CONTINGENT CLAIMS. STATE PRICES, RISK-NEUTRAL PROBABILITIES

1. STATES + COMPLETE MARKETS

- deeper m; market structure; "complete" us "Incomplete"; useful wens
- TERMS
- STATES OF NATURE $S=1,2 \cdots S$. Typically $\mathrm{Pc}(\mathrm{s})(1)$.
- spanning by dynamic trading

ZSENRTIES [SAB]
AND Trading ATO, !
$\Rightarrow 4$ STATES SPANNED
1.0 tilt ti

- "complete" clank on, SAN, St P, not Rain
- option pricing $S=S+P 500$ at T
- (complete market all c. claims auplable or synthesized)
- In complete market not ". Example
- spanning can create c.claims. example

$$
1<R_{R^{+}} 1 . \quad \text { "BoND" } \quad S+B=\text { CLAIMS }
$$

2. RISK NEKKRAL PROBABILITY + DISCONNT FACTOR IN LOMPLETE MARKETS
DISCOUNT FACTOR' \leftrightarrow CLAIMS
Contingent claims $\rightarrow P(x)=\sum_{s} P_{\equiv} C(s) X(s)$

$$
P(x)=\sum_{s} \pi(s)\left[\frac{P_{c}(s)}{\substack{\pi s s}} \begin{array}{c}
n \prime \\
m(s)
\end{array}\right] x(s)=E(m x)
$$

- ingredient: Loop
- INGREDIENT: LOOP - "A DISCOUNTFACTOREXISTS" - CAN REPRESENT $\{P, x\}$ BY $P=E(\mu x) \Rightarrow P(x)=\frac{1}{R^{+}} \sum_{s} \pi^{\prime}(s) x(s)=\frac{E^{h}(x)}{R^{f}}$
- COMPLETE, LOOP \Rightarrow M EaSTS. $M=P C / \pi$
- $P=E(m x)$ innocurus. $m=f($ iata)!.
- Continuous states. $\int_{s} f(s) m(s) x(s) d s$ "M IS A STATEPRICE DENSITY"

RISk-मEJRAL probabILITIES

$$
P(x)=\sum_{s} P_{c}(s\} X(s)=\sum_{s} \pi(s) M(s) X(s)
$$

$\nabla^{\left\langle<c^{\prime}\right.} \varepsilon^{\ell} \pi(s)=\frac{P_{c}(s)}{\sum_{s} \rho_{c}(s)}=\frac{M(s) \pi(s)}{\sum_{,} m(s) \pi(s)}=\frac{m(s)}{E(m)} \pi(s)=R^{\dagger} M(s) \pi(s)$
$0<\pi^{\prime}(s)<1 \quad P R O B$ $0 \leq \pi^{\prime}(S) \leq 1$, PROB'S

- π^{\prime} ARE "RISK NEUTRAL PROBABMITIE, $\quad \pi(s)=R^{f} m(s) \pi(s)$ IS "CHANGE OF $\begin{aligned} & \text { MEASURE" }\end{aligned}$
- $\pi^{\prime}(S)=R^{f} \beta \frac{U^{\prime}(C)}{U^{\prime}(C)} \pi(S)$ OVERwEIGHT UNPLEASANT STATES
- USE RISK NEUTRAL FORMVLAS ARE SIMPLE. USE WHEN RISK PREMIJMS DOIT MKTIER-ARBTRAGE
- SUMMARY $P=E(m x)=\sum_{s} \pi(s) M(s) X(s)=\sum_{s} P(s) X(s)=\frac{1}{R^{+}} \sum_{s} \pi i(s) X(s)$
"STOCHASTIC DISCOUNT FACTOR" = "STATE .PRICE DENSITY" = TRANSFORM TO RISK-NEUTRA PROBABILITIES"; M $M \hookleftarrow P C \leftrightarrow \pi^{\prime}$

