1 BONDS INTRO

- US: DEFAUTTFREE, (ASHFLOW kNOWN $P_{1}=E_{t}\left(H_{t 1,} \cdot 1\right)$
- data plot
- UP+ DOWN WITH INFLATION WITH RECESSIONS!
- SPREAD HIGH IN RECESSION, LOW in Booms
- "LEVEL", "SLOPE" CAPTURE MOST MNEMEMTS
- "Yield curve" / "For ward Curve"
- CANSLOPE up/DOWN

- WHY? (ECONOMICS) - MODEL JUST LIKE BLACK-SCHOLES?
\rightarrow PRILEALL MATURITIES
\rightarrow PRICE /LIEDE TS OPTIONS

$$
\begin{aligned}
& \text { 3. Expectations Expmple } \\
& \begin{array}{l}
p_{t}^{(1)},-0.05 \\
p_{t}^{(2)}
\end{array} \\
& P_{t}^{(2)}=-0.20 \\
& \Rightarrow \\
& f_{t}^{(v)}=0.15 \\
& E+\left(r_{11}^{(2)}\right)=0.05
\end{aligned}
$$

$$
\begin{aligned}
& \text { ft } \\
& r^{\text {EURO }}=5 \%, r^{v S}=11 \rightarrow \text { Buy? } \\
& E_{H} \rightarrow \text { EURO } \perp 4 \%! \\
& E\left(S_{t-}\right)-S_{t}=r_{t}^{E v} \text {, rUS }[+R . P .)
\end{aligned}
$$

$$
\text { BONDS } 4 \text { RISK PREMIUM INTRODUCTION }
$$

- WHICH IS RISKIER?

Bottomline

1) Startinaplace "aller =" has SURPRISING IMPLICATIONS!
2) IDEATIIY "YMUST MOLE SOX DOESNOT"

EITHER $E_{Y}\left(Y_{+n}^{(n)}\right)$ is HIGH or $E_{Y}\left(y_{+1}^{(1)}-y_{+}^{(1)}\right)$ is Hinh En : WHAT MUST MONE IFER DOESNOT MOVE

- $r_{40}^{(2)}$ is $y^{(0)}$
- $y_{x}^{(n)}$ is $y^{(\cdot)}, y_{+}^{(n)}$
$y_{\text {(in }}^{(1)}$
\&irir
- WHATIF REALY(C) ARE (ONSTANT, WHLLTTON VRRIES?

REN YIELDCURJE SHOUDSLOPE DOWN

DOND 4 CONT'D

$$
\begin{aligned}
\epsilon_{+}\left(R_{k+n}^{2}\right) & =\gamma \operatorname{cov}_{2}\left(R_{n}^{2}, \Delta C_{1}\right) \\
& =-\gamma n\left(\alpha_{1}\left(y_{+1}^{(n)}, \Delta C_{+1}\right)\right.
\end{aligned}
$$

1SSUE "MARKET PRICE OF INTEREST RATE RISK"
DOES ASHOCK $Y_{1 n}^{(n)} \uparrow$ COMS W. 4OOD ORBAD $\triangle C_{+\ldots}$

- "Expectations" -STRIT - NOR.p
- RP.S SHALI. CONSTAM OUERTIME
- NOT? RP VARIES OUFR TIME

Fx $\quad S_{t n}-S_{+}=a+b\left(r_{r}^{f}-r_{1}^{-s}\right)+\varepsilon_{n 1}$
SHoud be -1
(5)
is $0-+1$! "carry tradt"

FORECST 1 YEAR RON n YEAR BONDS FORECAST ONE YEAR QATE $n-1$ YEAYS FROM NOW

- $f^{(n)}-y^{(1)}$ ALHOST 1-1 TOER $\cdot f^{(2)}, y^{(1)}$ ALMOST \cong TO $\Delta y(1) \Rightarrow E M$ (00). WRONG! AT 1-YEAR
 $1 \sqrt{C}(R \mathrm{P} P \mathrm{H})$

