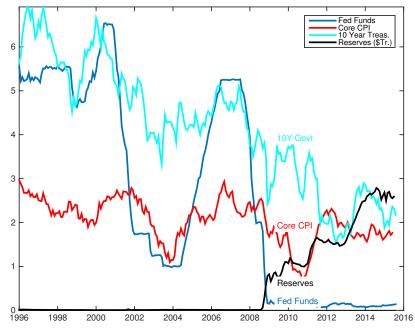
Michelson-Morley, Occam and Fisher: The radical implications of stable inflation at the zero bound

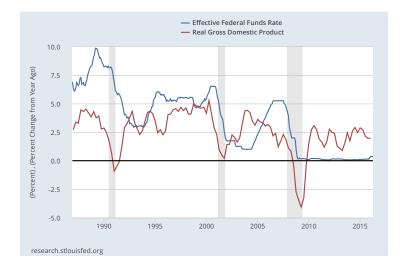

John H. Cochrane Hoover Institution, Stanford University

August 2016

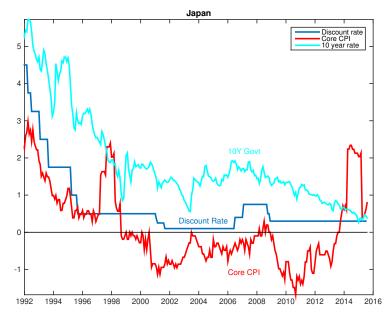
Recent history:

- ► Hit ZLB, nothing happened.
- Inflation, unemployment, etc. dynamics in and out of ZLB seem identical (or less σ at ZLB!)
- ► Huge increase in M / QE, nothing happened.
- Lower interest rates are not raising inflation.

Recent Experience–US



Recent Experience-US unemployment


Same dynamics. Larger shock.

Recent Experience–US

 \blacktriangleright Growth is "too low" but low σ at ZLB

Recent Experience – Japan

Recent Experience – Europe

Theories

Classic Monetarist/Keynesian; current policy world. (Adaptive E)

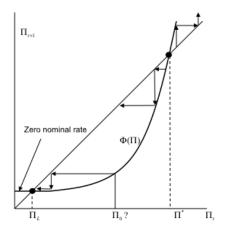
- Fisher $i_t = r_t + E_t \pi_{t+1}$. But stable or unstable?
- *i* peg is *unstable*, *determinate*

$$\pi_{t+1} = \dots i_t \dots + (\lambda > 1)\pi_t + \text{struct. shocks.}$$

- Taylor rule $i = r + \phi \pi$; $\phi > 1$ brings *stability* $\lambda < 1$.
- $\phi = 0$ at ZLB. Predicts deflation spiral. Didn't happen.
- Classic Monetarism; MV=PY, V "stable."
 - Predicts huge inflation. Didn't happen.
- ▶ Occam: Adverse shocks, headwinds, epicycles, ether drag, or...
 - An interest rate peg can be stable.
 - Arbitrary reserves paying market i are not inflationary.

Theories

► Sargent/Wallace; Woodford; New-Keynesian. (Rational E)


- i peg, φ < 1 is stable (!)</p>
- But indeterminate, multiple equilibria δ_{t+1}.

Simple: $i_t = r + E_t \pi_{t+1}$ General: $E_t \pi_{t+1} = \dots i_t \dots + (\lambda \le 1) \pi_t$ Both: $\pi_{t+1} = E_t \pi_{t+1} + \delta_{t+1} \leftarrow$ anything iid

- Taylor rule $\phi > 1$ brings *instability* hence determinacy.
- $\phi = 0$ ZLB predicts more σ (as $\phi < 1$ 1970s). We see less.
- Epicycles here too. Or...

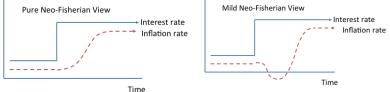
NK ZLB (BSGU)

Multiple stable equilibria at zero bound! Taylor principle can't help.

