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Abstract

Recent empirical evidence suggests that the variance risk premium, or the difference
between risk-neutral and statistical expectations of the future return variation, predicts
aggregate stock market returns, with the predictability especially strong at the 2-4
month horizons. We provide extensive Monte Carlo simulation evidence that statistical
finite sample biases in the overlapping return regressions underlying these findings can
not “explain” this apparent predictability. Further corroborating the existing empirical
evidence, we show that the patterns in the predictability across different return horizons
estimated from country specific regressions for France, Germany, Japan, Switzerland
and the U.K. are remarkably similar to the pattern previously documented for the U.S.
Defining a “global” variance risk premium, we uncover even stronger predictability
and almost identical cross-country patterns through the use of panel regressions that
effectively restrict the compensation for world-wide variance risk to be the same across
countries. Our findings are broadly consistent with the implications from a stylized
two-country general equilibrium model explicitly incorporating the effects of world-wide
time-varying economic uncertainty.
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1 Introduction

A number of recent studies have suggested that aggregate U.S. stock market return is pre-

dictable over horizons ranging up to a few quarters based on the difference between options-

implied and actual realized variation measures, or the so-called variance risk premium (see,

e.g., Bollerslev, Tauchen, and Zhou, 2009; Drechsler and Yaron, 2011; Gabaix, 2011; Kelly,

2011; Zhou, 2010; Zhou and Zhu, 2009, among others). These findings of apparent pre-

dictability over relatively short quarterly horizons have potentially far reaching implications

for many issues in asset pricing finance. They are also distinctly different from the longer-run

multi-year return predictability patterns that have been studied extensively in the existing

literature, in which the predictability is typically associated with more traditional valuation

measures such as dividend yields, P/E ratios, or consumption-wealth ratios (see, e.g., Fama

and French, 1988; Campbell and Shiller, 1988b; Lettau and Ludvigson, 2001, among others).

Motivated by these observations, the main goal of the present paper is to further examine

the robustness and the scope of these striking new empirical findings.

Our investigations are essentially twofold. First, to assess the validity of the statistical

inference procedures underlying the empirical findings, we report the results from an exten-

sive Monte Carlo simulation exercise designed to closely mimic the dynamic dependencies

inherent in daily returns and variance risk premia. Our results clearly suggest that statistical

biases can not “explain” the documented return predictability patterns. At the same time,

the results also suggest that the use of finer sampled observations, say daily as opposed to

monthly data as employed in the above cited studies, provides limited additional power to

detect the predictability inherent in the variance risk premium.

Second, in a separate effort to expand on and corroborate the existing empirical evi-

dence pertaining to monthly U.S. returns, we extend the same basic ideas and regressions

to several other countries. In so doing, we also define a “global” variance risk premium. We

show that this simple aggregate measure of world-wide economic uncertainty results in even

stronger predictability for all of the countries in the sample. We also show that these new

empirical findings are broadly consistent with the implications from a stylized two-country
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general equilibrium model that explicitly incorporates the effect of time-varying economic

uncertainty across countries.

The finite sample properties of overlapping long-horizon return regressions have been

studied extensively in the existing literature. Boudoukh, Richardson, and Whitelaw (2008),

for instance, have recently shown that even in the absence of any increase in the true pre-

dictability, the values of the R2’s in regressions involving highly persistent predictor variables

and overlapping returns will by construction increase roughly proportional to the return

horizon and the length of the overlap.1 In line with the procedures adapted in the existing

literature, we will focus on the Newey and West (1987) and Hodrick (1992) type t-statistics.

Both of these are robust asymptotically to heteroskedasticity and serial correlation in the

residuals from the estimated regressions. Our simulation design is based on an empirically

realistic bivariate VAR-GARCH-DCC model for the joint daily return and variance risk

premium dynamics. We find both of the t-statistics to be reasonably well behaved, albeit

slightly over-sized under the null hypothesis of no predictability. We also find that the

Newey-West based t-statistics result in marginally more powerful (size adjusted) tests un-

der the alternative. Moreover, directly in line with the results in the existing literature on

long-horizon return predictability, the quantiles in the finite sample distribution of the R2’s

from the regressions are spuriously increasing with the return horizon under the null of no

predictability.2 At the same time, the R2’s implied by the daily VAR-GARCH-DCC model

exhibit a distinct hump shape in the degree of predictability that closely mimics the pattern

actually observed in U.S. return regressions.

Guided by the Monte Carlo simulations, we rely on the Newey-West based t-statistics

and monthly return regressions to summarize our new international evidence. Due to data

availability and the required liquidity of options markets, we restrict our attention to the six

major financial markets of France, Germany, Japan, Switzerland, the U.K., and the U.S. Our

empirical result shows that the country specific regressions based on regressing each country’s

1Closely related issues pertaining to the use of persistent predictor variables have also been studied by, e.g.,
Stambaugh (1999), Ferson, Sarkissian, and Simin (2003), Baker, Taliaferro, and Wurgler (2006), Campbell
and Yogo (2006), Ang and Bekaert (2007), and Goyal and Welch (2008), among others.

2Although the variance risk premium is not especially persistent at the monthly frequency typically
employed in the literature, its first order autocorrelation is still in excess of 0.97 at the daily level.
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return on its own variance risk premium result in similar hump-shaped regression coefficients

and R2’s for all of the six countries. However, the degree of predictability afforded by the

country specific variance risk premia and the statistical significance of the results generally

are not as strong as the previously reported results for the U.S. market.

These results naturally point to the possibility of world-wide variance risk, as opposed to

the country specific variance risk premia, being priced. To investigate this idea, we construct

a “global” variance risk premium, defined as a simple market capitalization weighted average

of the individual country variance risk premia. Restricting the effect on this “global” variance

risk premium to be the same across countries in a panel return regression results in much

stronger findings for all of the countries, with a uniform peak in the degree of predictability

at the four month horizons. Moreover, the degree of predictability afforded by this “global”

variance risk premium easily exceeds that of the implied and realized variation measures

when included in isolation. It also clearly dominates that of other traditional predictor

variables that have been shown to work well over longer annual horizons, including the P/E

ratio. While this new international evidence indirectly corroborates the previous findings

based exclusively on U.S. data reported in the studies cited above, importantly the results

also point to the existence of even stronger predictability through the use of alternative

definitions of world-wide variance risk.3

Our new empirical findings are, of course, related to the large existing literature on

international stock return predictability (see, e.g., Harvey, 1991; Bekaert and Hodrick, 1992;

Campbell and Hamao, 1992; Ferson and Harvey, 1993, among others). However, the focus

of this literature has traditionally been on longer-run multi-year return predictability. By

contrast, our results pertaining to the “global” variance risk premium concern much shorter-

run within year predictability, and are essentially “orthogonal” to the findings reported in

3These results are also indirectly in line with those reported in a few other recent studies pertaining to
other markets. In particular, in concurrent independent work, Londono (2010) finds that the U.S. variance
risk premium predicts several foreign stock market returns. In a slightly different context, Mueller, Vedolin,
and Zhou (2011) argue that the U.S. variance risk premium predicts bond risk premia, beyond the pre-
dictability afforded by forward rates, while Buraschi, Trojani, and Vedolin (2010) and Zhou (2010) show
that the variance risk premium also helps predict credit spreads, over and above the typical interest rate
predictor variables.
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the existing literature.4 At the same time, however, the new empirical results are generally

in line with the calibrations from a simple theoretical two-country model that explicitly

incorporates the equilibrium effects of time-varying economic uncertainty across countries.

The rest of the paper is organized as follows. Section 2 presents our Monte Carlo based

simulation evidence pertaining to the statistical inference procedures underlying the existing

empirical findings. Section 3 discusses our new international evidence and the results for our

“global” variance risk premia measure, along with our equilibrium model based calibrations.

Section 4 concludes.

2 General Setup and Monte Carlo Simulations

The key empirical findings reported in Bollerslev, Tauchen, and Zhou (2009) (BTZ2009,

henceforth), and the subsequent studies cited above, are based on simple OLS regressions

of the returns on the aggregate market portfolio over monthly and longer return horizons

on a measure of the one-month variance risk premium. In particular, let rt,t+τ and V RPt

denote the continuously compounded return from time t to time t+ τ and the variance risk

premium at time t, respectively. Defining the unit time interval to be one trading day, the

multi-period return regressions in BTZ2009 may then be expressed as special cases of,

1

h

h∑
j=1

rt+(j−1)s,t+js = as(h) + bs(h)V RPt + ut,t+hs (1)

for s = 20 (monthly) and return horizon hs, where t = 1, s+1, 2s+1, ..., T − hs refer to the

specific observations used in the regression. Of course, the use of finer sampling frequencies,

say s = 5 (weekly) or s = 1 (daily), may give rise to more powerful inference, and we will

investigate that below.

