MEAN-VARIANLE FRONTIER - I.ClASILAAPROACH
 NOW IN COMPLETE NARUET, STATE SPACE D DSETS, PRETIER

AlGEBRA

$$
R^{e}=\left[\begin{array}{c}
R^{e n} \\
\vdots \\
\vdots \\
R^{e r}
\end{array}\right] \quad R^{e P}=\omega^{\prime} R^{e} ; \quad \min \sigma^{2}\left(R^{e q}\right) S T, E\left(R^{e P}\right)=E \quad \begin{array}{ll}
\\
& \min \omega^{\prime} \sum \omega \text { S.T. } \omega^{\prime} M=E \quad
\end{array} \begin{aligned}
& \left(N T_{i} \omega^{\prime} 1=1\right) \\
& \left.\sum_{i=}^{N} \omega_{i}=1\right)
\end{aligned}
$$

$\frac{\partial}{\partial w}\left[\frac{\partial}{\partial w_{i}}\right]: \Sigma \omega=\delta M *$

$$
\omega=\delta \Sigma^{-1} M
$$

$E\left(R^{2 M v}\right)=\delta M^{\prime} \Sigma^{-1} M \quad \sigma^{2}\left(R^{2 M \sim}\right)=\delta^{2} M^{1} \Sigma^{-1} M$
$\frac{E\left(R^{2 \text { MV }}\right)}{\sigma\left(R^{2 \text { LIV }}\right)}=\sqrt{M^{\prime} E^{-1} \mu} \quad$ MAY SUARPE RATID
A. ONE-FUND THEOREM (R*)
C. NOT (YET) $R^{C M N}$ IS
B. ROL THEOREM THE DPTIMAL PIRTÍtoLO $* \rightarrow \operatorname{cov}(R^{e}, \underbrace{R^{e} \omega}_{R^{e m v}})=\delta E\left(R^{e}\right)$ D. $\underset{=}{\underline{F} F} R^{H K T}=R^{m N} \Longleftrightarrow$ (APM $E\left(R^{e^{i}}\right)=\beta_{i, R^{(m)}} \cdot \lambda_{\mu \nu}$

2. STATE-SPALE [YANSEN-RLHARD] APPROACH TO MUF. fl 6. 5.2
(poo)
\underline{R}^{R}

1) ORTHOLONAL DECOMPOSSTITON

ANY RETURN $R^{i}=R^{2}+\omega_{i} R^{e n}+\eta_{i} ; E\left(R^{*} R^{e R}\right): E\left(R^{*} \eta_{i}\right)=E\left(R^{e *} n_{i}\right)=0$
PROOF DEFINE η_{i}, SHow \perp
2) MEAN VARI ABLE FRONTIER $R^{M V}=R^{*}+W \cdot R^{\text {eN }} \rightarrow$ TWO FUND THEOREM

PROF $E\left(R^{i}\right)=R^{2}+w_{i} E\left(R^{2}\right) \quad E\left(R^{(2)}\right)=E\left(R^{22}\right)+w_{i}^{2} E\left(R^{R^{12}}\right)+E\left(R_{i}^{2}\right)$
$($ Loop $\rightarrow \exists x \in \pm \cdots)$

1) $R^{\prime} \equiv \frac{x^{0}}{P\left(x^{\prime}\right)}=\frac{x^{*}}{E\left(x^{\prime 2}\right)} \cdot 1=E\left(x^{\prime} R\right) \Rightarrow E\left(R^{\prime 2}\right)=E\left(R^{\prime} R\right)$
2) $\left.R^{2 *}=P R_{0}\right)\left(1 \mid R^{2}\right)$
$\rightarrow X^{*} \quad$ CARRIES PRICE INFORMATION $(\tau) P(x)=E\left(x^{*} x\right)$
Re CARRIES MEAN INFOPMATION $\left.E\left(R^{e}\right)=E C R^{e+} R^{e}\right)$

$$
\begin{aligned}
& P(x)=E(m x)=E(\rho \operatorname{ros}(m \mid x) \cdot x)=E\left(x^{\prime} x\right) \\
& E\left(R^{e}\right)=E\left(\mid R^{e}\right)=E\left(\operatorname{pros}\left(1 \mid R^{e}\right) \cdot R^{e}\right)=E\left(R^{e 2} R^{e}\right)
\end{aligned}
$$