3. INVESTORS INA COMPLETE MARKET.

$$
P=E \mid M X)=\text { BUNPLING }
$$

$$
\begin{aligned}
& M A+V\left(C_{t}\right)+B E_{t} U\left(C_{t n}\right) \text { S.T. } C_{t}+E_{t}\left(M_{t n} C_{12}\right)=W \\
& U\left(C_{r}\right)+\beta \sum_{s} \pi(s) U\left[C_{t, 1}(s)\right] s_{t}+. C_{t}+\sum_{s} \pi(s) M(s) C_{t r i}(s)=w \\
& \left.\sum_{S} P u\right) C_{t_{+1}}(s)=W \text { G- BUY CCLAIMS FOR FUTURE CONSJMPTION } \\
& \partial / \partial c_{t} ; \partial / \partial c_{t_{n}}(s) \quad M_{t u}(s)=\beta \frac{U^{\prime}\left[c_{t_{v}}(s)\right]}{U\left[c_{t}(s)\right]} \\
& \text { + } \\
& m_{t+1}=\beta \frac{U^{\prime}\left(c_{* N_{1}}\right)}{J\left(C_{2}\right)} \text { INEACH STATE } \\
& \frac{M\left(S_{1}\right)}{M\left(S_{2}\right)}=\frac{v^{\prime}\left(C\left(S_{1}\right)\right)}{v^{\prime}\left(C\left(S_{2}\right)\right)}=\operatorname{MRS}(1,2) \\
& m=\beta \frac{U^{\prime}\left(G_{.}\right)}{V^{\prime}\left(C_{1}\right)}=\text { INNESTOR. }
\end{aligned}
$$

4. RISK SHARING $[$ - INVESTOR), COMPLETE MARKET)

THERE IS ONLY ONE P., M, SAME FOR EVERYONE

- i- PEOPLE

$$
\begin{aligned}
& \text { sthtez }
\end{aligned}
$$

MARGINAL UTILITY GROWTH IS THE SAME FOR ALL INVESTORS

- if β, v(.) are thesane - power

If $\gamma_{i} \neq \gamma_{;}$
$\left(\frac{c_{1}+\cdots}{c_{+} ;}\right)^{\cdot \gamma_{i}}=\left(\frac{c_{+\cdots}^{j}}{c_{+}^{i}}\right)^{\gamma_{j}}$
$\left.\gamma_{i} \log \left\lvert\, \frac{c_{i}}{c_{t}}\right.\right)=\gamma_{i} \log \left(\frac{c_{t+i} c^{i}}{c_{t}}\right)$
low $\gamma_{i} \rightarrow$ MORE VOLATILE $\triangle C$ \rightarrow HIGHER $\triangle C$ GROWTH!

- ASSET MARKETS ALLOCATERISK
(H REWARD) TO THOSE WILINGTOBEAR IT
- WHY AGGREGATE SHOCKS (AGA. CONSUMPTION, R MARKET, ETC) APPEAR
"PARETO OPTIMAL" ALLOCATION.
- "AGGREGATION" ASIF
$U\left(\Sigma C_{t}^{i}\right)=U\left(C_{t}^{A C 6}\right)$

5. STATE SPACE GEORETRY
$m(S)>0$ in All STATES $\rightarrow \in R^{S+}$

- $S=\left(1,2 \ldots S^{\prime}\right)$
- $M=[m(1) m(2) \ldots m(S)] \in R^{s} \quad\left(L^{2}\right)$

$$
x=\left[\begin{array}{llll}
x(1) & x(2) & \cdots & x(5)
\end{array}\right] \in R^{5} \quad\left(L^{2}\right)
$$

- Analogy: Regression

$$
y=x b_{+}+\epsilon=x_{1} b_{1}+x_{2} b_{2}+\varepsilon
$$

$X \rightarrow P(x)$ is a linear FUNCTION FROM $\overline{R^{s}}\left(L^{2}\right) \Rightarrow R$
L. COMPLETE MARRETS SIMMARH

