FACTOR PRICING MODELS - CAM, ILAPM, APT..

1. ITRTDDSTION IOUER JIEW

$$
\begin{aligned}
& \text { JER VIEW } \left.=\beta_{i, f}\right\rangle_{f}\left[t \alpha_{1}\right] \\
& E\left(R^{e i}\right)= \\
& R_{t}^{e i}=a_{1}+\beta_{i f f} f_{t}+\varepsilon_{t}^{i} \quad t=1 \cdots T \forall i
\end{aligned}
$$

$$
\nu
$$

WHAT CAN WE USE FOR f_{+}?
"Rules of the game": Avoid export mf? "Explain" E(prij?

SOFAR $f_{t}=\Delta C_{t}$ GOAL OTHER f_{t}

- CAM $f_{x}=$ EHEESSETURN on MARKET PORTFOLIO Rem

$$
E\left(R^{R^{i}}\right)=\beta_{i, M} \lambda_{M}
$$

- NoTE $\beta_{M, H}=1, E\left(R^{e^{n}}\right)=1 \lambda_{M} \rightarrow E\left(R^{e i}\right)=\beta_{i n} E\left(R^{\text {en }}\right)$

- when the factor is a traded ExCESS RETURN, THE HEAP OF THE Factor should earl the factor Rask premium $\lambda_{t}=f(f)$
$R_{t}^{e l}=\alpha_{i}+\beta_{i M} R_{1}^{e 4}+\varepsilon_{t}$
B) THE T, MAE SERIES $\operatorname{NTERREPT}$ IS The cross sectional ERROR $E(\cdot) \Rightarrow E\left(R_{i}^{(i)}=\alpha_{i}+\beta_{i n} E\left(R_{+}^{<n}\right)\right.$
"APR: AMERCE PT SHOUT BE ZERO"
Not if The factor is not traded, EL. foal
- I(APM: $f_{x}=$ 'InNovations to STATE VARIABLES MULTIFACTOR FOR INVESTMENT OPPORTUNITIES I OUTSIDE IN COME"
- Fame + french table 1

$$
\begin{aligned}
& R_{t}^{e i}=\alpha_{i}+b_{i}\left(M / f_{1}+h_{i} h_{M} l_{+}+S_{i} S M b_{+}+\varepsilon^{i}\right. \\
& E\left(\Omega_{v}^{e_{j}}\right)=\alpha_{i}+b_{i} \lambda_{N}+h_{i} \lambda_{n}+s_{i} \lambda_{s}
\end{aligned}
$$

"o? "E(rMrt) "E(hme) $=E(s m b)$
home: Valve- GRaNth
SAb: Shatl-BIG.
WHY?

- Today: Derive.
A) EQVIUBRIUM $\Delta 4<f_{t}\left\{\begin{array}{l}E\left(R^{C}\right)=\beta_{:_{f}} \lambda_{t} \\ \text { B) APT }\end{array} l\right.$
$\Delta G \leftarrow f_{t}\left\{\begin{array}{l}\text { USE THEOREMS.' } \\ M_{t_{n}}=a-b f_{t a} \\ E\left(R^{\epsilon}\right)=\beta_{:_{f}} \lambda_{t}\end{array}\right.$
- WARNiNG. - NOT CLEAN!
- CAM \rightarrow FCAPM \rightarrow APT $\rightarrow \angle C C$ HISTORY. VS \leftarrow, WHY LESS "AVOID C DATA"

2. LAPM / SIMPLE 2PERIOD QUADRATLL OBJECTVE $m_{t+1}=a-b R_{t+1}^{M}$
A. UTILITY $U(c)=-\frac{1}{2}\left(c^{\prime}-c_{r}\right)^{2}$

$$
m_{1}=\beta \frac{c^{\prime}-c_{t r_{1}}}{c^{\prime}-c_{t}}
$$

B. LIVES 2 PERIODS, NO JOB OR OUTSIDE INCOME

$$
\begin{aligned}
& C_{t 1}=W_{t n}=R_{t . .}^{N}\left(W_{t}-C_{r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Point of assumptions. }
\end{aligned}
$$