- R" IS THE "SMALLEST"

4. ROLL THEDREM
($\ddagger a, b:)$
MINIMUM SEGOND MOMENT RETURN
(WITHR ${ }^{\text {(}}$)
$R^{H V}$ on $H V F, R^{\text {HN }} \neq R^{\dagger} \Leftrightarrow M=a+b R^{M N}$ PRICESALL REX
l.e. $I=E(M \cdot R)$

- $E\left(n_{i}\right)=0,+E(n \cdot R)=E\left(n \cdot R^{0}\right)=0$ REGRESSION RESITDAC, ^ IDIOSYNIRATIO?

ENCESS RETURNALGEBRA

- "OMY SYSTEMATK COMPONENTOKRISLIS

PRUEX)

- R^{2} is not anyone's or the market portfollo!
- R ' is the returnanthe harginal viluty mimickina

PorTFa10. $\left.R^{\prime}=\frac{x^{\prime}}{P(x)} \quad \dot{x}=\operatorname{Pros}(m) \underline{X}\right)$
$m=\left(\frac{C_{1-1}}{C_{1}}\right)^{-6}$ LOES DOWN WHEN $R^{\text {PiRTFILID }}, \frac{C_{+n}}{C_{V}}$ GONP
R^{\prime} IS NELATIVELY CORRELATED WITH $\frac{C}{\sigma}$

$R^{\text {RMV on }}$ MJF $+0 \Rightarrow$
$R^{\text {CNV }^{\prime N}}=W \cdot R^{R+}$
TRY $m=1-R^{e x}+n$
$E\left(m R^{R i}\right)=$
$=E\left[\left(1-R^{2 \mu}+n\right)\left(R^{\alpha+}+\eta_{i}\right)\right]$
$=E \underbrace{E\left(R^{21}\right) \cdot E\left(R^{8 / 2}\right)}_{0}+E\left(n n_{i}\right)$
\Rightarrow IFF $\underline{n}=$

- NEW $R^{e M V}=\omega \cdot R^{e l} ; R^{e l}=E\left(R^{0}\right)^{\prime} E\left(R^{e} R^{e}\right)^{-1} R^{e}$. OLD $R^{e H V}=\omega E\left(R^{e}\right)^{\prime} \Sigma^{-1} R^{e}$

T0 $\quad m=a+b f \Leftrightarrow E\left(R^{\dot{c}}\right)=\beta_{i, f} \cdot \lambda_{f}$ CANDO NEW WITH 乏TOO.

2. REPRESENTATION + HISTORY
B. History of (i)

- Rou
- FAMA (1971) "EFFICIENくy"

$$
R_{+10}^{e}=a+b 2_{+}+\varepsilon_{-1}
$$

US "IRRATIONAL" - IS T RIGHT?
FAMA "JOINT HYPOTAESIS"
TESTS $\left.E\left(R^{e i}\right)=\beta_{i M}\right\rangle_{n}$

i) $P^{2}-E(M X)$ ISNT MU (V. $M=$ frDATAS ISENERYTHINL,
ii) USE THE REPRESENTATION THAT WORKS BEST.
2) $P_{x}=\sum_{s}^{\sum_{A}^{\pi_{s}} \cdot M_{s}} x_{s} x_{s}$

iii) KNOW HOWTOTRANSLATE

ASSET MARKET PATA ALOVE CANNDT
SETLE "RATtonality"; "EFFIGEnCy"
3. FASHINL. $E(R)$. E(RR' ETC. PROBABIITIES?