BONDS 6 STATSTICAL FACTPR MODELS

- PRODUCE ? CHOOSE WE, WEIGTSTS LOADING) TOMAX R R^{2}
(6) $Q Q^{\prime}=Q^{\prime} Q=I$
$\notin p^{\left(00^{2 S}\right.} \quad x_{+}=Q^{\prime} y_{+} \Rightarrow \operatorname{Cov}\left(x_{1}, x_{i}\right)=Q^{\prime} \Sigma Q=\eta$
$\left[\begin{array}{l}q_{i} \\ q_{\text {fRRE }} \\ \text { WEIGHRS }\end{array} x_{i}=\left[-a_{i}-3\left[\begin{array}{c}1 \\ y_{1} \\ 1\end{array}\right]\right.\right.$

- LEnNe out Some faktors?
\rightarrow LOADINLS AREOLS
\rightarrow EACN X HAX R R^{2} !
6.1 STATISTICAL FACTOR NODEL IN DATA
- Bonds
- FF25

7 TERM STRUCTURE MODEL $1 N$ ITH EXPECTATIONS LMPOTHESIS

- SHOWS IDEA
- NEED TO GO BEYOND INCLUDED BOND
- "arbitrage"
- "SHORT RATE PROCESS"

$$
\left(y_{t_{1}-1}^{(1)}-\delta\right)=\phi\left(y_{+}^{(1)}-\delta\right)+\varepsilon_{t-1}
$$

- Find OTHERS by Eh

$$
\begin{aligned}
& f_{t}^{(2)}=E_{x} y_{t+1}^{(1)}=\delta+\phi\left(y_{t}^{(1)} \cdot \delta\right) \\
& f_{t}^{(3)}=E_{t}\left(y_{t+1}^{(1)}\right)=\delta+\phi^{2}\left(y_{t}^{(1)}-\delta\right) \\
& f_{t}^{(1)}=E_{t}\left(y_{t+m}^{(1)}\right)=\delta+\phi^{3}\left(y_{t}^{(1)}-\delta\right)
\end{aligned}
$$

THEN

$$
y_{t}^{(n)}=\frac{1}{n}\left(y_{t}^{(1)}+f_{t}^{(2)}+\cdots f_{t}^{(n)}\right)=\delta+\left(1+\phi+\psi^{2} \cdot \phi^{* \prime \prime}\right)\left(y_{t}^{(1)}-\delta\right)
$$

REALMODEL? LIKE THISBNT MODEL $M_{t+1}, P_{t}^{(n)}=E_{t}\left(H_{t+t} \cdot H_{t+u}\right)$

Bonds 8 DISCRETE TIME vasicern

- RESAT

$$
\begin{aligned}
& y_{\because(1)}^{(1)} \delta=\phi\left(y_{r}^{(1)} \cdot \delta\right)+\varepsilon_{(1)} \\
& \left.f_{t}^{(2)}=\delta+\phi\left(y_{t}^{(1)}-\delta\right) \quad-\left[\frac{1}{2}+\right\rangle\right] \sigma_{1}^{5} \\
& f_{k}^{(3)}=\delta+\phi^{2}\left(y_{c}^{(1)}-\delta\right)-\left[\frac{1}{2}(1+\phi)^{2}+>(1+\phi)\right] 0_{\varepsilon}^{2} \\
& \left.f_{r}^{(4)}=\delta+\phi^{3}\left(y_{k}^{(-)}-\delta\right)-\left[\frac{1}{2}(1+\alpha+\dot{\phi})^{2}+\right\rangle\left(x \phi+\phi^{\prime}\right)\right] b_{\varepsilon}^{2} \\
& \left.f_{t}^{(n)}=\delta+\phi^{n-1}\left(y_{\ell}^{(n)} \cdot \delta\right)-\left[\frac{1}{2}\left(\frac{1-\phi^{n-1}}{1-\phi}\right)^{2}+\right\rangle\left(\frac{1-\phi^{n-1}}{1-4}\right)\right] \sigma_{\varepsilon}^{2}
\end{aligned}
$$

- Derivation

$$
\left\{\begin{array}{l}
x_{t s} \cdot \delta=\psi\left(y_{t}-\delta\right)+\varepsilon_{t+1} \\
\left.\ln M_{t n}=M_{t n}=X_{t}-\frac{1}{2} \lambda^{2} \theta_{k}^{2}-\right\rangle \varepsilon_{t-1} \\
\underline{P}(n)=E_{t}\left(M_{t+1} H_{t+2} \cdots M_{t+n}\right)
\end{array}\right.
$$