Meanwhile, it is well known that in the context of overlapping return observations, the

regression in (1) can result in spuriously large and highly misleading regression R2’s, say

R2
s(h), as the horizon h increases; see, e.g., the discussion and many references in Campbell,

4Other recent studies highlighting short-run international predictability include Rapach, Strauss, and
Zhou (2010) based on lagged U.S. returns, Ang and Bekaert (2007) and Hjalmarsson (2010) based on short-
term interest rates, and Bakshi, Panayotov, and Skoulakis (2011) based on the Baltic Dry Index.
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Lo, and MacKinlay (1997). Similarly, the standard errors for the OLS estimates designed

to take account of the serial correlation in ust+hs,t based on the Bartlett kernel advocated by

Newey and West (1987) (NW, henceforth), and the modification proposed by Hodrick (1992)

(HD, henceforth), can also both result in t-statistics for testing hypotheses about as(h) and

bs(h) that are poorly approximated by a standard normal distribution. Most of the existing

analyses pertaining to these and other related finite sample biases, however, have been

calibrated to situations with a highly persistent predictor variable, as traditionally used in

long-horizon return regressions. Even though the variance risk premium is fairly persistent

at the daily frequency, it is much less so at the monthly level, and as such one might

naturally expect the finite sample biases to be less severe in this situation.5 Our Monte

Carlo simulations discussed in the next section confirm this conjecture in an empirically

realistic setting designed to closely mimic the joint dependencies in actual daily returns and

variance risk premia.

2.1 Simulation Design

The model underlying our simulations is based on daily S&P500 composite index returns

(obtained from CRSP). The corresponding daily observations on the variance risk premium

are defined as V RPt = IVt − RVt−20,t, where we rely on the square of the new VIX index

(obtained from the CBOE) to quantify the implied variation IVt, and the summation of

current and previous 20 trading days daily realized variances (obtained from the Oxford-

Man Institute’s Realized Volatility Library) together with the squared overnight returns to

quantify the total realized variation over the previous month RVt−20,t.
6 The span of the data

runs from February 1, 1996 to December 31, 2007, for a total of 2,954 daily observations.

After some experimentation, we arrived at the following bivariate VAR(1)-GARCH(1, 1)-

5The first order autocorrelation coefficient for the monthly U.S. variance risk premium analyzed in the
empirical section below equals 0.50, and it is even lower for all of the other countries included in our
analysis. By comparison, the first order autocorrelations for monthly dividend yields and P/E ratios, and
other variables typically employed in the long-horizon regression literature, are around 0.95-0.99.

6This directly mirrors the definition of the variance risk premium employed in BTZ2009. Forward looking
measures of V RPt that align IVt with a measure of the expected volatility Et(RVt,t+20) have also been used in
the literature. However, this requires additional modeling assumptions for calculating Et(RVt,t+20), whereas
the V RPt used here has the obvious advantage of being directly observable at time t.
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DCC model (see Engle, 2002, for additional details on the DCC model) for the two daily

time series,

rt−1,t = −1.958e-5
(0.001)

− 0.009
(0.016)

rt−2,t−1 + 0.025
(0.010)

V RPt−1 + ϵt,r

V RPt = 3.759e-5
(0.001)

+ 0.033
(0.017)

rt−2,t−1 + 0.972
(0.010)

V RPt−1 + ϵt,vrp

σ2
t,r = 1.280e-6

(1.68e-6)
+ 0.071

(0.004)
ϵ2t−1,r + 0.920

(0.008)
σ2
t−1,r

σ2
t,vrp = 2.038e-7

(7.59e-6)
+ 0.133

(0.004)
ϵ2t−1,vrp + 0.871

(0.028)
σ2
t−1,vrp

Qt =

 0.997
(0.036)

−0.754
(0.040)

−0.754
(0.040)

1.023
(0.060)

+ 0.011
(0.002)

ηt−1η
′
t−1 + 0.979

(0.004)
Qt−1

Rt = diag{Qt}−1Qtdiag{Qt}−1,

where ηt ≡ ( ϵt,r
σt,r

, ϵt,vrp
σt,vrp

)′, and Et−1(ηt) = 0 and Et−1(ηtη
′
t) = Rt by assumption. The specific

parameter values refer to Quasi Maximum Likelihood Estimates (QMLE) obtained under

the auxiliary assumption of conditional normality, with robust standard errors following

Bollerslev and Wooldridge (1992) in parentheses. With the exception of the lagged daily

returns, most of the dynamic coefficients are highly significant at conventional levels.

The model implies a strong negative (on average) correlation between the innovations

to the return and VRP equations. This, of course, is consistent with the well documented

“leverage” effect; see, e.g., Bollerslev, Sizova, and Tauchen (2011) and the many references

therein. At the same time, as is evident from the equation for Qt, and the corresponding

plot in the top panel in Figure 1, the value of the conditional correlation clearly varies over

time, reaching a low of close to -0.85 toward the end of the sample. The bottom three panels

in Figure 1 indicate that the distribution of the estimated standardized residuals from the

model (i.e., ĉηt ≡ F̂−1
t η̂t, where F̂t · F̂ ′

t=R̂t) are well behaved and centered at zero, with

variances close to unity, albeit not normally distributed.7 All in all, however, the model

provides a reasonably good fit to the joint dynamic dependencies inherent in the two daily

7The sample means for ĉηt,1 and ĉηt,2 equal -0.044 and 0.088, the standard deviations equal 0.999 and
1.007, while the skewness and kurtosis equal -0.469 and 0.894, and 4.913 and 7.860, respectively. Further
diagnostic checks also reveal that while the residuals from the return equation appear close to serially
uncorrelated, there is some evidence for neglected longer-run serial dependencies in the equation for the
variance risk premium.
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series.

As such, we will use this relatively simple-to-implement model as our basic data generat-

ing process for the Monte Carlo simulations, and our analysis of the finite sample properties

of the NW and HD t-statistics, and R2
s(h)’s from the overlapping return regressions in equa-

tion (1).8 Our simulated finite sample distributions will be based on a total of 2,000 boot-

strapped replications from the model. We will look at sample frequencies of s = 1 (“daily”),

s = 5 (“weekly”) and s = 20 (“monthly”), and return horizons hs ranging up to 240 “days,”

or 12 “months.” The number of observations for each of the simulated samples is fixed at

T = 2, 954 “days” (or 598 “weeks,” or 149 “months”), corresponding to the length of the

actual sample used in the estimation of the VAR-GARCH-DCC model above. We begin

with a discussion of the size and power properties of the two t-statistics.

2.2 Size and Power

Our characterization of the distributions under the null hypothesis of no return predictability

is based on restricting the coefficients associated with rt−2,t−1 and V RPt−1 in the return

equation to be identically equal to zero, leaving all of the other coefficients at their estimated

values. Table 1 reports the resulting simulated the 95th percentiles of the tNW and tHD test

statistics, along with the regression R2’s. Directly in line with the evidence in the existing

literature, both of the t-statistics exhibit non-trivial size distortions relative to the nominal

one-side 95-percent critical value of 1.645. Also, the distortions tend to increase with the

return horizon h. Moreover, consistent with the results reported in Hodrick (1992), the biases

for the NW based standard error calculations generally exceed those for the HD standard

errors, and markedly more so the longer the return horizon.

To more directly illustrate the results, we plot in the three left panels in Figure 2 the sim-

ulated 95-percent critical values for tNW (dashed lines) and tHD (solid lines) for s = 1, 5, 20.

We also include in the figure the t-statistics obtained by running these same regressions

8The bandwidth in the Bartlett kernel employed in our implementation of the NW standard errors is set
to m = [h + 4 ∗ ((T − hs)/100)2/9], where [·] refers to the integer value. We also experimented with the
reverse regression technique suggested by Hodrick (1992) for testing bs(h) = 0. The results, available upon
request, were very similar to the ones for the HD t-statistic reported below.
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on the actual daily, weekly and monthly data over the February 1996 through December

2007 sample period used in calibrating the simulated model. As the figure shows, the actual

tNW -statistics systematically exceeds the simulated critical values for return horizons in the

range of 2 to 3 months. This is true regardless of whether the regressions are based on

daily, weekly, or monthly data. Meanwhile, the tHD-statistics generally do not exceed the

simulated critical values and accordingly do not support the idea of return predictability.

In order to better understand this discrepancy in the conclusions drawn from the two

tests, we report in Table 2 the power of the tests to detect predictability implied by the

unrestricted VAR-GARCH-DCC model. To facilitate comparisons we only report the size-

adjusted power for a 5-percent test. Not surprisingly, the power of both tests decrease with

the return horizon. At the same time, the power of the tNW test systematically exceed

that of the tHD test for return horizons less than a year, and the differences appear most

pronounced at the 2-4 month horizons.

These differences are also evident in the three right panels in Figure 2, which plot the

relevant power curves. Comparing the simulations across the three different panels in the

table and the figure also point to fairly small loses in terms of power when decreasing

the sampling frequency of the data used in the regressions from s = 1 (“daily”) to s =

5 (“weekly”) to s = 20 (“monthly”).

Guided by these findings we will base our subsequent empirical investigations on the most

commonly used monthly return regressions and NW-based standard errors, recognizing that

the finite sample distributions of the tNW -statistics tend to be slightly upward biased under

the null of no predictability.