HOLDS FOR ANY PROBABILITIES:

SAMPLE $X^{\prime}=P^{\prime} E\left(i v^{\circ}\right)^{-1} x \rightarrow$ SAMPLE P.
SAMPLE $R^{e n v}=\underbrace{E\left(R^{\prime}\right)^{\prime} \Sigma^{\lambda} R^{e}}_{W^{\prime}} \rightarrow$ PERFECT FT

, CtPOSTMU

- There is a Porifollo whilh Perfectly prices all assets in sample
- tWORkS HORRIBLI OTT OF SAMPLE (SHONDA BONKHT GOOCLE)
\Rightarrow RULES OF THE GAME AREUITAL; CONSTRAINTS ON FACTOR FISHINK. EYAMPLE: FAAA+FRENCM. FACT HVLKART LITLLE SCIENLE

4. MIMALKINL PORT FOLIO THEOREN TFISHING

$$
\begin{aligned}
& P=E(n y) \quad \text { say } m=\beta\left(\frac{C_{14}}{C_{1}}\right)^{\gamma} \\
& p=E(\underbrace{\operatorname{pro}(m \mid \underline{x})}_{x}+\underbrace{\underline{x}}_{x}) \cdot x)=E(\operatorname{proj}(M \mid \underline{x}) \cdot x)=E(x x)
\end{aligned}
$$

\rightarrow Ja PORTFOLIO WHILH PRICES JUSTHSWELL.
$\rightarrow \lambda$ PORTFOLIOS THAT PRLLE ALOT BETER IN SAMPLE !
\rightarrow IF CISNOT MERSNREDWELI x IS BETER
\Rightarrow comparina fri or $\beta_{\left(\frac{G_{2}}{C_{+}}\right)^{-r}}$, FF3F ISSilly. IS FF3F \times FOR $\beta\left(\frac{C_{1}}{C_{2}}\right)^{-r}$ is NOT SILI
\Rightarrow USING X (FFBF) IS RIGIT FOR MOST PRHCTICALQUËSTIONS
\Rightarrow USING $x^{\text {C ANNOT ANSWER "RATIONAIITY" }}$
\Rightarrow THEOREMS ARE IMPORTANT:' GUDE 'WHY AREWE DOING THIS"
FINDING RIGHT MODEL FOR EACH QUESTION!

CONDITIONIING INFORMATION

1. Conditlowing down.

- Really $P_{t}=E_{t}\left(M_{t} x_{t+1}\right)$

$$
E_{x}\left(R_{1-}^{e}\right)=\beta_{+} \cdot \lambda_{t}
$$

$$
E(.) \rightarrow 0=E\left(M_{1 n} R_{+1}^{e} \mid Q R \text { iN(} \oplus_{4}\right)
$$

- $E_{t}\left(R_{n}\right), \beta_{+}, \varepsilon_{+}$VARY A LOR ; $R_{t n}=a+b\left(\frac{D}{p}\right)+\varepsilon_{1-1}$

ARCH/GARCH ET.

- \rightarrow COMPLEX NODELS OF $E_{+}, \beta_{2}, \sigma_{+} \ldots$
- INEIGRATION SETS. E(RII) ; cONIR', R'II) WHATSI? AGENTS: MARKET; ALL VARLABCLESWESEE: YNUABLES LUE NNLLUDE ; UNCONDITTQNPL

$$
0=E\left(m_{t+1} \cdot R_{t+1}^{R}|A G E N| W F O_{t}\right) \quad M_{t+1}=\beta\left(\frac{C_{1+1}}{C_{1}}\right)^{-r}
$$

$\rightarrow 0=E\left(M_{1 n} R_{x}^{\circ}\right)$ UNCONDITIONAL AUKLASE $\Rightarrow O=E\left(M_{+n} R^{2}+1\right)$ IS A VALID IMPLICATION $P=E(H y)$ " CONDITHONS Dow N" OF ASEMT FOC ASSETPRICING
$E(E(x, I))=E(x)$ LAW OF ITERATEDEXPECTA TIONS

$$
E_{t}\left(R_{+1 .}^{e^{i}}\right)=\beta_{i+} \cdot \lambda_{t}
$$

$$
E\left(R_{+n}^{2 i}\right)=E\left(\beta_{i c} \lambda_{1}\right) \ldots \text { ? DOES NOT EASILY CONDITON }
$$ Dawn.