BI: R_{t+1}^{W} ANDONLY R- T+1. $\Rightarrow C_{t-1} \quad C A P M:$... AND NOTMNT ELSE A): $m_{\text {d, }}$ IS LINEAR
3. LAPM, DERIVATION WITH LOL VTILITY OR I.I.D. CONSOMPTION. GROWTH

$$
U=E \int_{t=0}^{\infty} e^{-\delta t} \frac{C_{1}^{1-r}}{1-\gamma} d t
$$

$$
\begin{aligned}
& \begin{array}{ll}
n_{t}=e^{-\delta t} C_{t}^{-r} & \begin{array}{c}
1-\gamma \\
\frac{d n_{t}}{n_{t}}=-r_{t}^{+} d t-\gamma \frac{d C_{t}}{C_{t}}+\frac{1}{2}(r)(\gamma n) \frac{d c_{t}^{2}}{C_{t}^{2}}
\end{array} \\
\text { not should be a } \\
\text { not }{ }^{\wedge}
\end{array} \\
& \begin{array}{ll}
n_{t}=e^{-\delta t} C_{t}^{-r} & \begin{array}{c}
1-\gamma \\
\frac{d n_{t}}{n_{t}}=-r_{t}^{+} d t-\gamma \frac{d C_{t}}{C_{t}}+\frac{1}{2}(r)(\gamma n) \frac{d c_{t}^{2}}{C_{t}^{2}}
\end{array} \\
\text { not should be a } \\
\text { not }{ }^{\wedge}
\end{array} \\
& E_{t}\left(d R_{r}^{i}\right)=r_{t}^{f} d t+b E_{+}\left(\frac{d C_{t}}{c_{+}} \cdot d R_{t}^{\prime}\right) \quad\left(\in E_{t}\left(\frac{d \Omega}{n} d R^{\prime}\right)\right) \\
& P_{t}^{w}=k C_{t} \rightarrow \frac{d P_{t}^{w}}{P_{t}^{w}}=\frac{d C_{t}}{C_{t}} \quad d R_{t}^{w}=\frac{d P_{t}}{P_{T}}+\frac{X_{P_{t}}}{P_{t}} d_{t} \\
& \Rightarrow E_{t}\left(d R_{r}^{i}\right)=r_{t}^{+} d_{t}+\gamma E_{t}\left(d R_{t}^{w} \cdot d R_{r}^{i}\right) \rightarrow \beta_{\text {iw }} r_{w}
\end{aligned}
$$

So FKR
conssuppon
whrl
"CONSOMPTION CRAIM" $P_{t}^{W}=E_{+} \int_{s=0}^{\infty} e^{. \delta s}\left(\frac{c_{t, s}}{c_{+}}\right)^{-\gamma} \cdot c_{t, s} \cdot d s$
A) $\| d, \frac{\text { E.... }}{d c_{t}} c_{1}=\mu d t+\delta d z_{+} \rightarrow f\left(C_{\text {Mr }} \mid c_{t}\right)$ HESAME

$$
\frac{p_{+}^{w}}{c_{r}}=\epsilon_{+} \int_{s=0}^{\infty} e^{-\delta s}\left(\frac{c_{+x}}{c_{l}}\right)^{-\gamma} d s=k
$$

$$
\begin{aligned}
& \text { B) } \gamma \Rightarrow \text { EUEN IF NOT ND! "FOR LSA VTLLTT, INOLYE }+
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{s-0} e^{-\delta s}=\frac{1}{\sigma}
\end{aligned}
$$

ASSUMPTIONS

- WHATS PW? MARKETRETURN IF NOJOB, INCOMI, REALESTATE.... "Proxy"
- NoJob. LINK $\triangle C, M+R^{W}$ - NOTANLELSE
- $\gamma=1 \Delta$ R IID. LINk $\Delta C_{r}, M_{t}$ To $R_{\underline{ \pm}}^{W}$ NoT NEWS,
- LINEARITY \leftarrow CONTINUCOSTIME. DISCRETE M+n $=1 / R_{t+n}^{w}=a-b R_{t+1}^{w}$

4. ICAPM / "STATE VARI ABCES"

$$
\begin{aligned}
& - \text { NOT } \| D, \gamma=1 \cdot R_{t+1}=a+b(\underbrace{\frac{D}{P_{t}}}_{X_{1}})+\sum_{t, 1} \\
& d R_{t+1}=M\left(x_{1}\right) d+t\left(\left(x_{t}\right) d Z_{+}\right.
\end{aligned}
$$

L"STATE VARIABLE FOR inVESTHENT -PPORTUNITIES"

$$
\text { MOREX } X_{1} \rightarrow \text { GOODNEWS } \rightarrow C_{+} \mid \rightarrow \text { U' }^{\prime}\left(C_{1}\right) \mid
$$

$V\left(W_{*}, X_{+}\right)=m A, E_{1} \int_{s_{0}}^{\infty} e^{-d s} v\left(c_{+\infty}\right) d s$

