
9.0.2 Aggregation, risk sharing, and pareto optimality

Our empirical work and application typically uses aggregate or average consumption growth
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Let’s explore whether that makes any sense. Are we allowed to use ()? Does idiosyncratic risk

matter?

• Identical investors.

Well, that was easy. If we’re all identical then of course  =  and we’re done.

• Complete market aggregation and Pareto theorem

In a complete market, there IS an aggregate utility function — the “social welfare function.”

The planner maximizes
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The first order conditions are
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Here Λ()() is the Lagrange multiplier on the () constraint. ( You can also define constraints

without the  and then you end up with contingent claim prices not m. I thought this was prettier.)

These are the same first order conditions as agents in complete markets, so we’ve proved the

Pareto-optimality of the complete markets equilibrium. Also to review, we have perfect risk sharing
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 is the value function — the maximized planner objective as a function of available aggregates.

By the envelope theorem — marginal value of a dollar is the same in any use, and the shadow value

of the constraint —

(
) = 

0() = Λ
(

()) = 
0(()) = Λ()

(
())

()
= ()

Thus, the derivatives of the value function (social welfare function), defined over aggregates, price

assets exactly as the derivatives of a utility function.

• Issues

So, what is aggregation theory about? One issue: functional form. Lots of aggregation theorems

try to prove that if the individual utility function is of a certain form, and with a certain amount of

heterogeneity in preferences or wealth, the social welfare function = utility function over aggregates

has a certain form — usually the same.

In fact, I cheated a bit, as I have not even proved that  is separable. In this case, that’s

not really a problem, as we can just interpret the symbol (
()) ≡  ( (); {})() ×

1(()) and price assets with a nonseparable value function. The bigger issue is whether an

economy populated by people with power  and a certain amount of heterogeneity produce a value

function also with power uility and some sort of average wealth and risk aversion.

I find this less interesting, because we don’t really know much about individual preferences,

so this is, empirically, not a big constraint. Rather than say "we assume individuals have power

utility" we might as well just say "we assume the SWF is of a power form."

Another issue is the impact of wealth heterogeneity. There isn’t any here. Yes, the form of the

social welfare function can be different for different {}. If one class of people are more risk averse
then a SWF will be more risk averse if the  weights them more. But in complete markets, there is

no uninsured individual risk. And the  do not change over time. So really this is again interesting

only if we want to build up a SWF from knowledge of individual utility. (We will have models with

idiosyncratic risk in a minute.)

• An aggregation example

Here is an example of a simple complete-markets aggregation theorem. Suppose people have

power utility, the same risk aversion and discount rate, but different levels of wealth. What does
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the SWF look like?
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Looking at the top and bottom equation, you see we have the same thing — and  term will cancel in

marginal rates of substitution. So, in complete markets we can accommodate differences in wealth.

Obviously, we want more, uninsured shocks and differences in risk aversion.

• An example

A lot of the problem is solving the Lagrange multipliers. A two-person example lets us look

more closely
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1 + 1 = 

Now we have to solve for 1 This gives us a sharing rule.

Obviously, if 1 = 2 1 = 2 then 1 = 12.For a more interesting example, suppose still

1 = 2 but 12 = 2. Then ¡
21 + 1

¢
= 
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√
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2
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1 is more risk averse, and gets a large share of bad times, in return for a lesser share in good times.

Notice this sharing rule is nonlinear.

INCOMPLETE MARKETS

• Risk sharing in incomplete markets.

In a complete market, we had  =  , and with power utility perfect correlation of individual

and aggregate consumption growth. What about an incomplete market (meaning not all states are

traded. We still have "complete" payoff spaces meaning no trading limits, bid ask spreads, short

limits, etc.)

 = () = (( |)) = 
£¡
( |) + 

¢
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Ã


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
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!−
= ∗+1 + 


+1

Recall, there is a unique ∗ ∈  such that  = (∗) Thus, the projection of everybody’s marginal
utility on to traded assets is the same, or the mimicking portfolio for everybody’s marginal utility is

the same. . People use markets to share risk as much as possible. The traded component of all m

are all equal. This does not mean the portfolios they hold are equal. (More: See "Risk sharing is

better than you think")

• Pareto optimality in incomplete markets

This competitive equilibrium is constrained Pareto efficient. Here is an example. Suppose the

planner can only allocate across consumers with a state-contingent pattern given by (). The
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planner chooses weights  that each person holds in the asset, with a constraint that the planner

can only reallocate the endowment in each state:

max
{}
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Again, the first order conditions of the constrained planning problem are the same as the competitive

equilibrium condition, that  = () for the assets .

• Incomplete markets, aggregating m vs. c, nonlinearity

For each person we have
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We therefore can always “aggregate” by averaging marginal utilities 1
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or, we can average over marginal utilities.
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Of course in complete markets, all m are the same, this is trivial. Why bother, you say, why not

use the individual data and get  more moment conditions? I think the answer is measurement

error. It’s also a useful concept theoretically.