2.3 R2

In addition to the t-statistics associated with the bs(h) coefficients, the R2
s(h)’s from the

return regressions are often used to assess the strength of the relationship and the effec-

tiveness of the predictor variable across different horizons. Of course, as previously noted

above, it is well known that the biases exhibited by the t-statistics in the context of long-

horizon return regressions carry over to the R2
s(h)’s, and that these need to be carefully
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interpreted in the context of persistent predictor variables (see, e.g., the aforementioned

study by Boudoukh, Richardson, and Whitelaw, 2008, for a recent analysis, along with the

many references therein).

The corresponding columns in Table 1 show that, while less dramatic than the biases

over multi-year return horizons, the R2
s(h)’s may still be quite different from zero under the

null of no predictability in the present setting. In particular, the 95th percentiles are around

5-6 percent at the 2-4 months horizon for all of the three sampling frequencies s = 1, 5, 20.

Further to this effect, we show in the top panel in Figure 3 select quantiles in the simulated

distribution of the R2
1(h)’s that obtain in the absence of any predictability. Consistent with

the findings in the extant literature pertaining to monthly observations and longer return

horizons, all of the quantiles increase monotonically with the return horizon, and this increase

is especially marked for the higher percentiles. Intuitively as the horizon increases, the

overlapping return regressions become closer to a spurious type regression.

In addition to the simulated quantiles, we also include in the same figure the R2
1(h)’s

obtained from the actual return regressions based on the same daily data used in estimating

the VAR-GARCH-DCC model. Comparing the actual R2
1(h)’s to the simulated percentiles

again suggest that the degree of predictability is most significant at the intermediate 2-4

months horizon. This, of course, is directly in line with the inference based on the t-statistics

discussed in the previous section, and the prior empirical evidence reported in BTZ2009.

The hump-shaped pattern in the actual R2
1(h)’s also closely mimics the patterns in the

simulated quantiles for the estimated VAR-GARCH-DCC model depicted in the bottom

panel in Figure 3. Interestingly, this striking similarity with an apparent peak in the degree

of predictability at the intermediate 2-4 months horizon arises in spite of the fact that the

simulated model involves only first-order dynamics in the equations that describe the daily

conditional means.

To help understand this result, consider the VAR(1) corresponding to the conditional
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mean dependencies in the Monte Carlo simulation design,

rt−1,t = a1 + b1rt−2,t−1 + c1V RPt−1 + ϵr,t ,

V RPt = a2 + b2rt−2,t−1 + c2V RPt−1 + ϵvrp,t .

Following Campbell (2001), it is possible to show that the population regression coefficients

and R2’s from the overlapping return regressions in (1) may be expressed as,9

b(h) =

(
c1
1− ch2
1− c2

)
+

(
b1 + c1b2

1− ch−1
2

1− c2

)
Cov(rt−1,t, V RPt)

V ar(V RPt)

+ b1b(h− 1) + c1b2[b(h− 2) + c2b(h− 3) + · · ·+ ch−3
2 b(1)] ,

R2(h) =
b(h)2

h

V ar(V RPt)

[h−1V ar(
∑h

j=1 rt−1+j,t+j)]
.

Hence, the strength of the predictability over different horizons h is primarily determined

by the interaction between the short-run predictability, or Cov(rt−1,t, V RPt) and c1, and the

own persistence of the V RPt predictor variable and c2.

To illustrate this, the solid lines in each of the four panels in Figure 4 show the R2(h)’s

implied by the unrestricted VAR(1) coefficient estimates used in the simulations. Indirectly

confirming the satisfactory fit of the model, the theoretically implied population R2(h)’s are

generally close to the R2(h)’s actually estimated from the sample regressions depicted by

the star-dashed line in the previous Figure 3. Meanwhile, marginally decreasing the value

of each of the VAR(1) coefficients, b1, c1, b2 and c2, by ten percent, results in quite different

R2(h)’s, as shown by the dashed lines in Figure 4. In particular, the decrease in c2 has by far

the largest effect. Moreover, the value of c2, and the own persistence of V RPt, is intimately

linked to the location of the maximum in the hump shaped predictability pattern.10

Taken as a whole, our Monte Carlo simulations and the new regression results based on

daily U.S. returns discussed above clearly support the variance risk premium as a powerful

predictor at the 2-4 month horizons. At the same time, the overlapping nature of the return

9We have omitted the implicit dependence on the sampling frequency s = 1 for notational simplicity.
Further details concerning these derivations are available upon request.

10These same ideas also underlie the economic mechanisms and risk-return trade-offs across different return
horizons analyzed within the stylized equilibrium model setting in Bollerslev, Sizova, and Tauchen (2011).
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regressions tend to attenuate the strength of the predictability somewhat. Hence, in an

effort to further corroborate the existing empirical evidence pertaining exclusively to the

U.S. market and data prior to the 2008 financial crisis, we next turn to a discussion of our

new empirical findings involving more recent data and several other countries.

3 International Evidence

Motivated by the Monte Carlo simulation results in the previous section, we will rely exclu-

sively on the common benchmark monthly sampling frequency, along with the traditional

NW-based standard errors and tNW -statistics, keeping in mind the finite sample biases doc-

umented above. We will restrict our analysis to France, Germany, Japan, Switzerland, the

U.K., and the U.S., all of which have highly liquid options markets and readily available

model-free implied variances for their respective aggregate market indexes (see Siriopoulos

and Fassas, 2009, for a recent summary of the model-free and parametric options implied

volatility indexes available for different countries). We begin with a brief discussion of the

relevant data.

3.1 Data and Summary Statistics

Our monthly aggregate market index returns are based on daily data for the French CAC

40 (obtained from Euronext), the German DAX 30 (obtained from Deutsche Börse), the

Japanese Nikkei 225, the Swiss SMI, and the U.K. FTSE 100 (all obtained from Datastream),

and the U.S. S&P 500 (obtained from Standard & Poor’s). We use the sum of the daily

squared returns over a month to construct end-of-month realized variances RV i
t for each

of the countries. The corresponding end-of-month model-free implied volatilities (IV i
t )

1/2

for the S&P 500 (VIX) were obtained from the CBOE, the CAC (VCAC) from Euronext,

the DAX (VDAX) from Deutsche Börse, while those for the FTSE (VFTSE) and the SMI

(VSMI) were both obtained from Datastream. Our data for the Japanese volatility index

(VXJ) is obtained directly from the Center for the Study of Finance and Insurance at Osaka

University (see Nishina, Maghrebi, and Kim, 2006, for a more detailed discussion of the VXJ

11



index). The sample period for each of the series extends from January 2000 to December

2010, and as such also allows for an out-of-sample validation of the existing empirical evidence

for the U.S. based exclusively on data prior to the recent financial crisis.11

In accordance with the empirical analysis in the previous section, the variance risk pre-

mium for each of the individual countries is simply defined by V RP i
t ≡ IV i

t −RV i
t−20,t. The

resulting time series plots in Figure 5 clearly show the dramatic impact of the financial crisis,

and the exceptionally large volatility risk premia observed in the Fall of 2008 for all of the

countries. Interestingly, the premium for the DAX, and to a lesser extent the SMI, were

almost as large and negative as in 2001-2002.

The standard set of summary statistics reported in Table 3 also show a remarkable

coherence in the distributions of the variance risk premia and monthly excess returns for

each of the countries.12 In particular, looking at Panel A the average excess returns are all

negative, ranging from a high of -2.15 for Switzerland to a low of -6.52 for France, reflective

of the often-called “lost decade.” Of course, the corresponding standard deviations all point

to considerable variations in the returns around their sample means.

The variance risk premia are all positive on average, ranging from a low of 4.13 for France

to a high of 13.26 for Japan on a percentage-squared monthly basis. “Selling” volatility has

been highly profitable on average over the last decade. Meanwhile, consistent with the visual

impressions from Figure 5, all of the premia are significantly negatively skewed and exhibit

large excess kurtosis. Even though implied and realized variances are both strongly serially

correlated for all of the countries, the variance risk premia are generally not very persistent

with the maximum first order serial correlation for the S&P 500 just 0.50. Turning to Panels

B and C, the sample cross-country correlations are all fairly high, and with the exceptions

of those for the Nikkei, the correlations for the returns all exceed 0.75, while those for the

variance risk premia are in excess of 0.70.

The similarity in the summary statistics in Table 3 and the time series plots in Figure

11The beginning of the sample coincides with the back-dated initial date of the NYSE Euronext volatility
indices.

12The riskfree rates used in the construction of the excess returns were obtained from the Federal Reserve
Board and Eurocurrency via Datastream. The use of excess returns, as opposed to raw returns, has almost
no effect on the results from the return predictability regressions reported below.
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5 across the different countries, naturally suggests that the same predictive relationship

between the multi-period U.S. returns and variance risk premium may hold true for the other

countries as well. The results discussed in the next subsection corroborate this conjecture.

