
dmt

mt
= −δdt+ (it − πt) dt

and using (107) to eliminate α

γ
1 + θ

γ

(
mt
ct

)
(it − imt )

1 +
(
mt
ct

)
(it − imt )

dct
ct
− (θ − γ)

(
mt
ct

)
(it − imt )

1 +
(
mt
ct

)
(it − imt )

dmt

mt
= −δdt+ (it − πt) dt (111)

We can make this expression prettier as

γ
dct
ct

+ (θ − γ)

(
mt
ct

)
(it − imt )

1 +
(
mt
ct

)
(it − imt )

(
dct
ct
− dmt

mt

)
= −δdt+ (it − πt) dt

Rexpressing in terms of the intertemporal substitution elasticity σ = 1/γ and interest elasticity
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of money demand ξ = 1/θ, and multiplying by σ,

dct
ct

+

(
σ − ξ
ξ

) (
mt
ct

)
(it − imt )

1 +
(
mt
ct

)
(it − imt )

(
dct
ct
− dmt

mt

)
= −δσdt+ σ (it − πt) dt. (112)

We want to substitute interest rates for money. To that end, differentiate the money demand

curve

mt

ct
=
(m
c

)( it − imt
i− im

)−ξ
mt

ct

(
dmt

mt
− dct

ct

)
= −ξ

(m
c

)( it − imt
i− im

)−ξ d (it − imt )

it − imt(
dct
ct
− dmt

mt

)
= ξ

m
c
mt
ct

(
it − imt
i− im

)−ξ d (it − imt )

it − imt

Substituting,

dct
ct

+

(
σ − ξ
ξ

) (
mt
ct

)
(it − imt )

1 +
(
mt
ct

)
(it − imt )

(
ξ
m
c
mt
ct

(
it − imt
i− im

)−ξ d (it − imt )

it − imt

)
= −δσdt+ σ (it − πt) dt.

dct
ct

+ (σ − ξ) m
c

1

1 +
(
mt
ct

)
(it − imt )

(
it − imt
i− im

)−ξ
d (it − imt ) = −δσdt+ σ (it − πt) dt.

With xt = log ct, dxt = dct/ctm, approximating around a steady state, and approximating that

the interest cost of holding money is small,
(
m
c

)
(i− im) << 1, we obtain the intertemporal sub-

stitution condition modified by interest costs,

dxt
dt

+ (σ − ξ) m
c

d (it − imt )

dt
= σ (it − πt) . (113)

In discrete time,

Etxt+1 − xt + (σ − ξ)
(m
c

) [
Et
(
it+1 − imt+1

)
− (it − imt )

]
= σ (it − Etπt+1) .

For models with monetary control, one wants an IS curve expressed in terms of the monetary

aggregate. From (112), with the same approximations and m̃ = log(m),

dxt
dt

+

(
σ − ξ
ξ

)(m
c

)
(i− im)

(
dxt
dt
− dm̃t

dt

)
= σ (it − πt) dt. (114)
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In discrete time,

(Etxt+1 − xt) +

(
σ − ξ
ξ

)(m
c

)
(i− im) [(Etxt+1 − xt)− Et (m̃t+1 − m̃t)] = σ (it − πt) . (115)