1. $\{x, P\}$ COMPLETE, LOOP $\rightarrow \exists p_{C} \cdot \rho_{(M)}=\sum_{s} p_{(v)} x_{(s)} ; \exists M: P_{(M)}=\sum_{s} \pi(s) M(s) x(s) ; \exists \pi(s): P_{(x)}=\sum_{s} \frac{\pi i(s) x(s)}{R^{f}} \quad P(x)$ ISALINEAN FJNCTION
2. PLCDM $-\pi$ USE WHAT WORKS
3. $\Pi^{\prime}(s)=R^{+} M(s) \pi(s) \quad$ RISK AJERSION $=$ PROBABILITY DISTORTION
$m(S)=\frac{\pi^{\prime}(s)}{\pi(s)} \cdot \frac{1}{\Omega^{f}}$ DISCONT FACTOR = CHANME OFMEASURE
4 P=E(MX) ASSETS ARE BJNDLES OF (LAIMS. $M=f$ OATA) MATTERS
J $U^{\prime}(L)>0 \Rightarrow M(S)>0 \quad M_{+q}>0$ INALLSTATES
6 GESMETRYS, inNER Pronuct

DISCOUNT FACTOR IN INCOMPLETE MARKETS

1. QUESTION
Q ? Yow SEE $\{P, X\}$ IN COMPLETE MARKETS. $\exists \mathrm{M}: P(x)=E(M X)$?
(INSTRUCT m ?
THEOREMS
2. Law of one price \rightarrow 子uniave $X \in \underline{X}$ ST. $P(t)=E\left(x^{2} x\right) \quad \forall x \in \underline{\mathbb{X}}$
3. FA STRIGTLYPOSITIVE $M>0 \Leftrightarrow$ LOOP AND NO ARBITRAGE
4. LOOP $\rightarrow X^{*}$

PAYOFF SPACE X INCOMPLETE XCRS EXAMPLES \rightarrow NOT RETROS. $P=2,2 \cdot R 700$

AI PORTFOLIOS $X_{1}, x_{2} \in \underline{X} \rightarrow a Y_{1}+b x_{2} \in \mathbb{X} \rightarrow$ NO SHORT CONSTRAINTS
Az LOOP, LINEAR $P\left(a x_{1}+b x_{2}\right)=a P\left(x_{1}\right)+b P\left(x_{2}\right)$ MILD "RATION AllY" $\quad \rightarrow 0 \in \mathbb{I}$

$$
T_{1} \cos T s
$$

CAN GENERALIZE

FA. 4.1

Theorem $A 1, A 2 \rightarrow$ A AuNIquE $x^{\prime} \in \underline{\underline{X}}$ 5.3. $P(x)=E\left(x^{2} x\right) \forall x \in \underline{\underline{Z}}$
3. WHAT ITDDES + DDES NOT SAY

PRoof $E\left(x^{*} x^{\prime}\right)=E\left(\rho^{\prime} E(x \times-)^{-1} x x^{\prime}\right)=\rho^{\prime}$
EXAMPLE $x^{\prime}=I^{\prime} E\left(R R^{\prime}\right)^{\prime \prime} R$

- All m car be formedturway $\{m: P(y)=E(m)\}$

$$
=\left\{m=x^{*}+\varepsilon E(x \varepsilon)=0\right\}
$$

(MAN YM \rightarrow NOT COMPLETE XX)

$$
\text { - } \dot{x}=\operatorname{Prov}(m \mid \underline{\underline{X}}) \text { For any } M!\left(m=\frac{\beta^{\prime}\left(c_{c_{-}}^{i_{1}}\right)}{v^{\prime}\left(c_{t}^{\prime}\right)}\right)
$$

