
13.4.1 Factor models — eigevnalue principal components

Produces "factor model" What do data say about factor structure in the yield curve?
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• Technique: eigenvalue decomposition

Σ = cov(y)

QΛQ0 = Σ;Λ diagonal, Q0Q = QQ0 = I

yt = Qxt; cov(xx
0) = Λ→ cov(yy0) = QΛQ0 = Σ

Thus, we get a factor model. The underlying factors x are uncorrelated, ordered by
variance.

1. Λ give us the variances of the "factors"

2. Columns of Q tell us how y loads on x movements, if “factor ‘1 moves” how much do
y move. x = Q0yt (cov(x, x0) = Q0ΣQ = Q0QΛQ0Q = Λ)

3. Colums of Q tell us how x is formed from each y, how to construct each factor.
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4. “Rotation, identification” There are many different ways to write y = Ax; E(xx0) = D.
For example, changing to z1t = x1t/σ1 + x2t/σ2; z2t = x1t/σ1 − x2t/σ2 preserves
cov(z1, z2) = 0. The eigenvalue decomposition solves

max var(q0y) s.t. q0q = 1

max var(q20y) s.t. q02q2 = 1, q02q1 = 0

...

Note: identification will be poor if the variance is about the same; small differences in
the sample will produce q that jump between one and the other factor. Often you want
to identify in other ways than by variance ordering, i.e. to get interpretable shapes of
the loadings. For example, if you do this to the FF 25 portfolios, you get two factors,
each of which is a mixture of smb and hml, and nearly the same variance. Rotating to
smb and hml gives a more pleasing structure.

5. Unit variance factors

yt = QΛ1/2xt; cov(xtx
0
t) = I

xt = Λ−
1
2Q0y

Loadings QΛ1/2 are smaller for smaller factors. This is a nice way to show the relative
importance as well as the shapes of the factors, and not have your readers spend too
much time interpreting the 5th factor.

6. λi/
P

λi = “fraction of variance explained by ith factor”

• Result, applied to FB yield data
factor x 1 2 3 4 5
σ(x) 5.75 0.56 0.10 0.08 0.06
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• “Factor models” come from dropping the small eigenvalues. Then a larger number of
series are, exactly, driven by a smaller number of factors.

• For example, what if we drop 4 and 5?⎡⎢⎢⎢⎢⎢⎣
y
(1)
t

y
(2)
t

y
(3)
t

y
(4)
t

y
(5)
t

⎤⎥⎥⎥⎥⎥⎦ ≈ q1 × levelt + q2 × slopet + q3 × curvet
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Movements in yields can be captured very well by movements in the first two - three
factors alone. But not exactly!

• Dropping factors II. Note that the factors are uncorrelated with each other. cov(xx0) =
Λ. Thus, the left out factors are uncorrelated with the factors you keep in.

y
(n)
t ≈ q

(n)
1 × levelt + q

(n)
2 × slopet + q

(n)
3 × curvet + (left outt)

Therefore, this is a regression equation! This is a way of finding a regression model
like FF3F when you don’t know what to use on the right hand side.

• Notice the analogy to FF3F: three factors (market, hml, smb) account for almost all
return variation (R2 above 90%). The factors are constructed as weighted combinations
of the same securities.
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13.5 Market price of risk and expected returns.

Data: expected excess returns do vary over time, EH is badly off.

hpr
(n)
t+1 − y

(1)
t = a+ b0yt + εt+1

R2 up to 40% and sign changes over time (Fama Bliss, Campbell Shiller, Cochrane Piazzesi).

Figure 1:

(Updated 1964-2005)

r
(n)
t+1 − y

(1)
t = y

(1)
t+n−1 − y

(1)
t =

a+ b
³
f
(n−1→n)
t − y

(1)
t

´
+ εt+1 a+ b

³
f
(n−1→n)
t − y

(1)
t

´
+ εt+1

n a b σ(a) σ(b) R2 a b σ(a) σ(b) R2

2 0.04 0.91 0.28 0.26 0.14 -0.04 0.09 0.28 0.26 0.00
3 -0.15 1.20 0.50 0.35 0.15 -0.34 0.40 0.59 0.29 0.03
4 -0.37 1.41 0.70 0.44 0.16 -0.71 0.66 0.70 0.20 0.09
5 -0.09 1.10 0.95 0.52 0.07 -0.88 0.85 0.79 0.20 0.13

forecasting one year returns forecasting one year rates
on n-year bonds n years from now
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Time