3.2 Country Specific Variance Risk Premia Regressions

In parallel to the general multi-period return regression defined in equation (1), our monthly

return regressions for each of the individual countries may be expressed as,

h−1rit,t+h = ai(h) + bi(h)V RP i
t + uit,t+h , (2)

where rit,t+h and V RP i
t refer to the h = 1, 2, ..., 12 month excess return and variance risk

premium for country i, respectively.13 The resulting regressions results for each of the six

countries are reported in Table 4.

The actual estimates for bi(h) and the corresponding tNW -statistics obviously differ some-

what across the countries. However, with the exception of France and the U.S., the estimated

coefficients all show the same general pattern starting out fairly low and insignificant at the

shortest one-month horizon, rising to their largest values at 3-5 months, and then gradually

declining thereafter for longer return horizons. These similarities are also evident in Fig-

ure 6, which displays the regression coefficients for the variance risk premia along with the

conventional 95-percent confidence bands based on two NW standard errors.14

These general patterns in the estimated values of bi(h) naturally translate into very

similar patterns in the corresponding regression R2(h)’s. In particular, looking at the plots

in Figure 7, all of the R2(h)’s exhibit an almost identical hump-shaped pattern with the

degree of predictability maximized at the 4 months horizon. Of course, the actual values of

the R2(h)’s again vary somewhat across the different indices, achieving a maximum of only

0.96 percent for the Nikkei 225 compared to 14.18 percent for the S&P 500.15

13We omit the s = 20 monthly subscript on the regressors and regression coefficients for notational
simplicity.

14Of course, the results from the Monte Carlo simulations reported in Table 1 indicate that the two
standard error bands are likely somewhat conservative and need to be interpreted accordingly.

15Interestingly, this value of R2(4) for the U.S. exceeds that obtained with monthly data through the end
of 2007, reported in BTZ2009 and Drechsler and Yaron (2011), as well as the corresponding daily results
discussed in Section 2 above.
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Taken as whole, the results in Table 4 and the significance of the country specific VRP’s as

predictor variables help to underscore the significance of the existing results based exclusively

on the U.S. data. The similarities in the patterns obtained across countries also suggest that

even stronger results may be available by pooling the regressions and entertaining the notion

of a common “global” variance risk premium. We explore these ideas next.

3.3 Global Variance Risk Premium and Panel Regressions

Our definition of a “global” variance risk premium is based on a simple capitalization

weighted average of the country specific variance risk premia,

V RP global
t ≡

6∑
i=1

wi
tV RP

i
t ,

where i = 1, 2, ..., 6 refer to each of the six countries included in our analysis.16 The end-of-

month market capitalizations used in defining the weights wi
t are obtained from Thomson

Reuters Institutional Brokers’ Estimate System (I/B/E/S) via Datastream. The plot of

the weights in Figure 8 shows that the U.S. market accounts for more than sixty percent

through most of the sample period, with Japan a distant second. This relatively large weight

assigned to the U.S. market in our definition of the “global” VRP index is also evident from

the aforementioned summary statistics in Table 3.

The results for the regressions obtained by replacing the country specific V RP i
t ’s in

equation (2) with the new V RP global
t index,

h−1rit,t+h = ai(h) + bi(h)V RP global
t + uit,t+h , (3)

are reported in Table 5, along with the corresponding tNW -statistics. Comparing the results

to the ones for the country specific regressions in Table 4, reveals even stronger commonalities

and uniform patterns across countries. The “global” VRP index serves as a highly significant

predictor variable for all of the different country indexes, with tNW -statistics in excess of 5.0

at the 4 months horizon. Meanwhile, increasing h, the V RP global
t predictor variable always

16This parallels the idea used in Harvey (1991) in the estimation of the world price of covariance risk.
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becomes insignificant over the longer 9 and 12 months return horizons reported in the last

two columns of the table.

These striking cross country similarities are also immediately evident from the plots of

the estimated regression coefficients and the two NW-based standard error bands in Figure 9.

Not only do the individual country estimates for the bi(h)’s look very similar, the confidence

bands also become much tighter compared to the country specific regressions discussed above.

Further along these lines, Figure 10 shows the general patterns in the predictability, as

measured by the R2(h)’s, to be very similarly shaped for the different countries, with uniform

peaks at the 4 months return horizon.17

Going one step further, we next restrict the coefficients for the “global” variance risk

premium to be the same across countries,

h−1rit,t+h = a(h) + b(h)V RP global
t + uit,t+h , (4)

as a way to further enhance the efficiency of the estimates. The corresponding panel re-

gression estimates for the b(h)’s together with the NW-based t-statistics are reported in

Table 6 (for additional details on the calculations, see, e.g., Petersen, 2009).18 As the table

clearly shows, the use of panel regressions do indeed result in more accurate estimates, and

a highly significant tNW -statistics of 11.21 at the 4-months horizon. Similarly, the average

panel regression R2(h)’s across the six countries gradually rise from around one percent at

the one-month horizon to a large 7.46 percent for the four-month returns, tapering off to

zero for the longer 9-12 month return horizons.

These key empirical findings are succinctly summarized in Figure 11, which plots the

panel regression estimates for b(h) based on the country specific and “global” VRP mea-

sures along with two NW standard error bands (top two panels), and the corresponding

17The large weight assigned to the U.S. in our construction of the “global” risk premium means that
fairly similar results are obtained by replacing the new V RP global

t in the regressions in equation (3) with
V RPS&P500

t . These additional results are available upon request. Comparable empirical results based on the
U.S. variance risk premium have also recently been reported in concurrent independent work by Londono
(2010), who ascribes the predictability to informational frictions along the lines of Rapach, Strauss, and
Zhou (2010).

18We also experimented with the two-way cluster analysis in Cameron, Gelbach, and Miller (2011), result-
ing in qualitatively very similar findings.
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panel regression R2(h)’s (bottom two panels). The V RP global-based regressions (depicted in

the right two panels) obviously result in sharper coefficient estimates and stronger average

predictability across the six countries, compared to the individual country V RP i regression

(depicted in the left two panels).

The panel regression R2(h)’s, of course, mask important cross-country differences in the

degree of predictability. We therefore also show in Figure 12 the country specific implied

R2(h)’s obtained by evaluating the regressions in equation (3) at the more precisely estimated

common â(h) and b̂(h) obtain from the panel regressions in equation (4). Interestingly,

comparing Figure 12 to the earlier Figure 10 for the individual country regressions, it is

clear that the added precision afforded by restricting the ai(h) and bi(h) coefficients to be

the same across countries sacrifices very little in terms of the implied predictability.

To assess the robustness of these impressive empirical findings, the next panel in Table

6 reports the results obtained by including a capitalization weighted average of the country

specific P/E ratios as an additional regressor. Consistent with the results for the U.S. market

in isolation reported in BTZ2009, the “global” P/E ratio adds nothing to the predictabil-

ity afforded by V RP global within the one-year horizons reported in the table, leaving all of

the estimates for b(h) and the R2(h)’s the same to within the second decimal place. The

predictability of the “global” variance risk premium is effectively orthogonal to that doc-

umented in the existing literature based on more traditional macro-finance variables, such

as the P/E ratio, dividend yields, and consumption-wealth ratios, which are typically only

significant over longer multi-year return horizons (see, e.g., the classic studies by Fama and

French, 1988; Campbell and Shiller, 1988b; Lettau and Ludvigson, 2001).19

To further highlight the predictive gains afforded by the use of our “global” VRP as

opposed to the own country VRP’s, the last two panels in Table 6 report the results obtained

by including each individual country’s premium in a panel regression,

h−1rit,t+h = a(h) + b(h)V RP i
t + uit,t+h . (5)

19Further corroborating the results for the U.S. market in BTZ2009, we also found that including the
implied “global” variance or the realized “global” variance together with the “global” variance risk premium
resulted in mostly insignificant coefficient estimates. These additional results are available upon request.
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While the results still point to overall efficiency gains from the panel regression setting rel-

ative to the individual country specific regressions in Table 4, the magnitude of the return

predictability is obviously much lower than for V RP global. The “global” variance risk pre-

mium is clearly a much better predictor of the future returns than the individual country

specific premia. Also, including the country specific P/E ratios in the same panel regression

setting again results in insignificant coefficient estimates, while the tNW -statistics for the

variance risk premia remain highly significant at the intermediate 2-6 month horizons.

To help better understand the economic mechanisms underlying these new empirical find-

ings, we next present a stylized two-country equilibrium model. This relatively simple model

provides a possible rationale for why the estimated “global” VRP regression coefficients are

fairly similar across countries, and why the R2(h)’s for the panel regressions depicted in

Figure 11 are generally larger for the “global” VRP than for the “local” VRP’s, except for

the U.S.