- APPROACH 1 : BRUTE FORCE

$$
P_{t}^{(1)}=E_{t} M_{t n}=E_{t} e^{M_{t N}}=E_{t} e^{\left.-x_{t}-\frac{1}{2}\right\rangle^{2} \sigma_{\varepsilon}^{2}-\lambda \varepsilon_{t 1}}=e^{-x_{t}}
$$

$P_{r}^{(1)}=-y_{t} y_{r}^{(1)}=x_{t}$!. "BON DPRICES REVEAL LATENT STATE VARIABLEs" - CAN START WITH $Y_{x}^{(1)}=x_{+}$, THEN CHECK MODEL PRODUCE $y_{-1}^{* 1)}$

$$
\begin{aligned}
& \left.P_{+}^{(2)}=E_{X}\left(M_{+1}, M_{1,2}\right)=E_{K}\left(M_{+1} P_{t n}^{(1)}\right)=E_{+} e^{\left.-x_{+} \cdot \frac{1}{2}\right\rangle^{2} \sigma_{1}^{2} \cdot \lambda \varepsilon_{+}}\right)^{-X_{t+1}} \\
& \text { Y } \quad=E_{x} e^{-x_{x}-\frac{1}{2} \lambda^{2} \sigma_{\varepsilon}^{2}-\lambda \varepsilon_{m 1}-\delta-\phi\left(x_{1}-\delta\right)-\varepsilon_{+-1}}
\end{aligned}
$$

BONDS 9: OTHER APPROACHES
. "Solve" discountfactortinteyrate"

$$
P_{t}^{(2)}=E_{t}\left(H_{t}, M_{t+2}\right)=E_{t}\left[e^{-x_{t} \cdot \frac{1}{2} T^{2} \sigma_{2}^{2}-\lambda \xi_{4 .,}-\left[\delta+\phi\left(x_{t}-\delta\right)+\xi_{t}\right]-\frac{1}{2} \lambda^{2} \sigma_{\varepsilon}^{2}-\lambda \varepsilon_{t+2}}\right] \ldots .
$$

have fol)

- "derive a difference / differemialequation for price as function ofstate variables" - GUESS $p(r)=A_{n}-B_{n}\left(X_{r}-\delta\right)$
- USE PRICING TO $P\left(\begin{array}{r}(n-1) \\ \rightarrow\end{array} P_{t}^{(n)} \quad P_{t}^{(n)}=E_{t}\left(M_{t n} P_{t-}^{(n-)}\right)\right.$

$$
\begin{aligned}
& A_{n}-B_{n}\left(x_{t}-\delta\right)=\log E_{+} \exp \left[-x_{t-1 n_{2} r_{2} \cdot \sum_{2}+}^{\left.m_{n-1}-B_{n-1}\left(x_{t-}-\delta\right)\right]}\right. \\
& =-\delta+A_{n-1}-\left(1+B_{n}, \phi\right)\left(x_{t}-\delta\right)+\left(B_{n-} \lambda+\frac{1}{2} B_{n-.}^{2}\right) \sigma_{\varepsilon}^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow B_{n}=1+\phi B_{n-1} ; A_{n},-\delta+A_{n-1}+\left(B_{n-1} \lambda+\frac{1}{2} B_{n-1}^{2}\right) G_{\sum}^{2} \\
B_{2}=0 \quad B_{1}=1 \quad B_{2}=1+\phi & A_{0}=0 \quad A_{1}=-\delta \quad A_{2}:-2 \delta+\left(\lambda+\frac{1}{2}\right) G_{\varepsilon}^{2} \\
B_{3}=1+\phi+\phi^{2} \cdots & A_{3}=-3 \delta+\left[(1+\phi) \lambda+\frac{1}{2}(\cdot 4)^{2}\right] G_{2}^{2} \cdots
\end{array}
$$