FTPL in NK models – frictionless

$$i_{t} = r + E_{t}\pi_{t+1}; \quad \frac{1}{1+i_{t}} = E_{t}\left(\beta\frac{P_{t}}{P_{t+1}}\right)$$

$$\frac{B_{t-1}}{P_{t}} = E_{t}\sum_{j=0}^{\infty} M_{t,t+j}s_{t+j} = E_{t}\sum_{j=0}^{\infty}\frac{1}{R_{t,t+j}}s_{t+j} = E_{t}\sum_{j=0}^{\infty}\beta^{j}s_{t+j}.$$


$$\frac{B_{t-1}}{P_{t-1}}(E_{t} - E_{t-1})\left(\frac{P_{t-1}}{P_{t}}\right) = (E_{t} - E_{t-1})\sum_{j=0}^{\infty}\beta^{j}s_{t+j}.$$
(1)
$$\frac{B_{t-1}}{P_{t-1}}E_{t-1}\left(\beta\frac{P_{t-1}}{P_{t}}\right) = \frac{B_{t-1}}{P_{t-1}}\frac{1}{1+i_{t-1}} = E_{t-1}\sum_{j=0}^{\infty}\beta^{j+1}s_{t+j}.$$
(2)

i=0

- ▶ (1) Solves indeterminacy; "anchoring." $(E_{t+1} E_t)\pi_{t+1} = \delta_{t+1}$.
- Monetary policy by IOR (no fiscal policy) can set a nominal interest rate peg and then expected inflation.
- Interest rate target can be stable (NK) and (now) determinate.
- "Can!" Past pegs fell apart from fiscal policy.
- MM, Occam: Only theory left standing. How does it work?

Fisher

- How does NK sticky-price model with FTPL determinacy work?
- ► Example: What if central banks raise rates? Does QE work & how?
- ▶ If a peg is stable, then *raising* rates can (can!) raise inflation.
- EU/JPN Pedal misapplication? US π rising because *i* rising?
- Classic view still ok in the short run?

....

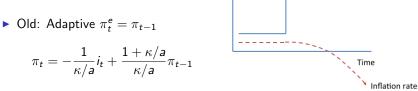
Frictionless:

$$i_t = r + E_t \pi_{t+1}$$
$$\frac{B_{t-1}}{P_t} = E_t \sum \beta^j s_{t+j} \rightarrow \pi_{t+1} = E_t \pi_{t+1}$$

• Higher $i \rightarrow$ immediately higher π . Need frictions? Sticky prices?

Simplest sticky-price model

Model


$$i_t = r_t + \pi_t^e$$
 Fisher
 $y_t = \kappa(\pi_t - \pi_t^e)$ Phillips
 $y_t = -ar_t$ IS

Solve

Eliminate y:
$$r_t = -(\kappa/a)(\pi_t - \pi_t^e)$$

Eliminate r: $i_t = -(\kappa/a)(\pi_t - \pi_t^e) + \pi_t^e$
 $\rightarrow i_t = -(\kappa/a)\pi_t + (1 + \kappa/a)\pi_t^e$

Old-Keynesian

$$i_t = -(\kappa/a)\pi_t + (1+\kappa/a)\pi_t^e$$

Standard (Keynesian and Monetarist) View

Interest rate

sign, but unstable.

▶ Taylor Rule *stabilizes*. But $\phi = 0 < 1$ at bound.

$$i_t = \phi \pi_t; \ \phi > 1 \rightarrow \pi_t = rac{1 + \kappa/a}{\phi + \kappa/a} \pi_{t-1}$$

Rational expectations/New-Keynesian

$$i_t = -(\kappa/a)\pi_t + (1 + \kappa/a)\pi_t^e$$

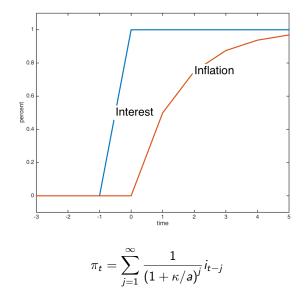
Rational expectations: $\pi_t^e = E_t\pi_{t+1} \neq \pi_{t-1}$
 $i_t = -(\kappa/a)\pi_t + (1 + \kappa/a)E_t\pi_{t+1}$
 $E_t\pi_{t+1} = \frac{1}{1 + \kappa/a}i_t + \frac{\kappa/a}{1 + \kappa/a}\pi_t$