3.4 Global Variance Risk in Equilibrium

Our two-country model is based on a direct extension of the “long-run risk” model in

BTZ2009.20 Specifically, denoting the geometric growth rate of consumption in country

i by git+1 ≡ log(Ci
t+1/C

i
t), we will assume that

git+1 = µg + σgi,tzgi,t+1, (6)

σ2
gi,t+1 = ασφq,i + νσσ

2
gi,t

+ φq,i
√
qtzσ,t+1, (7)

qt+1 = αq + νqqt + φq
√
qtzq,t+1, (8)

where µg denotes mean growth rate, assumed to be constant and the same for the two coun-

tries, σ2
gi,t

refers to the conditional variance of consumption growth for each of the countries,

and qt represents time-varying volatility-of-volatility, or aggregate world-wide economic un-

certainty. In parallel to existing “long-run risk” models, we will assume that zσ,t+1 and

zq,t+1 are independent i.i.d. N(0,1) process, and jointly independent of the two consumption

20Even though the model explicitly excludes predictability in consumption growth, following the termi-
nology of Bansal and Yaron (2004), we will refer to the basic setup as a “long-run risk” model.
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growth shocks, zgi,t+1. For simplicity, we will fix the dynamic variance parameters ασ and

νσ to be the same across the two countries.21 The system is normalized by fixing φq,1 at

unity. The scaling of the mean and volatility parameters for the second country by φq,2, in

turn ensures that the two variance processes move proportional to each other. To complete

the specification, we assume that the conditional covariance between zgi,t+1 and zgj ,t+1 is

determined by the process

cvt+1,ij = αcv + νcvcvt,ij + φcv,ij
√
qtzσ,t+1. (9)

This trivially implies time-varying conditional correlations, unless the parameters are iden-

tical across the covariance and two variance processes.22

We assume that the two international equity markets are fully integrated. We further

assume the existence of a global representative agent with a claim on the world aggregate

consumption, defined as the per capita weighted average consumption in each of the two

countries, say Cglobal
t . Moreover, this agent is endowed with Epstein-Zin-Weil recursive pref-

erences of the form

Ut = [(1− δ)(Cglobal
t )

1−γ
θ + δ(Et[U

1−γ
t+1 ])

1
θ ]

θ
1−γ . (10)

In the specific calibration reported on below, we follow Bansal and Yaron (2004) and

BTZ2009 in fixing the discount rate at δ=0.997, the risk aversion parameter at γ=10, and

the intertemporal elasticity of substitution at φ=1.5.

The parameters for the consumption dynamics are calibrated to mimic the U.S. as coun-

try “1”, and the U.K. as country “2”. In particular, following BTZ2009 we fix the base

parameters for the U.S. at µg=0.0015, νσ=0.979, ασ=0.00782(1− νσ), νq=0.80, αq=1.0*10e-

6, and φq=0.001, respectively. For simplicity, we treat the weights used in the calculation of

“global” consumption as constant and equal to ωUS=0.855 and ωUK=0.145, corresponding

to the consumption shares at the end of the sample.

21Bansal and Shaliastovich (2010) employs a similar assumption for the variance dynamics in their related
two-country model. By contrast, the two-country model in Londono (2010) involves separate shocks for the
“leader” and “follower” countries, but assumes that all of the parameters driving the σgi,t’s and the country
specific qi,t’s are the same across the two countries.

22The consumption data discussed below strongly supports the notion of time-varying covariances (and
correlations). By contrast, the aforementioned two-country model in Bansal and Shaliastovich (2010) pos-
tulates constant cross-country conditional covariances.
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The relevance of allowing for time-varying cross-country covariances is highlighted by

Figure 13, which plots exponentially weighted moving average estimates of U.S. variances,

and U.S.-U.K. covariances and correlations from 1951 to 2009.23 Although the U.S.-U.K.

consumption covariances clearly changes through time, the process is not as persistent as

the process for the U.S. variance depicted in the top panel. We consequently set νcv=0.85

and φcv,US,UK = φ
1/2
q,UKφ

1/2
q,US. Finally, we set the parameter φ

1/2
q,UK=(2.5)1/2 ≈ 1.581 to reflect

the generally higher variability of UK consumption growth.

Turning to the actual calibration results, the top two panels in Figure 14 show the implied

regression coefficients for the “local” (dashed lines) and “global” (solid lines) VRP regressions

for each of the two countries, while the bottom two panels show the implied R2’s from the

“local” (dashed lines) and “global” (solid lines) VRP panel regressions.24 The model-implied

regressions in the figure generally match the qualitative features in the actual international

return regressions quite well.

First, the implied slope coefficients for V RP global in the two individual country regressions

tend to be close across all horizons. For instance, at the four-month horizon, the model

implied slope coefficients equal 0.34 and 0.33 for the U.S. and U.K., respectively, both of

which are well within two standard errors of their corresponding estimates reported in Table

5. Of course, these numbers are also very close to the estimate of 0.32 for the six-country

panel regression in Table 6.

Second, the exposure to the “local” VRP is systematically lower than the exposure to the

“global” VRP for the smaller country in the model (U.K.), directly mirroring the empirical

results. Conversely, for the larger country (U.S.), the “local” VRP gives rise to marginally

higher slope coefficients than the “global” VRP within the model, again directly mirroring

the actual empirical results. Specifically, focussing again on the four-month horizon, the slope

23The exponential weighted moving averages depicted in the figure are based on annual real total consump-
tion expenditures from the Penn World database, and a smoothing parameter equal to λ=1 − (1 − 0.06)4.
Specifically, for the U.S. variance σ2

US,t+1=(1 − λ)σ2
US,t + λ(gUS

t − µ̂US)
2, and the U.S.-U.K. covariance

cvt+1=(1− λ)cvt + λ(gUS
t − µ̂US)(g

UK
t − µ̂UK), with the correlation defined accordingly.

24The calibrated model also implies equity premiums for the U.S. and U.K. of 6.85 percent and 6.02
percent, respectively, along with a world-wide risk free rate of 0.96 percent. Additional technical details
concerning the solution of the model, together with explicit formulas for the regression coefficients and R2’s
depicted in the figure, are relegated to Appendix A.
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coefficient implied by the model equals 0.17 for the U.K. compared to 0.15 for the actual

U.K. regression. In comparison, the model implied slope coefficient for the U.S. equals 0.40,

compared to 0.36 for the actual “local” U.S. regression.

Third, looking at the R2’s from the corresponding panel regressions in the bottom two

panels of Figure 14, both of the plots exhibit a hump shaped pattern with an apparent

peak at the 2-4 month horizons. This overall shape closely matches that for the actual

six-country panel regressions depicted in the bottom two panels in Figure 11. Of course,

the values of the R2’s from the theoretical model are somewhat muted compared to the six-

country panel regressions R2’s. Importantly, however, the model implied panel regression

R2’s based on V RP global uniformly dominate the “local” VRP panel regression R2’s. Again,

these theoretical implications directly mirror the empirical results for the six-country panel

regressions in Figure 11. Intuitively, the “global” VRP effectively isolates the aggregate

world-wide economic uncertainty that is being priced in both markets, in turn providing

better overall predictions for the future returns than the “local” VRP’s.25

In a sum, while the qualitative implications form our stylized equilibrium model are

generally in line with the international predictability patterns documented in the data, some

of the quantitative implications from the model fall short in explaining the magnitude of

the effects. However, we purposely kept the model relatively simple, involving only two

independent volatility shocks. It is certainly possible that by extending the basic model

setup to include additional sources of covariance, or correlation, risks, a full-fledged risk-

based explanation for the new international evidence may be feasible.

4 Conclusion

A number of recent studies have argued that the aggregate U.S. stock market return is

predictable over relatively short 2-4 month horizons by the difference between options implied

and actual realized variances, or the so-called variance risk premium. We provide extensive

25We also experimented with other calibrations and model specifications. In particular, restricting the
covariance to be proportional to the U.S. variance cvt,us,uk=

√
φquk

σ2
gus

ρ, and fixing the implied constant
conditional correlation at ρ=0.18 as in Bansal and Shaliastovich (2010), result in dramatically lower R2’s
(less than 0.03 percent across all return horizons) for V RP global.
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Monte Carlo simulation evidence that this newly documented predictability is not due to

finite sample biases in the statistical inference procedures, and that the hump-shape in the

degree of predictability with a maximum at the 2-4 month horizons is entirely consistent

with the implications from an empirically realistic bivariate daily time series model for the

returns and variance risk premia.

Further corroborating the existing empirical evidence for the U.S. market, we show that

the same basic predictive relationship between future returns and current variance risk pre-

mia holds true for a set of five other countries, although the magnitude of the predictability

and the statistical significance of the own country variance risk premia tend to be somewhat

muted relative to those for the U.S. Meanwhile, regressing the individual country returns on

a capitalization weighted “global” variance risk premium, results in almost identical shapes

in the degree of predictability across horizons and uniformly larger t-statistics for all of the

countries in the sample. Further restricting the regression coefficients and the compensa-

tion for the “global” variance risk to be the same across countries, we find even stronger

results and highly significant test statistics, with the degree of predictability maximized at

the four month horizon. By contrast, the predictability documented in the existing literature

based on more traditional macro-finance variables are generally only significant over longer

multi-year return horizons.

These new empirical findings naturally raise the question of why the “global” variance

risk premium works so well as a predictor variable, and why the predictability is restricted

to within-year horizons. Building on the equilibrium based model in Bollerslev, Tauchen,

and Zhou (2009), we argue that the “global” variance risk premium may be seen as a proxy

for world-wide aggregate economic uncertainty. We also show why this “global” variance

risk premium may serve as a more effective predictor variable for future international equity

returns than the own country’s individual variance risk premium.