(3)

$$
B_{n}=\frac{1-\phi^{n}}{1-\phi}
$$

- Risk-neutral approach

$$
\begin{aligned}
& f_{t}^{(n)}=\left(1-\phi^{n-}\right) i_{i}+\phi^{n-(} y_{t}^{(1)}-\left[\frac{1}{2}\left(\frac{1-\phi^{n}}{1-\phi}\right)^{2}+\lambda\left(\frac{1-\phi^{n-1}}{1-4}\right)\right] \sigma_{\Sigma}^{2} \\
& f_{r}^{(n)}=(1-\phi^{n-1} \underbrace{\delta-\frac{\lambda}{1-\phi_{\varepsilon}^{2}} b^{2}}_{\delta^{*}}]+\phi^{(n-1} y_{t}^{(1)}-\left[\frac{1}{2} \frac{\left(1-\phi^{n-1}\right.}{1-4}\right)^{2}] \sigma_{\varepsilon}^{2}
\end{aligned}
$$

THE CROS-SEETIONAL MODEL IS THE SAME AS A MODEL WITH $\lambda=O$ RISKNETRM + DISTORTED MEAN $\left.\delta^{\prime}=\delta-\frac{6^{2}}{1-4}\right\rangle$

$$
\begin{aligned}
x_{t+1} & =\delta^{k}+\phi\left(x_{1}-\delta^{\prime}\right)+\varepsilon_{t+1} \\
m_{m} & =-x_{t} \\
y_{t}^{\prime 2} & =x_{t} \\
p_{t}^{(2)} & =\log e^{-x_{1}-x_{t+1}}=\log e^{x_{t}-\delta^{\prime}-q\left(x_{r}-\delta^{\prime}\right)-\varepsilon_{+1}} \\
& =-26^{2}-(1+\phi)\left(x_{t}-\delta^{\prime}\right)+\frac{1}{2} \sigma_{\varepsilon}^{2}
\end{aligned}
$$

ALGEBRA IS EASTER!
10. COMHENTS ON SINGLE FACTOR JASI LEn

- Like Eh: "Short pactoress

How yIElDS MOVE OUERTIME CROSS SECTION FORECASTS

- Risk premium in model. Signify: can go eitherway
- "EXPECTATIONS HYPOTHESIS F RISK NEUTRALITY" $\frac{1}{2} \sigma^{2}$. SMALL $\sigma \geqslant 0.01$
- ExAmple graph
- RISK-MEUTRAL: λ IS Not NEEDED TO DESCRIBE CROSS SECTION.
λ CONNECTS CROSS SECTION ("TOO HIGH" δ ") WITH TIME SERIES FORECASTS.
\rightarrow "pish neutral" used for many pricinllases.
\rightarrow BE CAREFUL!! $\delta \pm \delta$! $\left[\psi^{\prime} 1 \phi!\right]$
- $M_{t_{1} 1}>0 \rightarrow$ "ARBITRAGE FREE" MODEL PRICE $P=E\left(M_{+r} X_{f n}^{c}\right)$ W/O ARBitralLe (ATLEAST)
1BLAKk-SCIOLES FOR BOND OPTIONS:
- TO DO
- more factors : $X_{+}=\left[\begin{array}{c}x_{i}^{2} \\ x^{2} \\ \vdots \\ x_{1}^{*}\end{array}\right]$-VEctor
- time-varying risk premiums [faha-bliss]

$$
x_{t n}-\mu=\Phi\left(\frac{l}{x_{r}}-\mu\right)+\Sigma_{t n} E\left(\frac{1}{\varepsilon_{t n}} \Sigma_{t r}^{\prime}\right)=V
$$

$$
\log M_{t n}=M_{t 11}=-\delta^{\prime} X_{t, 1}-\frac{1}{2} \lambda_{t}^{\prime} V^{-1} \lambda_{t}-\lambda_{t}^{\prime} \varepsilon_{t-1}
$$

$$
\lambda_{t}=\lambda_{0}+\Lambda_{1} \cdot x_{t}
$$

$$
\Rightarrow \quad M^{2}=\mu-V \lambda_{0} \quad \phi^{\prime}=\phi-V \Lambda_{1}
$$

$$
f_{t}^{(n)}=\cdots+\delta_{1}^{\prime} \underbrace{\phi^{\prime n-1} x_{+}}_{\text {FIT SHAPE }}
$$

- more.. easier in cont.time.