- Stable on its own!
- But only $E_t \pi_{t+1}$. indeterminacy (\neq instability.)
- (Woodford) Add $i_t = \phi \pi_t$ to *this* model,

$$\phi \pi_t = -(\kappa/a)\pi_t + (1+\kappa/a) E_t \pi_{t+1}$$
$$E_t \pi_{t+1} = \frac{\phi + \kappa/a}{1+\kappa/a} \pi_t.$$

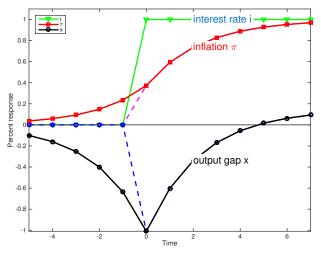
- ▶ $\phi > 1 \leftrightarrow$ inflation is unstable again... unless $\pi_t = 0$. "Determinacy."
- Fed $\phi > 1$ introduces *instability* into an otherwise *stable* world
- > ? But $\phi = 0$ so can't work at ZLB.

NK price stickiness + FTPL


Rational expectations

$$i_t = -(\kappa/a)\pi_t + (1+\kappa/a)\, E_t\pi_{t+1}$$

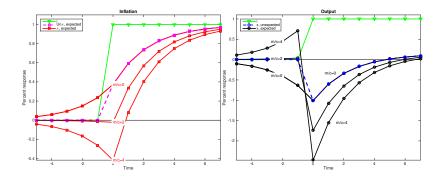
FTPL: with no fiscal news, $\pi_{t+1} = E_t \pi_{t+1}$. So,


$$\pi_{t+1} = i_t + \frac{(\kappa/a)}{1 + \kappa/a} \pi_t$$

$$\pi_{t+1} = \frac{1}{1 + \kappa/a} i_t + \frac{1}{(1 + \kappa/a)^2} i_{t-1} + \frac{1}{(1 + \kappa/a)^3} i_{t-2} + \dots$$

$$\pi_t = \sum_{j=1}^{\infty} \frac{1}{(1 + \kappa/a)^j} i_{t-j}$$

Effect of rate rise? NK + Fiscal


Even with price stickiness, inflation rises uniformly.

Effects of rate rise - 3 equation model

 $x_t = E_t x_{t+1} - \sigma(i_t - E_t \pi_{t+1})$ $\pi_t = \beta E_t \pi_{t+1} + \kappa x_t.$

Impulse-response functions with money

- Expected rate rise lowers inflation! But it needs huge m/c.
- Paper: many more lightbulbs that don't work

Long term debt works

Simple fiscal theory and long-term debt does deliver negative short run sign, positive long-run sign, and QE works!

Was
$$\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}$$

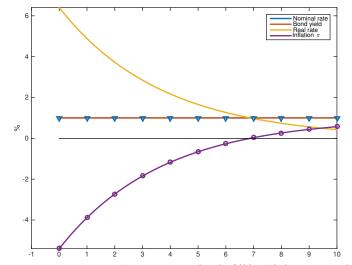
Now
$$\frac{\sum_{j=0}^{\infty} Q_t^{(t+j)} B_{t-1}^{(t+j)}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}$$

- *Q*^(t+j)_t = nominal price of zero coupon nominal bond due at t + j.
 B^(t+j)_{t-1} = number of zero coupon bonds outstanding
- Frictionless, $i_t = r + E_t \pi_{t+1}$, $\frac{1}{1+i_t} = \beta E_t \frac{P_t}{P_{t+1}}$
- $\{i_{t+j}\}$ rises $\rightarrow \pi_{t+j}$ rises
- ▶ $\{i_{t+j}\}$ rises $\rightarrow Q_t^{(t+j)}$ falls \rightarrow (fixed B_{t-1} , s_{t+j} ,) P_t falls.

Long term debt example

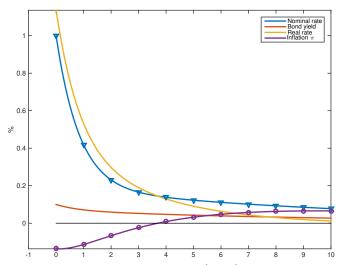
$$\frac{\sum_{j=0}^{\infty} Q_t^{(t+j)} B_{t-1}^{(t+j)}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}$$

- Perpetuity, $B_{t-1}^{(t+j)} = B_{t-1}$
- Permanent i rise,


$$Q_t^{(t+j)} = \frac{1}{(1+i)^j}$$
$$\sum_{j=0}^{\infty} Q_t^{(t+j)} = \frac{1}{1-\frac{1}{1+i}} = \frac{1+j}{i}$$
$$\frac{1+i}{i} \frac{B_{t-1}}{P_t} = E_t \sum_{i=0}^{\infty} \beta^j s_{t+j}$$

i=0

15 ice level, short debt interest rate -10 price level, long debt -15 -20 -5 15


 \blacktriangleright *i* from 5% to 6% means 20% price decline, then 1% more inflation.