Alternatively, following the analysis in Bekaert, Engstrom, and Xing (2009), the variance

risk premium may be interpreted as a measure of aggregate risk aversion in world financial

markets, or a summary measure of disagreements in beliefs across international market

participants, as discussed in Buraschi, Trojani, and Vedolin (2010). All of these competing
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explanations are likely at work to some degree, and we leave it for future research to more

clearly sort out the extent to which each of these competing explanations best accounts for

the strong international return predictability embodied in the “global” variance risk premium

documented here.

A Two-Country Equilibrium Model Solution

Following Epstein and Zin (1989), the logarithm of the world unique intertemporal marginal

rate of substitution, mt+1=log(Mt+1), must satisfy,

mt+1 = θ log(δ)− θψ−1gt+1 + (θ − 1)rt+1, (A.1)

where rt+1 refers to the time t to t + 1 logarithmic return on the “global” consumption

asset, and gt+1 denotes the corresponding “global” consumption growth rate.26 Further,

utilizing the standard Campbell and Shiller (1988a) log-linearization technique, the “world”

and country specific returns may be expressed as,

rt+1 = k0 + k1wt+1 − wt + gt+1, (A.2)

rit+1 = ki,0 + ki,1w
i
t+1 − wi

t + git+1, (A.3)

where wt and wi
t denote the logarithmic price-consumption ratios for the “world” and the

two individual countries, respectively.27 Following the standard approach in the “long-run

risk” literature, we proceed by conjecturing solutions to wt and w
i
t of the form,28

wt+1 = A0 +
∑

Aσj
σ2
gj ,t+1 + Aqqt+1 + Acv,ijcvt+1,ij, (A.4)

26For notational simplicity, here and throughout the Appendix, we omit the “global” superscript on the
relevant variables.

27For the calibration exercise discussed in the main text we set k1 = kUS,1 = kUK,1=0.9. The constants k0
and ki,0 only enter the expressions for A0 and Ai,0 below, which are not actually needed for the calculations
of the regression coefficients, R2’s, and equity premia.

28In the following, unless explicitly noted, all of the summations are over the two countries, running from
j = 1 to 2.
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wi
t+1 = Ai,0 +

∑
Ai,σj

σ2
gj ,t+1 + Ai,qqt+1 + Ai,cv,ijcvt+1,ij. (A.5)

Combining the equations for rit+1 and wi
t+1 above, with equation (6) for git+1 in the main

text, the equilibrium return for country i may alternatively be expressed as,

rit+1 = ci,r+
2∑

l=1

Ari,glσ
2
gl,t

+Ari,qqt+Ari,cv,ijcvt,ij+
√
qtki,1[Ai,φzσ,t+1+Ai,qφqzq,t+1]+σgi,tzgi,t+1,

(A.6)

where ci,r = − log(δ) + φ−1µg, Ari,gj = Ai,σj
(ki,1νσ − 1), Ari,q = Ai,q(ki,1νq − 1), Ari,cv,ij =

Ai,cv,ij(ki,1νcv − 1), and Ai,φ =
∑
Ai,σj

φqj + Ai,cv,ijφcv,ij.
Next, utilizing the standard no-arbitrage condition Et(exp(rt+1+mt+1)) = 1, the param-

eters for the “world” in equation (A.4) may be solved as,29

A0 =
log(δ) + (1− φ−1)µg + k0 + k1[

∑
Aσjασφq,j +Aqαq +Acv,ijαcv]

1− k1
,

Acv,ij =
(γ − 1)2ωiωj

θ(1− k1νcv)
,

Aσj =
(γ − 1)2ω2

j

2θ(1− k1νσ)
,

Aq = θ−1φ−2
q k−2

1 ((1− k1νq)− [(1− k1νq)
2 − θ2k41φ

2
q(
∑

Aσjφqj +Acv,ijφcv,ij)
2]1/2).

Similarly, the parameters for the individual countries in equation (A.5) may be solved as,30

Ai,0 =
log(δ) + (1− φ−1)µg + ki,0 + ki,1[

∑
Ai,σjασφq,j +Ai,qαq +Ai,cv,ijαcv,ij ]

1− ki,1
,

Ai,cv,ij = Acv,ij +
(2γ − 1)ωiωj − γωj

(1− k1νcv)
,

Ai,σj = (1− θ)Aσj

1− k1νσ
1− ki,1νσ

+
γ2ω2

j + Ii=j(−2γωj + 1)

2(1− ki,1νσ)
,

Ai,q =
k1
ki,1

(1− θ)Aq +
(1− ki,1νq)

φ2
qk

2
i,1

− φ−2
q k−2

i,1 ((1− ki,1νq)
2 − θ2k2i,1φ

2
q{k21(

∑
Aσjφqj +Acv,ijφcv,ij)

2 − 2(θ − 1)Aq(1−
k1
ki,1

)

+
2

θ2
[0.5(

∑
Ai,σjφqj +Ai,cv,ijφcv,ij)

2k2i,1 + (0.5− θ)k21(
∑

Aσj +Acv,ijφcv,ij)
2

+ (θ − 1)k1ki,1(
∑

Aσjφqj +Acv,ijφcv,ij)(
∑

Ai,σjφqj +Ai,cv,ijφcv,ij ]})1/2.

29Note, the aforementioned restrictions that γ > 1 and φ > 1, readily imply that the impact coefficient
associated with the volatility and correlation state variables are negative; i.e. Acv,ij < 0, Aσj < 0, and
Aq < 0.

30Intuitively, the larger the covariance for the “small” country, the more risky the country. Also, in general,
the more volatile the consumption of country i, the less risky is country j.
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Going one step further and building on the derivations in BTZ2009, the two country

specific VRP’s may be approximated as,

V RP i
t ≈ (θ − 1)k1Avrpi,qqt, (A.7)

where Avrpi,q = k2i,1Aqφ
2
q(A

2
i,φ + A2

i,qφ
2
q) + Aφφq,i.

Based on these expressions, it is now possible to derive the slope coefficients from re-

gressing country i’s return on country j’s VRP,

βi,j(h) =
Ari,q

1−νhq
1−νq

h(θ − 1)k1Avrpj ,q

, (A.8)

as well as the slope coefficient from regressing country i’s return on the global VRP,

βi(h) =
Ari,q

1−νhq
1−νq

h(θ − 1)k1Avrp,q

. (A.9)

The final expressions for the “global” and “local” panel regressions discussed in the main

text may be derived analogously. In particular, it is possible to show that

R2
global(h) =

(
1

2

∑
βj(h)

)2 2(θ − 1)2k21A
2
vrp,qV ar(qt)∑

V ar(
∑h

m=1 r
j
t+m)

, (A.10)

and

R2
local(h) =

(∑
V ar2(V RP j

t )
)−2 (∑

βj,j(h)V ar
2(V RP j

t )
)2

∑
V ar(V RP j

t )∑
V ar(

∑h
m=1 r

j
t+m)

,

(A.11)

where V ar(V RP j
t )=(θ − 1)2k21A

2
vrpj ,qV ar(qt),

V ar(

h∑
m=1

rit+m) = hV ar(rit+1) + 2

h−1∑
s=1

(h− s)(Ai,s +Bi,s),

V ar(rit+1) = A2
ri,qV ar(qt) + (A2

ri,gi +A2
ri,gj

φ2
q,j

φ2
q,i

+ 2Ari,giAri,gj

φq,j

φq,i
)V ar(σ2

gi,t) +A2
ri,cv,ijV ar(cvt,ij)

+ 2

2∑
l=1

Ari,glAri,cv,ijCov(σ2
gl,t

, cvt,ij) + k2i,1[(A
2
i,φ +A2

i,qφ
2
q)E(qt)] + E(σ2

gi,t),
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Ai,s = A2
ri,qν

s
qV ar(qt) + νsσ(A

2
ri,gi +A2

ri,gj

φ2
q,j

φ2
q,i

+ 2Ari,giAri,gj

φq,j

φq,i
)V ar(σ2

gi,t)

+A2
ri,cv,ijν

s
cvV ar(cvt,ij) +

2∑
l=1

Ari,glAri,cv,ij(ν
s
cv + νsσ)Cov(σ2

gl,t
, cvt,ij),

Bi,s = ki,1E(qt)(ν
s−1
σ

2∑
l=1

Ari,glAi,φφql + νs−1
q Ari,qAi,qφ

2
q + νs−1

cv Ari,cv,ijAi,φφcv,ij),

and the model-implied moments entering the above expressions are given by,

E(qt) =
αq

1− νq
, E(σ2

gi,t) =
ασφq,i

1− νσ
, E(σ2

g,t) =
ασ

∑
ωiφq,i

1− νσ
, E(cvt,ij) =

αcv

1− νcv
,

V ar(qt) =
φ2
qE(qt)

1− ν2q
, V ar(σ2

gi,t) =
φ2
qiE(qt)