2．INSTRUMENTS \＆MANAGET PORTFOLIUS

$$
\begin{aligned}
& 0=E_{k}\left(M_{+1} R_{+n}^{e}\right) \rightarrow E\left(M_{+1} R_{+1}^{e}\right)=0 \\
& 0=E_{k}\left(M_{t+1} R_{+n}^{e} 2_{+}\right) \Rightarrow \\
& 0=E\left(M_{+11} R_{t+1}^{e} 2_{+}\right)
\end{aligned}
$$

Sがくしたがい

$$
0=E\left(M_{t+1} R_{+y}^{e} Z_{+}\right) \quad \forall Z_{r} \in I_{+} \leftrightarrow 0=E_{+}\left(M_{+k}, R_{+1}^{e}\right)
$$

（1）$E\left(M_{+1} R_{+\infty}^{e}\right)=0$ ？
（2）$M_{+1} R_{+n}^{e}=a+b z_{+}+\varepsilon_{+\ldots,} \rightarrow b=0$ Morere［GMM （ASSO ATEST）
（3）

TIME SERIES＝CROSS SECTION
REURESSIONS $=$ PORTFOLDS
＂MANALED ParT FJNO THEDREM＂
Ex：FF 25 ；USF HEXE／MUTUALFUNDS
3. (ONDITIONAL + UNLONDITWRAL MODECS

Progien Parameters may vary over time
" (onpitional mopel"
EYAMPLE: CONDITIONAL CAPM

$$
\begin{aligned}
& \text { PLE: CONDITIONAL CAPM } \\
& \begin{aligned}
E_{+}\left(R_{+n}^{e i}\right)=\beta_{i+} \cdot \lambda_{M t} \leftrightarrow & M_{+n}=a_{t}-b_{t} \cdot R_{t+1}^{M} \Leftrightarrow R_{t+1}^{M} \text { SAT. MIN } \sigma_{r}^{2}\left(R_{t n}\right) S \cdot S_{+}\left(R_{+n}\right)=E \\
& O=E_{+}\left(M_{+n} \cdot R_{t n}^{e i}\right)
\end{aligned}
\end{aligned}
$$

counter example: consumpion, aw "uncorditional model"

$$
M_{t+1}=\beta\left(\frac{C_{+1}}{c_{r}}\right)^{-\gamma} \text { NDr } \beta_{+}, \gamma_{t} \quad \text { SAT. } D=E_{t}\left(M_{+n} R_{+t_{1}}^{e_{1}}\right) \Leftrightarrow E\left(M_{+k 1} R_{+k}^{Q} Z_{t}\right)
$$

Problem

Solution (partial)
MODEL CONDITION INA INFO.

$$
M_{t}=a\left(z_{x}\right)-b\left(z_{+}\right) R_{t=1}^{M}=a_{0}+a\left(2_{t}\right)-b_{0} R_{x=1}^{M}-b\left(2+R_{+1}^{M}\right.
$$

A conditional LAPM + ONE inFo vARiable $Z_{+}=$a 3 factor unconditional model.

- partial solution
\Rightarrow I) CONDITIOMNG INFO: AhEM, VARIABLES, MEAN

2) COODD MODELS PONOT ASSUME AGERTS ONLY SEE OVRVARIABLES
3) $T S=C S$ MANAGEd Pdetfoluos