BONOSII: CONT, NOUS TIME TERMSTPVETUNE

- sane ideas!
- simple cone : vasice n.

- PRICING \rightarrow DE $\quad E_{r}\left(d R_{r}\right)-r_{r} d r=-E_{1}\left(d n d R_{r}\right)$

P(n,r)

Nor of MACPIIY
(B) \rightarrow (A)
$\frac{\partial P}{\partial r} A_{r}+\frac{1}{2} \frac{\partial^{2} ?}{\partial r} \sigma_{r}^{2}-\frac{\partial P}{\partial n}-r P=\frac{\partial P}{\partial r} \sigma_{r} \sigma_{n}$

- LuESS $P(n, r)=e^{A(n)-B(n) r}$ FIND Am) B(n)
$\left.\left.\frac{\partial T}{\partial r}=-B(1)\right\} ; \frac{\left.\partial^{2}\right\}}{\partial r^{2}}=B(n)^{2} ? ; \frac{\partial R}{\partial n}=\left[r^{\prime}(n)-B^{\prime}(a) r\right]\right\}$
$\Rightarrow \underbrace{A^{\prime}(r)}-B^{\prime}(n) r \cdots\left[\phi^{\left.\phi(\dot{r}-r)-\sigma_{r} \sigma_{n}\right] B(n)+\frac{1}{2} \delta_{r}^{2} B(n)^{2}-r, r ~}\right.$ $\left.B^{\prime}(n)=1+\phi \beta(n) \quad n^{\prime}(n)=\left[\phi F^{\prime}-\sigma_{r} \sigma_{n}\right] B(n) \frac{1}{2} \sigma^{2}, B_{n}\right)^{2}$

INTO ORDWARYD IFPERENTIAL EQUATION [REAUY FAST IF NUMERICAL; ERSY HERE BY HAND\}
(4)

12 CONTIMOVS TIME DSCUSSION

- "Paitpr process" (The) + "FActor hoorl" (cratssection) ELIFITATIONS \& RISK PREMIUM, $\frac{1}{2} G^{2}$ TERMS
- Roblk mestral taick

$$
\bar{r}=\bar{r} \cdot \frac{\sigma_{n} \sigma_{r}}{\phi}
$$

$\Rightarrow f(n, r): f^{\prime}+e^{4 n}\left(r-r^{\prime}\right)-\frac{1}{2} \frac{6}{p^{2}}\left(1-e^{-r}\right)^{2}$

- SIMPLIfiES ALLEEBRA, BUT DONT FIT M! or F' FROHTIMESRRIES! $A B \pi$
- hore reaustic: same stracture, ideas.
- KEEP $r_{r}>0$; SOME (4mveina vola Tlity: C IR
$d r_{3}=\phi\left(\tilde{r}-l_{1}\right)+\sqrt{r} \sigma_{c} d 2_{+}$
- mittiple factors: $r \rightarrow x$, avector
- "multifnctor a ffint"

$$
\begin{aligned}
& d_{1},=\psi\left(i, x_{1}\right) d t+\sum d w_{f} \\
& r_{1}=\delta_{0}-\delta_{1}^{\prime} y_{1} \\
& d n=-\rho_{+} d_{+}-b_{n} d w_{\sim} \\
& d w_{i}=\sqrt{\alpha_{1}+B_{1} n_{1}} d z_{1} \\
& \rightarrow \operatorname{sic} ?(n, \cdots)=e^{-n(-)-B_{1} \cdots x_{1}} \\
& \text { A(N) B(s) EASTDOE }
\end{aligned}
$$

- "unspaned varinbles"
X_{t}, stounssic yar. that IS NOT RENALEDBYBADPRAEC
- Point of All this
(WHICH NODEL - WHICH PURPOSE)
- CROSS SECTION - PRICE WEIRD BOMDS. OPTONS
- Find pricina anutalies, "liquidity"
- find tradinu strategies
- Forectast rates
- interpret curve \rightarrow eapettedreal, it, PREMIUM?
(5)