1− ν2σ
, V ar(cvt,ij) =

φ2
cv,ijE(qt)

1− ν2cv
,

Cov(σ2
gi,t, σ

2
gj ,t) =

φq,iφq,jE(qt)

1− ν2σ
, Cov(σ2

gl,t
, cvt,ij) =

φqlφcv,ijE(qt)

1− νσνcv,ij
.
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Table 1 Simulated Size and R2

The table reports the simulated 95-percentiles in the finite sample distributions of tNW and tHD for testing
the hypothesis that bs(h) = 0 based on the return predictability regression in equation (1), along with the
adjusted R2 from the regression. The data are generated from the VAR-GARCH-DCC model discussed in
the main text, restricting the coefficients in the conditional mean equation for the returns to be equal to
zero. The “daily” return regressions are based on 2,954 observations, while the “weekly” and “monthly”
regressions involve 598 and 149 observations, respectively. All of the simulations are based on a total of
2,000 replications.

h tNW tHD adj.R2 h tNW tHD adj.R2 h tNW tHD adj.R2

Daily Weekly Monthly

20 2.445 2.182 3.036 4 2.434 2.212 2.971 1 2.260 2.276 3.017

40 2.602 2.112 4.804 8 2.600 2.078 4.800 2 2.520 2.187 4.837

60 2.815 2.085 5.756 12 2.805 2.016 5.790 3 2.788 2.083 5.774

80 2.969 2.107 6.324 16 2.967 2.031 6.345 4 2.941 2.106 6.315

120 3.054 2.152 7.639 24 3.095 2.098 7.615 6 3.220 2.124 7.502

180 3.289 2.171 8.594 36 3.322 2.113 8.482 9 3.314 2.163 8.192

240 3.400 2.229 8.951 48 3.476 2.146 8.682 12 3.509 2.186 8.679

Table 2 Simulated Power

The table reports the simulated power of the size-adjusted 5-percent tNW and tHD statistics for testing the
null hypothesis of no predictability and bs(h) = 0 in the return regression in equation (1). The data are
generated from the VAR-GARCH-DCC model discussed in the main text. The “daily” return regressions are
based on 2,954 observations, while the “weekly” and “monthly” regressions involve 598 and 149 observations,
respectively. All of the simulations are based on a total of 2,000 replications.

h pwNW pwHD h pwNW pwHD h pwNW pwHD

Daily Weekly Monthly

20 0.919 0.873 4 0.910 0.852 1 0.886 0.807

40 0.888 0.808 8 0.877 0.799 2 0.845 0.762

60 0.804 0.725 12 0.793 0.729 3 0.768 0.711

80 0.710 0.630 16 0.709 0.639 4 0.686 0.627

120 0.567 0.474 24 0.553 0.481 6 0.507 0.497

180 0.375 0.352 36 0.371 0.352 9 0.368 0.350

240 0.288 0.283 48 0.285 0.289 12 0.277 0.302
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Table 4 Country Specific Regressions

The results are based on the monthly regression in equation (2). tNW -statistics are reported in parentheses.
The sample period extends from January 2000 to December 2010.

Index Monthly Horizon 1 2 3 4 5 6 9 12

CAC 40

Constant -7.41 -8.07 -8.13 -8.30 -8.35 -8.30 -8.52 -8.39

(-1.04) (-1.16) (-1.18) (-1.20) (-1.19) (-1.18) (-1.14) (-1.10)

VRPi
t 0.22 0.22 0.22 0.21 0.16 0.11 0.06 0.04

(2.71) (3.59) (3.30) (3.79) (3.86) (3.01) (1.37) (0.88)

Adj. R2 0.99 2.61 3.89 4.88 3.19 1.36 -0.03 -0.32

DAX 30

Constant -2.72 -4.58 -4.78 -5.28 -5.29 -4.76 -4.63 -4.80

(-0.30) (-0.54) (-0.58) (-0.66) (-0.66) (-0.58) (-0.54) (-0.56)

VRPi
t -0.01 0.19 0.19 0.24 0.22 0.13 0.07 0.10

(-0.06) (1.10) (1.51) (2.04) (2.58) (1.55) (1.44) (2.25)

Adj. R2 -0.77 0.34 0.76 2.40 2.42 0.39 -0.30 0.52

FTSE 100

Constant -4.67 -5.50 -6.28 -6.56 -6.51 -6.38 -6.08 -5.86

(-0.82) (-0.99) (-1.19) (-1.25) (-1.23) (-1.20) (-1.12) (-1.09)

VRPi
t -0.02 0.05 0.13 0.15 0.13 0.10 0.02 -0.01

(-0.20) (0.91) (3.02) (3.86) (4.14) (2.22) (0.59) (-0.29)

Adj. R2 -0.76 -0.61 0.93 2.55 1.84 0.94 -0.72 -0.82

Nikkei 225

Constant -6.00 -6.75 -8.63 -8.79 -7.97 -7.57 -6.10 -5.67

(-0.80) (-0.90) (-1.15) (-1.20) (-1.10) (-1.04) (-0.79) (-0.73)

VRPi
t -0.01 0.03 0.14 0.16 0.10 0.08 0.00 0.01

(-0.09) (0.27) (1.46) (1.80) (1.22) (0.91) (0.04) (0.36)

Adj. R2 -0.77 -0.75 0.29 0.95 0.11 -0.19 -0.83 -0.81

SMI

Constant -2.39 -3.07 -3.24 -3.81 -3.91 -3.87 -3.77 -3.76

(-0.36) (-0.47) (-0.51) (-0.62) (-0.64) (-0.63) (-0.59) (-0.57)

VRPi
t 0.04 0.15 0.15 0.24 0.22 0.18 0.10 0.09

(0.37) (1.76) (1.49) (2.37) (3.24) (2.88) (2.43) (3.42)

Adj. R2 -0.71 0.40 0.73 3.55 3.53 2.59 0.71 0.78

S&P 500

Constant -6.93 -6.88 -7.16 -7.09 -6.65 -6.08 -5.31 -5.02

(-1.30) (-1.29) (-1.38) (-1.34) (-1.23) (-1.11) (-0.95) (-0.94)

VRPi
t 0.42 0.40 0.39 0.36 0.28 0.18 0.04 0.00

(5.11) (5.29) (8.43) (8.80) (6.52) (3.83) (0.90) (0.13)

Adj. R2 5.40 8.72 13.13 14.18 9.40 4.06 -0.54 -0.84
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Table 5 “Global” Variance Risk Premium Regressions

The results are based on the monthly regression in equation (3). tNW -statistics are reported in parentheses.
The sample period extends from January 2000 to December 2010.

Index Monthly Horizon 1 2 3 4 5 6 9 12

CAC 40

Constant -8.51 -10.00 -9.96 -10.09 -9.79 -9.16 -8.58 -8.28

(-1.15) (-1.39) (-1.43) (-1.44) (-1.39) (-1.29) (-1.15) (-1.09)

VRPglobal
t 0.24 0.35 0.33 0.33 0.26 0.16 0.04 0.01

(2.44) (4.52) (6.21) (8.21) (6.95) (3.58) (0.96) (0.22)

Adj. R2 0.58 4.22 5.99 7.43 5.27 1.87 -0.59 -0.83

DAX 30

Constant -4.72 -6.44 -6.66 -6.96 -6.55 -5.55 -4.56 -4.39

(-0.54) (-0.75) (-0.81) (-0.85) (-0.79) (-0.67) (-0.53) (-0.51)

VRPglobal
t 0.24 0.37 0.38 0.39 0.33 0.20 0.05 0.02

(2.43) (2.61) (6.26) (7.90) (4.07) (2.32) (0.72) (0.31)

Adj. R2 0.10 3.20 5.10 7.21 5.85 1.91 -0.63 -0.82

FTSE 100

Constant -5.87 -6.52 -7.00 -7.03 -6.89 -6.58 -6.08 -5.83

(-1.09) (-1.23) (-1.38) (-1.38) (-1.33) (-1.26) (-1.13) (-1.09)

VRPglobal
t 0.13 0.18 0.22 0.22 0.18 0.13 0.02 -0.01

(1.78) (1.85) (3.44) (5.07) (3.79) (2.21) (0.56) (-0.38)

Adj. R2 -0.16 1.40 4.23 5.55 4.30 2.02 -0.70 -0.78

Nikkei 225

Constant -7.31 -7.70 -8.72 -8.66 -8.08 -7.49 -6.00 -5.45

(-0.94) (-1.03) (-1.19) (-1.20) (-1.12) (-1.04) (-0.79) (-0.71)

VRPglobal
t 0.15 0.16 0.24 0.25 0.19 0.12 -0.01 -0.01

(1.13) (2.51) (4.44) (5.05) (3.15) (1.67) (-0.17) (-0.19)

Adj. R2 -0.36 0.11 1.97 2.81 1.77 0.47 -0.81 -0.84

SMI

Constant -3.58 -4.53 -4.76 -5.08 -4.89 -4.50 -3.65 -3.45

(-0.55) (-0.71) (-0.77) (-0.82) (-0.79) (-0.73) (-0.57) (-0.53)

VRPglobal
t 0.17 0.28 0.29 0.32 0.27 0.20 0.05 0.02

(1.51) (5.78) (5.32) (7.70) (8.39) (5.62) (1.52) (0.59)

Adj. R2 0.40 4.10 6.10 8.92 7.54 4.47 -0.34 -0.76

S&P 500

Constant -7.03 -6.95 -7.41 -7.40 -6.88 -6.29 -5.49 -5.20

(-1.32) (-1.32) (-1.46) (-1.43) (-1.30) (-1.17) (-1.00) (-0.98)

VRPglobal
t 0.41 0.38 0.40 0.38 0.29 0.20 0.06 0.03

(4.98) (5.01) (6.93) (7.88) (5.70) (3.40) (1.24) (0.68)

Adj. R2 4.43 7.05 12.04 13.69 9.04 4.31 -0.16 -0.62
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Table 6 Panel Regressions

The results are based on on the monthly “global” and county-specific panel regressions in equations (4)
and (5), respectively. NW-based t-statistics are reported in parentheses. The sample period extends from
January 2000 to December 2010.