- "ENEEOPE THEOREM" $\frac{\partial V\left(W_{.-1}\right)}{\partial W_{1}}=\frac{\partial v\left(c_{1}\right)}{\partial c_{+}}$

$$
\text { \$ISNED }=\$ 1 \text { CONSUNPD }
$$

USE TO SUBSTITOTE $C_{+} \leftarrow W_{+}, X_{+}$ (CAPM) (NEW)

$$
\begin{aligned}
& e^{-\delta t} V_{w}\left(w_{1}, x_{1}\right)=e^{-\delta t} v\left(c_{0}\right)=n_{e} \\
& \frac{d n_{*}}{n_{*}}=\delta d t \cdot \frac{V_{w w} w_{0}}{V_{w}} \frac{d w_{*}}{w_{*}} \cdot \frac{V_{w} x}{V_{w}} d x_{2}+\text { (Ito - dt) } \\
& E_{t}\left(d R_{i}^{i}\right)-r_{r}^{(} d t=E_{t}\left(\frac{d n}{n_{k}} d r_{x}^{i}\right) \\
& \left.=1-\frac{V_{w w} \cdot w}{V_{w}}\right) E_{+}\left(\frac{d w_{w}}{w_{1}} \cdot d R_{i}^{i}\right)-\frac{V_{w-}}{V_{w}} E_{r}\left(d x_{1} \cdot d R_{v}^{\prime}\right) \\
& \text { risk IUERON: } \\
& V(w)=w^{1-\gamma}-\gamma \\
& \text { \"State variarle arrsion" [property of whole } \\
& \left.x t \rightarrow V_{\text {w }}=v_{i s}\right) 1 \text { ? } \\
& \text { ENUIRONHENT, Ai IUIUTY] }
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\beta_{i \omega}\right\rangle_{\mu}+\beta_{i x} \lambda_{x} \\
& \text { A TWO FACTORMODEL, UKE FFBR! }
\end{aligned}
$$

Assumptions : Still no job...
S. MUITIFACTOR MODELS / OUTSIDE INCOME
A. OUTSIDE INCOME

$$
\begin{aligned}
& C_{t_{n}}=W_{t+1}+Y_{t-1} \\
& W_{t-\cdots}=R_{t} W_{1}\left(W_{t}-C_{t}\right) \\
& m_{t, n}=\beta \frac{c^{\prime} \cdot R_{-1}^{\prime \prime \prime}\left(w_{-}-c_{1}\right)-y_{t-1}}{c^{\prime}-c_{1}} \\
& =\left(\beta \frac{c^{\prime}}{\left(!c_{r}\right.}\right)-\left(\beta \frac{\omega_{0} \cdot c_{2}}{c^{-c}-c_{0}}\right) R_{+, 1}^{w}-\left(\frac{\beta}{c^{\prime}-c_{2}}\right) y_{+, 1} \\
& M_{t+r} \quad a_{r} \quad-b_{r} R_{1 n}^{w} \quad \cdot d_{t} y_{t \rightarrow 1} \\
& \left.\left.\leftrightarrow E_{+}\left(R_{i,}^{R_{i}}\right)=\beta_{i w}\right\rangle_{w}+\beta_{i y}\right\rangle_{y}
\end{aligned}
$$

B STATE VARIABLES THAT FORECAST OUSIDEINCOME

$$
d y_{t}=M\left(x_{t}, y_{t}\right) d t+\sigma\left(x_{r}, y_{r}\right) d z_{1}
$$

\cdots Jo ST LIKE L/APM:
6. HULTIFAGTOR MODELS PORTHOLIO INTNITION

- "Hedging demand" portfolio logic
- outside income.
. $\left.A, B=E, \sigma, \beta, \ldots \quad E\left(R^{e i}\right)=\beta_{i}\right\rangle$ THEY ARE $=$
- IT A RECESSION, You lost JOB. $\left.A P, B 1 \quad\left[R_{4}^{2 i}=\alpha_{i}+\beta_{\operatorname{in}} R_{+}^{2 i}+\varepsilon_{+}^{i} ; \varepsilon^{A} \uparrow, \varepsilon^{\beta}\right)\right]$
- Buy: $P^{A} \uparrow \rightarrow E\left(R^{2 *}\right) \downarrow$ loams luke 2:

$$
p^{6} \downarrow \rightarrow E\left(p^{18}\right)^{p}
$$

$$
\begin{aligned}
& \text { • } E\left(R^{(i)}\right)=\beta_{i, n} \lambda_{M}+\underbrace{\beta_{i, v R} d_{J R}}_{\text {WAS } d_{1}}\left[R_{L}^{\prime \prime}=\beta_{i M B C E S} .\right.
\end{aligned}
$$

- state variables.
- News of future Job loss Just As BAD.
- news of poor investment opportunities.
- MuSt be AGgregate hedgE demand \rightarrow MaE prices.

