
26 Utility functions

26.1 Utility function algebra

Habits

•
∆+1 =  + +1

 = 
X


1

1− 
( −)

1−

•“external habit”,



= ( −)

−

 = − ( −)
−−1

−


=
− ( −)

−−1

( −)
− =

−
 −

=
−
−



=
−


 =
 −


= state variable.

+1 = 
(+1 −+1)

−

( −)
− = 

µ
+1



¶− ³1− +1

+1

´−
³
1− 



´− = 

µ
+1



¶− µ
+1



¶−

•Internal?



= ( −)

− −

∞X
=0

 (+ −+)
− +



Fact: external vs. internal makes little difference. Exact: power utility, AR(1) habit, const Rf,

then  =  × ( −)
− . (CC appendix)

Preview: +1+1 is big, so () is big. +1 is heterosckeadstic, hence () varies

•Slow-moving habit.

 =
X

−

 = −1 +




= 

−1
−1

µ
−1


¶
+ 1
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Instead, AR(1) for log S

∆+1 = −(1− ) ( − ̄) + () (∆+1 − )

•

ln+1 = ln − ∆+1 − ∆+1

= − − ∆+1 −  [− (1− ) ( − ̄) + () (∆+1 − )]

ln+1 = − −  −  [1 +  ()] (∆+1 − ) +  (1− ) ( − ̄)

Note the same structure as we have seen in term structure models.

• Rf

 = − ln+1

=  +  − (1− ) ( − ̄)− 22

2
[1 + ()]

2

Our form:

1 + () =
1

̄

p
1− 2( − ̄)

̄ = ̄ =

s
2

1− 

•R result: constant

 = − ln +  − (1− ) ( − ̄)− 

2
(1− ) [1− 2( − ̄)]

= − ln +  − 

2
(1− )

•Plot: a square root function of log s, meaning
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•Back to
ln+1 = − −  [1 +  ()] (∆+1 − ) +  (1− ) ( − ̄)

a)  ≈ 20 so big amplification
b) A conditionally heteroskedastic ! Just what we need to generate time varying risk premia!

(See CP, bonds)

c) A scaled factor model/conditional consumption based model. − ()∆+1

• Main results:



() = 

µ
+1

µ
1 +

+1

+1
(+1)

¶
+1



¶
See tables p. 470. Parameters  = 2,..

• Long run Equity premium:

+1 = 

µ
+1



¶− µ
+1



¶−
Short run:  is large, big ()

Long run?  is stationary, and over long run becomes uncoupled with . () → (∆) −
(∆)→ (∆)

Answer: − variance explodes — S has a "fat left tail"
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Summary:

• Equity premium and constant, low Rf.

• Time-varying risk aversion, time-varying ER, at root of many puzzles — main point.
• Risk aversion is high — as in every other model so far.
• “Precautionary saving” solves volatile Rf of habit models
• Long run equity premium — Most models with stationary S can’t do it.

+1 = 

µ
+1



¶− µ
+1



¶−

• Varying, high risk premium, constant risk free rate: habits and temporal nonseparabilities
also “separate intertemporal substitution and risk aversion” — don’t need recursive utility for this

purpose.

Nonseparable across states — Epstein Zin, recurisive utility

 =

µ
(1− )

1−
 + 

h


³

1−
+1

´i 1−
1−
¶ 1

1−


 = risk aversion  = 1eis. power utility for  = .

Major results

+1 = 

µ
+1



¶−⎛⎜⎝ +1h


³

1−
+1

´i 1
1−

⎞⎟⎠
−



Again, standard form. Get  to have needed properties?

1. Using = claim to consumption to proxy for +1

+1 =

"


µ
+1



¶−# µ
1


+1

¶1−


 =
1− 

1− 


2. U from news of future consumption! ( ≈ 1).

(+1 −) ln+1 ≈ − (+1 −) (∆+1) + (1− )

⎡⎣ ∞X
=1

 (+1 −) (∆+1)

⎤⎦
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News about future long-horizon consumption growth enters the current period m.