We cannot in general aggregate by averaging consumption
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Brav, Constantinides and Geczy (2002) look in micro data and aggregate m not c

Note what’s crucial here — nonlinearities in marginal utility are what causes the problem. If

marginal utility were linear, we could go back and forth from consumption to marginal utility and

aggregation would work fine. Let’s pursue that idea

• Quadratic utility

With quadratic utility linear marginal utility, aggregation works nicely. in complete or incom-

plete markets. (Lars Hansen "calculating asset prices in three example economies" is a great paper

on this. Also my "a mean variance benchmark" paper.).

Here is an example. People have quadratic utility, with stochastic individual-specific bliss points


∗
 . (Since  = −000 = (∗− ) different bliss points means different risk version) Markets are
incomplete with all the idiosyncratic risk you could want.
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So, asset prices are exactly the same as those generated by a representative consumer with quadratic

utility (same functional form). This is a great example that shows how all the problems of aggre-

gation stem from nonlinear marginal utility.

• Continuous time

Another way to make utility linear is in continuous time, where the local linearity is all that

matters. Then we can aggregate. (Grossman and Shiller (1982)). Again, there are N agents, with

idiosyncratic risks and incomplete markets, and varying risk aversion.  can be the local derivative

of an arbitrary utility function, this does not have to be power utility. The basic asset pricing

equation for agent i.
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You can see again the partial risk sharing result:
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The tradeable component of marginal utility is exactly the same for everybody . Now, aggregation.

The aggregate consumption is
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Thus, take a clever weighted sum of the individual first order conditions. Apply this to both sidesP
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Or, cleaning it all up
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Take a step back and admire. Despite incomplete markets, arbitrary preference heterogeneity,

arbitrary income heterogeneity, etc. etc., we obtain a representative investor based on aggregate

consumption, whose "risk aversion" is a consumption-weighted average of the risk aversions of the

individual agents.

The distribution does matter here — as less risk averse people get more wealthy, the represen-

tative investor becomes less risk averse. Shocks to the distribution matter. Though the perfect-

market lambda weights were constant over time, if less risk averse people get more wealth, the

aggregate becomes less risk averse.

And vice-versa. There is a simple mechanisms here that can generate the holy Grail, a time-

varying risk premium. The high beta, low  rich lose more in a downturn, shifting the aggregate

risk aversion coefficient to higher values. Voilá.

• Constantinides and Duffie

The canonical example that of how to get heterogeneity to matter. (See treatment in "financial

markets and the real economy") You can see how hard it is going to be to get individual shocks to

matter to asset prices. Individual shocks are, by definition orthogonal to anything common to all,

like asset returns.  = ∗ +  and () = 0. So how do we get  to matter? Answer: we give

consumption shocks, and then nonlinear marginal utility.

Here is the brilliantly simple example. Individual consumption is generated from (0 1)

idiosyncratic shocks +1 .First the great shock distribute sees +1, then variable +1, and then

distributes shocks +1)
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You can see by inspection that +1 is the cross-sectional variance of individual log consumption

growth.



∙
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¸
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Aggregate consumption really is the sum of individual consumption — the −1
2
2+1 term is there

exactly for this reason:
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Now, the result:
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How do we get there? Start with the individual’s first order conditions,
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Back to the result. This is one of many (a general class really) of extensions of the consumption

based model. It’s of the form

1 = 

"


µ
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

¶−
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and thus generates a two-factor model

(

+1) = ∆∆ + 

To make it exciting, variation in  (like hml) generates the big premium.

This paper is a construction proof: There exists a specification of the time-varying cross-

sectional variance of shocks +1 that can rationalize any asset pricing anomaly. Neat, eh? And
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plausible. In bad times, it is certainly plausible that the cross-sectional dispersion goes up. I forgot

who said "the great depression wasn’t that bad if you had a job." And 75% did.

Now, to critiques. Like everything else in finance, it’s quantitative. In micro data, does the

cross-sectional dispersion of consumption go up enough to justify the equity premium? The value

premium? Momentum? Preliminary work isn’t that encouraging. But let’s not give up too fast.

Second critique. It all falls apart in continuous time. It’s building off the nonlinearity, and that

nonlinearity disappears in continuous time. You need discrete trading, or you need to introduce

jumps to avoid ito’s lemma. Do we really trust the nonlinearity of marginal utility that much?

In sum... to get heterogeneity to matter, need to drive a wedge between consumption het-

erogeneity and marginal utility heterogeneity. That needs nonlinear marginal utility, incomplete

markets, and jumps/discrete time.

• Back to the Sharing rule

In my little two person example, we ran into problems aggregating because the sharing rule was

nonlinear µ
1
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¶
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That stopped us from cleanly connecting Λ() to (). In continuous time-ito’s lemma though, we

only look at local changes,µ
1

2

¶− 1
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µ
1
2



1
2
−1

1 + 1

¶
1 + (ito term) = 

This is locally linear — and we build up to the nonlinear sharing rule because the derivatives change

over time.
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