WHEN S NFINITA "RIESZ REP. THEOREM"
4. POSITINEM FARBITRAGE

THEOREM $\exists A$ M TO (AL STATES) \leftrightarrow NO ARBITRAGE OPPORTUNITIES +LoP
DEF $\underline{\underline{X}}, P(x)$ LEAVE NO ARBITRAGE IF $x>0, x>0$ with $\pi>0, \rightarrow P(x)>0$

(IOTERYTICKET)

"ARBITRAGE".
IDEA $\leftarrow M(s)>0 X(s) \geqslant 0 \quad P=\sum, \pi(s) M(s) X(s)>0$
COMPLETE UNIQUE $x^{*} \quad \dot{x}<0$ for SOME S? $\quad \sum_{S:} x^{\prime}(s) \cdot 1=0$ \rightarrow Book.
S. WHAT IT DOES + DOES NOTSAY

- m Io is not ne. Unique, ORIN \mathbb{Z}, of $=x^{4}$
- USE "NO ARBITRAGE EXTENSION" $P(x)$?

6.

$$
\begin{aligned}
& \text { Formulas forx' } \\
& \text { F unave } x \in \underline{X} \text { St. } P(x)=E(x x) f t \in \underline{E} \\
& x^{0}=\eta^{\prime} E\left(x x^{\prime \prime}\right)^{\prime} x \\
& x^{\prime}=I^{\prime} E\left(R R^{\prime}\right)^{\prime \prime} R
\end{aligned}
$$

5. Formulas for'

$$
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}
\end{array}\right] P=\left[\begin{array}{c}
P_{1} \\
\vdots \\
p_{N}
\end{array}\right]
$$

BEtTER MAKEUP R

$$
\begin{aligned}
& \text { - } \quad x^{*}=P^{\prime} E(x x)^{-1} x \\
& \dot{x}=I^{\prime} E\left(R R^{\prime}\right) R \quad R=\left[\begin{array}{c}
R_{1} \\
\vdots \\
R_{N}
\end{array}\right] \quad 1=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right] \\
& \text { - } x^{*}=\frac{1}{\beta^{4}} \cdot \frac{1}{R^{*}}\left[E(R)-R^{4}\right]^{-} \Sigma^{\prime \prime}[R-E(R)] \\
& 1=E\left(x^{\prime} R^{\prime}\right)=\frac{E\left(R^{\prime}\right)}{R^{+}}-\frac{1}{R^{*}}\left[E(R) \cdot R^{f}\right]^{\prime} \varepsilon^{\prime} \underbrace{E[[R-\varepsilon(R)]}_{\Sigma} R^{\prime}]=1 \\
& \text { - } R^{2} \text { ? } \dot{x}^{\dot{x}}=0^{1} E\left(R^{e} R^{e}\right)^{-1} R^{e} \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& X=\frac{1}{R^{+}} \frac{1}{R^{+}} E\left(R^{2}\right)^{\prime} \Sigma^{-\gamma}\left[R^{2}-E\left(R^{e}\right)\right] \\
& \rightarrow E(x)=1 / R^{+} \rightarrow E\left(x^{\prime} R^{R}\right)=0 \\
& \text { - Continvoustime } \\
& d R_{t}=\mu d t+\sigma d z_{t} \\
& E\left(d R_{+} d R_{i}\right)=\sigma \sigma^{\prime} d t=\Sigma_{1} d+ \\
& \frac{d \Lambda^{0}}{A^{-}},-r^{f} d t-\left[M-r^{t}\right] \Sigma^{-1} \sigma d t \\
& \rightarrow E \underline{\underline{X}} \rightarrow E_{k}\left(\frac{d n^{\prime}}{n^{\prime}}\right)=-r^{f} d t \rightarrow E_{r}\left(d R_{t}\right)=r^{f} d r-E_{x}\left(\frac{d \Lambda^{\prime}}{r^{\prime}} d R_{t}\right) \\
& \frac{d n^{\prime}}{n^{\prime}} \text { is Positive! }
\end{aligned}
$$