Note: unlike habits, (+1) must come from  of long run consumption process. Thus, paired

with VAR models that imply big variation in the right hand term.

Bansal Yaron Kiku

∆+1 =  +  + +1

+1 =  + +1

2+1 = ̄2 + (2 − ̄2) + +1

∆+1 =  +  + +1 + +1

Algebra

1.



( −  +1 + +1)

¯̄̄̄
=0

= 0

 =

µ
(1− )

1−
 + 

h


³

1−
+1

´i 1−
1−
¶ 1

1−




=

1

1− 


 (1− )

−
 

Then it’s just a massive application of the chain rule.




 =

1

1− 


 
1− 

1− 

h


³

1−
+1

´i −
1−

∙


µ
(1− )

−
+1

+1

+1
+1

¶¸
(1− )

−
 = 

1− 

1− 

h


³

1−
+1

´i −
1−

∙


µ
(1− )

−
+1

1

1− 


+1(1− )

−
+1+1

¶¸


−
 = 

h


³

1−
+1

´i −
1−

h


³

−
+1 

−
+1+1

´i
Thus, defining the discount factor from  = (+1+1),

+1 = 

⎛⎜⎝ +1h


³

1−
+1

´i 1
1−

⎞⎟⎠
− µ

+1



¶−

2. market return The basic idea — exploit linear homogeneity.

 = 

∞X
=0



+
+




= 

∞X
=0

++ =
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Then


+1 =

+1 + +1



Note 1) It must be all wealth portfolio, claim to all consumption. 2) It must be all consumption,

not just nondurable and services

Constantinides and Duffie — idiosyncratic risk

 = 
³

(+1)

2
2+1

´µ+1



¶−
+1 =cross-sectional variance of consumption growth. +1 is known at time t+1,

∆+1 = ∆+1 + +1+1 − 1
2
2+1; 

2 (+1) = 1

a) check



µ

+1




|∆+1

¶
= ∆+1− 1

2
2+1+

1
2
2+1 =

+1



yes, it’s an “idiosyncratic shock.” Note permanent — keeps people from saving up.

b) derivation Now an exponential version of the projection argument, where 1/22 terms do

the pricing.

1 = 

"


µ

+1




¶−
+1

#

= 

"


"µ

+1




¶−
|+1

#
+1

#
= 

h


h
−(∆+1++1+1−1

2
2+1)|+1

i
+1

i
= 

h
−∆+1+

1
2
2+1+

1
2
22+1+1

i
= 

"


µ
+1



¶−

1
2
(+1)2+1+1

#

• Absolutely brilliant existence / reverse engineering theorem! Pick +1 to get anything!

Literature "calibrated" got nowhere (typical, saved up and avoided)

• Quantitatively true? is y+1 what we need? (Remember consumption)

() = 
³

1
2
(+1)2+1

´
≈ 

µ
1

2
( + 1)2+1

¶
 = 1 (2+1) = 05. +1 = (∆+1) = 071???. But this is the variation, not the level. in some

years more, in some year less.
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•Soo...needs huge  (just like habits). Solve Rf with huge ? is () correlated with E()?

(what moment of ∆??) don’t know yet.

Garleanu/Panageas heterogenous risk aversion (complete markets!)

1.

max

Z
−


1−


1− 
+ 

Z
−


1−


1− 
  +  = 


−
 = 

−


Sharing rule result:


1
 




 +  = 


− 1
 




 +  = 

Proof:

 = 
− 1
 







− 1
 




 +  = 

similarly

 = 
1
 







1
 




 +  = 

2. Sketch: For  = 2,


1
2

 +  = 

2 +  = 
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3. Risk premiums:



= + 

 ()− 

()
≤ 

µ




¶
=

µ
1






+
1







¶−1


Proof:


1
 




 +  = ∙


1









−1

 + 1

¸
 +

½
1

2


1


µ




¶µ



− 1
¶




−2

 2

¾
= ⎡⎣ 1














+





⎤⎦ 


+

⎧⎨⎩12 1


µ




¶µ



− 1
¶









2
2

⎫⎬⎭ =


⎡⎣ 1














+





⎤⎦ = 

Using

 = 
1
 






we then have ∙







+





¸
 = 

 =





³



´
+ 



=
1




1




+ 1






More

• Hansen “distorted beliefs”

1 = 

Ã
+1



µ
+1



¶−
+1

!