“Global” Regressors

Horizon (mos) 1 2 3 4 5 6 9 12

Constant -6.17 -7.02 -7.42 -7.54 -7.18 -6.60 -5.73 -5.44

(-2.15) (-2.51) (-2.74) (-2.78) (-2.64) (-2.42) (-2.12) (-2.07)

VRPglobal
t 0.22 0.29 0.31 0.31 0.25 0.17 0.04 0.01

(4.66) (6.60) (9.70) (11.21) (9.43) (6.04) (1.41) (0.41)

Adj. R2 1.08 3.43 5.85 7.46 5.72 2.81 0.04 -0.12

Constant -14.90 -10.73 -2.25 4.05 4.41 2.03 -8.12 -13.83

(-0.63) (-0.47) (-0.11) (0.20) (0.23) (0.11) (-0.46) (-0.83)

VRPglobal
t 0.22 0.28 0.32 0.32 0.26 0.18 0.03 0.00

(4.45) (5.34) (9.34) (10.81) (8.17) (5.28) (1.18) (0.03)

log(Pt/Et)
global 2.70 1.14 -1.60 -3.57 -3.57 -2.66 0.73 2.59

(0.37) (0.16) (-0.25) (-0.59) (-0.62) (-0.47) (0.14) (0.53)

Adj. R2 0.99 3.32 5.75 7.51 5.80 2.81 -0.08 -0.06

Country-Specific Regressors

Horizon (mos) 1 2 3 4 5 6 9 12

Constant -5.23 -6.00 -6.43 -6.68 -6.50 -6.18 -5.79 -5.64

(-1.80) (-2.12) (-2.35) (-2.47) (-2.39) (-2.27) (-2.13) (-2.12)

VRPi
t 0.12 0.18 0.20 0.22 0.18 0.12 0.05 0.04

(1.85) (3.31) (4.86) (5.95) (5.82) (4.42) (2.00) (1.68)

Adj. R2 0.27 1.40 2.82 4.30 3.27 1.73 0.22 0.19

Constant 11.57 11.54 11.83 11.92 10.79 9.20 5.48 2.19

(0.96) (0.96) (1.00) (0.99) (0.89) (0.75) (0.45) (0.19)

VRPi
t 0.13 0.19 0.22 0.24 0.20 0.14 0.06 0.05

(2.07) (3.52) (5.33) (6.38) (6.09) (4.59) (2.30) (1.94)

log(P i
t /E

i
t) -5.55 -5.80 -6.03 -6.13 -5.70 -5.06 -3.70 -2.57

(-1.46) (-1.50) (-1.59) (-1.59) (-1.47) (-1.29) (-0.96) (-0.69)

Adj. R2 0.51 1.99 3.79 5.59 4.58 2.90 1.04 0.63
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Figure 1 Estimated VAR-GARCH-DCC Model

The first panel plots the daily conditional correlations between the returns and the variance risk premium

implied by the estimated VAR(1)-GARCH(1,1)-DCC model described in the main text. The lower left and

right two panels provide a scatterplot and histograms, respectively, for the standardized residuals from the

estimated model, ĉηt. The daily sample used in estimating the model spans the period from February 1,

1996 to December 31, 2007, for a total of 2,954 daily observations.
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Figure 2 Simulated Size and Power

The upper left panel reports the 95-percentiles in the finite-sample distributions of the tNW (dash line) and

tHD (solid line) based on simulated “daily” data from the restricted VAR-GARCH-DCC model under the

null of no predictability. The dashed and solid star lines refer to the corresponding t-statistics for actual

daily U.S. S&P 500 returns spanning February 1, 1996 to December 31, 2007. The middle and bottom two

left panels give the results for the simulated “weekly” and “monthly” data, together with the results based

on the actual weekly and monthly S&P 500 returns. The right three panels give simulated “daily,” “weekly”

and “monthly” percentage power based on the unrestricted VAR-GARCH-DCC model and the size-adjusted

5-percent tNW (dashed line) and tHD (solid line) statistics.
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Figure 3 Simulated R2

The top panel in the figure plots the quantiles in the finite-sample distribution of the R2 from the return

regression in equation (1) and simulated “daily” date from the restricted VAR-GARCH-DCC model under

the null of no predictability. The star dashed line refer to the corresponding R2’s in actual daily U.S. S&P

500 returns spanning February 1, 1996 to December 31, 2007. The bottom panel reports the quantiles in

the simulated finite-sample distribution based on the unrestricted VAR-GARCH-DCC model.
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Figure 4 Implied R2

The solid lines in each of the four panels show the R2(h)’s implied by the formula in Section 2.3 in the main

text and the estimated unrestricted VAR-GARCH-DCC model. The dashed lines in each of the four panels

show the implied R2(h)’s for a 10-percent decrease in the values of the b1, b2, c1, and c2 VAR coefficients,

respectively.
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Figure 5 Variance Risk Premia

The figure shows the monthly variance risk premia V RP i
t for France (CAC 40), Japan (Nikkei 225), Germany

(DAX 30), Switzerland (SMI 20), the U.K. (FTSE 100), and the U.S. (S&P 500). The risk premia are

constructed by subtracting the actual realized variation from the model-free options implied variation. The

sample period spans January 2000 to December 2010
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Figure 6 Country Specific Regression Coefficients

The figure shows the estimated regression coefficients for V RP i
t for each of the country specific return

regressions reported in Table 4, together with two NW-based standard error bands. The regressions are

based on monthly data from January 2000 to December 2010.
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Figure 7 Country Specific Regression R2’s

The figure shows the adjusted R2(h)’s for the country specific return regressions reported in Table 4. The

regressions are based on monthly data from January 2000 to December 2010.
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Figure 8 Market Capitalization

The figure shows the relative market capitalization by aggregate index for France (CAC 40), Germany (DAX

30), the U.K. (FTSE 100), Japan (Nikkei 225), Switzerland (SMI 20), and the U.S. (S&P 500).
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Figure 9 “Global” VRP Regression Coefficients

The figure shows the coefficient estimates for V RP global
t from the return regressions reported in Table 5,

together with two NW-based standard error bands. The regressions are based on monthly data from January

2000 to December 2010.
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Figure 10 “Global” VRP Regression R2’s

The figure shows the adjusted R2(h)’s from regressing the individual country returns on V RP global
t reported

in Table 5. The regressions are based on monthly data from January 2000 to December 2010.
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Figure 11 Panel Regression Coefficients and R2’s

The top two panels show the estimated panel regression coefficients from regressing the returns on the indi-

vidual country variance risk premia V RP i
t and the “global” variance risk premium V RP global

t , respectively,

reported in Table 6, together with two NW-based standard error bands. The bottom two panels show the

R2(h)’s from the same two panel regressions. The regressions are based on monthly data from January 2000

through December 2010.
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Figure 12 “Global” VRP Panel Regression R2’s

The figure shows the adjusted R2(h)’s implied by the V RP global
t panel regressions reported in the top panel

in Table 5. The regressions are based on monthly data from January 2000 to December 2010.
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Figure 13 Consumption Growth Variances, Covariances, and Correlations
The figure shows exponentially weighted moving average estimates for U.S. consumption growth variances, and covariances and

correlations with U.K. consumption growth. The estimates are based on annual total real consumption expenditures from 1951

to 2009, and a exponential smoothing parameter of λ=1 − (1 − 0.06)4. The variances and covariances are both scaled by a

factor of 104.

47



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
U.S. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
U.K. 

2 4 6 8 10 12

1

2

3

Horizon (months)
2 4 6 8 10 12

1

2

3

Horizon (months)

Figure 14 Equilibrium VRP Regression Coefficients and R2’s
The figure shows the implications from the calibrated stylized two-country general equilibrium model. The upper two panels

plot the slope coefficients in the country specific regressions for each of the two countries based on the “local” VRP’s (dashed

lines) and “global” VRP (solid lines). The lower two panels show the implied panel regression R2’s based on the “local” (dashed

line) and “global” (solid line) VRPs, respectively.
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