7. INT ERTEMANAC

BONDPRICE $\perp \rightarrow$ BADNEWSTO CJRRETT W
$\rightarrow G 000$ NEWS TO E $\left(\omega_{\ldots} . ..\right)$

8 HULTIFKLOR HODELS U' INTUKION, MALDO, MIWICLINL PORTFOLIOS

$$
M_{-1}=\beta^{\dot{v}\left(c_{n}\right)} \underset{j\left(C_{1}\right)}{\text { "hunger", } C_{n 1} . P_{1-}^{w}, N\left(w 5, Y_{k, 1}, ~\right.}
$$

MIMICur Porffolios $\quad M_{\infty 1}=a+b \Delta y_{t_{0}}$

$$
x^{0}=\operatorname{Pros}\left(r_{e_{e}} \mid x\right) \quad \Delta y_{A 11}=\underbrace{\beta^{\prime} R_{t r}}_{\text {Porftol io, f }!}+\varepsilon_{c_{r}} \quad \Delta c_{1}=\beta_{1}^{\prime} R_{t r}+\varepsilon_{10,}
$$

.... ZOD! "FISHING EXPEDITON.

9 COMMENTS

- All replace $\Delta C_{\text {ti, }}$ with determinants.
special casts of ΔC, not alternatues to basic idea
- ASSUMPTIONS: VERY SPECIAL
- practice: inspiration, not cheching/testing.
-CAPM: $\lambda=\gamma \sigma(\Delta C)$? $\Delta C_{\lambda_{+_{1}}}=R_{t_{+1}}^{W}!16 \% \sigma^{2}$
- Icapm: Do X forecast? Solve $\frac{V_{w_{x}}}{V_{w}}$? no
- Macro, mimicking .. "Factors might be"
- POINT: Practice, work. BJ... X'? "RuLES OF GAME" ?

ART. RENDFF?

- how many assumptions do you use? Example
$E\left(R^{e i}\right)$, ANOMALY ORFJND. $E\left(R^{e i}\right)=\beta_{i \mu} E\left(R^{e^{M}}\right) . \quad \mid R_{t}^{e i}=0+\beta_{i m} R_{+}^{2 H}+\Sigma_{t}^{i}$
\checkmark "CAN GET WITH IndEx" "NOTANEW ANDHALY" "CANHEDGE W. IndEx" "ISASRATIONAL AS THEMARKET" X DEEP" EXPLAIN" "CAM ISWRONL"?

10. APT

GOAL $R_{t}^{i i}=\alpha_{i}+\beta_{i, 1} f_{k}^{1}+\beta_{i,} f_{x}^{2}+\varepsilon_{i+} R^{2}$,

$$
\Rightarrow E\left(R^{(i)}=\beta_{i} E\left(f^{\prime}\right)+\beta_{i 2} E\left(f^{\prime}\right)\right.
$$

APT DIFFERENT LOMIC. "SMALl" $\varepsilon \Rightarrow$ "SMAll" α, NO V'(c)

$$
R_{t}^{e}=\underbrace{R_{+}^{e_{i}}-\beta_{i 2} f_{t}^{\prime}-\beta_{i 2} f_{+}^{2}}=\alpha^{i}+\Sigma_{+}^{i} \quad \text { /portaBlE } \alpha^{\prime \prime}
$$

A PORTFOLD. "OPTIMA" HEDGE
MINIMUM VARIANCE

$$
\begin{aligned}
\rightarrow & E\left(\rho_{r}^{e p}\right)=\alpha_{i} \quad \\
& \sigma^{2}\left(p_{r}^{2 p}\right)=\sigma^{2}\left(\varepsilon^{\prime}\right)
\end{aligned} \quad \frac{E\left(p_{L}^{0 p}\right)}{\sigma\left(p_{r}^{0 p}\right)}=\frac{\alpha_{i}}{\sigma\left(\varepsilon_{i}\right)}=S R
$$

ASSUMPTION $|S R| \angle M A X=A$

$$
\text { "SMALL" } \varepsilon_{i} \rightarrow \text { "SmALl" } \alpha_{i}
$$

IF $|S R| \leq A$ THEN AS $\delta^{2}(s) \rightarrow 0 \quad\left|\alpha_{1}\right| \rightarrow 0$

$$
\sigma^{2}(\varepsilon)<\delta \Rightarrow\left|\alpha_{1}\right|<\epsilon
$$

- alphas shard besmall when rare large

II APT VS EQULIBRIUM MODELS ($(A P M)$

- absolute vs relatine pricing.
- does rimater?

APT: YES:

- Doweneed factor structure for faetor Pricinl

$$
R_{t+n}^{e_{i}}=\alpha_{i}+\beta_{i} f_{t+2}+\Sigma_{i+1}^{i} \quad \operatorname{cov}\left(R^{2} R^{2}\right)=\underbrace{\beta \beta^{\prime} \sigma_{+}^{2}}_{B_{14} ?}+\sum_{i}
$$

ART YES. (APM NO

- CAPM ISOFTEN USEDASAPT!

$$
E\left(R^{i i}\right)=\beta_{i M} E\left(R^{+m}\right)
$$

- sr purearbitrahe falled.

$$
x=m ? \text { EREEND }
$$

- ART ONLY FOR LARGE PIRTDLIOS \| SMALLE,