• Models with friction, leverage, etc., where sdf is disconnected from the representative agent.

Warning “marginal buyer” fallacy

410



InvestorInvestor

Intermediary

“Debt”“Equity”

?

Other assets

Intermediated markets

Securities

• Does trading matter for prices? Every “bubble” has been a “trading frenzy” (“Stocks as
money”)
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Dollar volume

Production side and general equilibrium

• Q theory. Without adjustment costs, Q=1, investors can be as silly as they want, supply

constrains risk premiums.

• From Problem set 2:

 =  −
∙
1 +



2

µ




¶¸


( ·) = max{}


∞X
=0

++

 +1 = (1− ) ( + )

1 + 



=  =



( + )
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


=
1


[ − 1] 


+1 = (1− )

1 + +1 + 
³
+1
+1

´
+ 

2

³
+1
+1

´2
1 + 

³



´


 =

∙
 −  − 

2

³



´2¸
+ 

³



´



1 + 
³



´
+1 = 

+1

• From “Production based asset pricing"



+1 = +1
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• From “Discount rates”
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1990 1992 1995 1997 2000 2002 2005 2007 2010
1

1.5

2

2.5

3

3.5

4

I/K

P/(20xD)

ME/BE

1 +  

= market

book
= 

• Moral: Just because they say "Q theory doesn’t work" don’t believe them!
• Challenge: technologies that allow producers to transfer output across states of nature? Two-
field example.

Two Trees

• Rebalance conundrum

 = 

Z
− ln+




= + 

 =
1

1 +2
;  = 
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


= 

Z
−

1

+
+ = 

Z
−+

( = 2 simple case)



=
1

2

∙
1 +

µ
1− 



¶
ln(1− )− 

1− 
ln()

¸
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• “Under-reaction” “momentum” in small stocks, “over reaction” mean reversion in big stocks
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• "Contagion" D1 rises, ER2 declines, P2 rises.

Morals:

1) Be very careful about numerical solutions! (Boundaries here cause a lot of problems)

2) The traditional case assumes linear technology = no adjustment costs. This case = endow-

ment economy, infinite adjustment costs. Agenda: Finite adjustment costs, short run “two tree”

dynamics, long-run rebalancing?

Risk Sharing is better than you think

• Point
ln

+1


= ln


+1 − ln

+1

2
µ
ln

+1



¶
= 2

³
ln


+1

´
+ 2

³
ln

+1

´
− 2(ln

+1 ln

+1)

15%2 = 40%2 + 40%2+???

• Survives incomplete markets — true of ∗ so () even bigger
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• One good + transport costs vs. two goods (tradeable + nontradeable) and limited substitution
international economics.

Risk sharing requires frictionless goods markets. The container ship is a risk sharing

innovation as important as 24 hour trading. Suppose that Earth trades assets with

Mars by radio, in complete and frictionless capital markets. If Mars enjoys a positive

shock, Earth-based owners of Martian assets rejoice in anticipation of their payoffs. But

trade with Mars is still impossible, so the real exchange rate between Mars and Earth

must adjust exactly to offset any net payoff. In the end, Earth marginal utility growth

must reflect Earth resources, and the same for Mars. Risk sharing is impossible. If

the underlying shocks are uncorrelated, the exchange rate variance is the sum of the

variances of Earth and Mars marginal utility growth, and we measure a zero risk sharing

index despite perfect capital markets.

At the other extreme, if there is costless trade between the two plantes, and the real

exchange rate is therefore constant, marginal utilities can move in lockstep.
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