Long term debt; three-equation model

Response to permanent interest rate shock, NK with long-term debt

A "realistic" model with long-term debt

Response to interest rate shock in Sims's (2011) model; price stickiness, habits, Fed reaction to output and inflation, fiscal reaction to recessions.

Directions

$$\frac{\sum_{j=0}^{\infty} Q_t^{(t+j)} B_{t-1}^{(t+j)}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}$$

- Long term debt mechanism
 - "Fed" raises $\{i_{t+j}\}$. $\{E_t \pi_{t+j}\}$ rises. Nominal bond prices fall.
 - Gov't can pay long bonds with cheap currency!
 - \blacktriangleright Treasury stubbornly insists on raising the same surpluses. \rightarrow bonds more valuable
 - Lower price level now, higher price later.
- Treasury.... really? If the Treasury responds with lower taxes/ more spending, disinflation goes away.
- Future: The response of inflation (etc) to monetary policy is all in the hands of how the Treasury is expected to respond to inflation induced bond devaluation.
- ▶ (FTPL) Hooray. But a profound change in "monetary policy."

The conventional path

This is as radical as simple.

- Conventional: DSGE soup. borrowing or collateral constraints, hand-to-mouth consumers, irrational expectations or other irrational behavior, lending channel, labor/leisure, production, capital, variable capital utilization, adjustment costs, informational, market, payments, monetary frictions; selection by off-equilibrium threats, stochastic bound exit
- Necessary as well as sufficient. If so Monetary policy must have complex / noneconomic ingredients. There is no simple, modern, economic baseline.
- ► Occam.

Other implications

- \blacktriangleright Inflation can be stable with an interest rate peg. \rightarrow
- ► A huge balance sheet paying market interest is great.
- Friedman optimal quantity of (interest-paying) money, no π fear.
- ▶ Low (0) i, = low tax distortions, cash tax, good financial stability.
- Fine tuning not needed / recommended.

The optimal quantity of money.

What should the Fed do?

CAPTAIN LYON AND HIS CREW OFFERING PRAYERS FOR THEIR PRESERVATION.

Review, Relax, then Worry.

- ► Michelson-Morley: ZLB, QE, nothing happened.
- ▶ Occam: *i* peg can be stable, determinate. (Sorry, Friedman 68.)
- Classic, adaptive-E "spiral" and MV=PY wrong.
- Rational-E NK model is ok.
- FTPL solves indeterminacy, other weirdness of NK models
- Stable \rightarrow raise i to raise π ? Short run negative?
- How to study "monetary policy"? Key is long-term debt and fiscal/monetary interaction!

FTPL Warning: discount rates!

$$\frac{B_t}{P_t} = E_t \int_{j=0}^{\infty} e^{-rj} S_{t+j} dj = E_t \int_{j=0}^{\infty} e^{(g-r)j} dj S_t = \frac{S_t}{r-g}$$
$$\frac{B_t}{P_t S_t} = \frac{1}{r-g}$$
surplus/debt = $r - g$

- Why is π so low, with B so high and bad S? r is low!
- What if r rises? Small ∆r has a big effect! (Flow: r× 100% Debt/GDP is a lot.)
- r and g rise together is not dangerous. But r = δ + γg says r likely to dominate, Fiscal Phillips curve.
- r alone is dangerous. Sovereign debt/rate spiral.
- "i peg *can* be stable" because it depends on fiscal policy!
- ▶ Historic pegs fell apart from fiscal problems. Ours can too.

Papers

- 1. "Do Higher Interest Rates Raise or Lower Inflation?"
- 2. "Monetary Policy with Interest on Reserves"
- 3. "The New-Keynesian Liquidity Trap"
- 4. "Stepping on a Rake: Replication and Diagnosis"
- 5. This one, soon.