Price
Higher 1 year

rate in year 1-2

= lower return of 2 
year bond in 0- 1

Time

=Higher 1 year
rate in 3-4

Lower return of 4 
year bond from 0-3

Time

Lower return of 4 
year bond from 0-1

= Higher 3 year
rate in 1-4

‘safe’ 1 year return

Cochrane Piazzesi update

1. Bottom line

• Forecast 1 year treasury bond returns, over 1 year rate, using all forwards:

rx
(n)
t+1 = an + β0nft + ε

(n)
t+1

• R2 up to 44%, up from Fama-Bliss / Campbell Shiller 15%

• A single “factor” γ0f forecasts bonds of all maturities. High expected returns in “bad
times.”

• Tent-shaped factor is correlated with slope but is not slope. Improvement comes be-
cause it tells you when to bail out — when rates will rise in an upward-slope environment
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Basic regression
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rx
(n)
t+1 = an + b1y

(1)
t + b2f

(2)
t + ...+ b5f

(5)
t + ε

(n)
t+1

•Regressions of bond excess returns on all forward rates, not just matched f − y as in
Fama-Bliss

•The same linear combination of forward rates forecasts all maturities’ returns. Just
stretch the pattern more to get longer term bonds.

CP vs FB. FB want to understand what’s in a forward rate, the right hand variable. CP
want to understand what’s in an expected return — left hand variable.

A single factor for expected bond returns

rx
(n)
t+1 = bn

³
γ0 + γ1y

(1)
t + γ2f

(1→2)
t + ...+ γ5f

(4→5)
t

´
+ ε

(n)
t+1;

1

4

5X
n=2

bn = 1.

One common combination of forward rates γ0f , then stretch up and down more with bn
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•Two step estimation; first γ then b.

rxt+1 =
1

4

5X
n=2

rx
(n)
t+1 = γ0 + γ1y

(1)
t + γ2f

(1→2)
t + ...+ γ5f

(4→5)
t + εt+1 = γ0ft + εt+1

Then
rx

(n)
t+1 = bn

¡
γ>ft

¢
+ ε

(n)
t+1

Results:

Table 1 Estimates of the single-factor model

A. Estimates of the return-forecasting factor, rxt+1 = γ>ft + ε̄t+1
γ0 γ1 γ2 γ3 γ4 γ5 R2 χ2(5)

OLS estimates −3.24 −2.14 0.81 3.00 0.80 −2.08 0.35 105.5

B. Individual-bond regressions
Restricted Unrestricted

rx
(n)
t+1 = bn

¡
γ>ft

¢
+ ε

(n)
t+1 rx

(n)
t+1 = βnft + ε

(n)
t+1

n bn R2 R2 χ2(5)
2 0.47 0.31 0.32 121.8
3 0.87 0.34 0.34 113.8
4 1.24 0.37 0.37 115.7
5 1.43 0.34 0.35 88.2

•γ capture tent shape.

•bn increase steadily with maturity, stretch the tent shape out.

•Restricted model bnγ almost perfectly matches unrestricted coefficients. (well below 1σ)

•R2 = 0.34− 0.37 up from 0.15− 0.17. And we’ll get to 0.44! Very significant rejection
of γ = 0

•R2 almost unaffected by the restriction. Restriction looks good in the graph.

•See paper version of table 1 for standard errors, joint tests including small sample, unit
roots, etc. Bottom line: highly significant; EH is rejected, improvement on FB/3 factor
models is significant.
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More lags
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rx
(n)
t+1 = an + b0nft−i + ε

(n)
t+1

•More lags are significant, with the same pattern.

•Checking individual lags reassures us it’s not just measurement error, i.e.

pt+1 − pt = a+ bpt + εt+1

if pt is measured with error, you’ll see something. But

pt+1 − pt = a+ bpt−1/12 + εt+1

fixes this problem.

•Suggests moving averages

rxt+1 = a+ γ0 (ft + ft−1 + ft−2 + ...) εt+1

k 1 2 3 4 6
R2 0.35 0.41 0.43 0.44 0.43

•Interpretation: Yields at t should should carry all information. If the lags enter, there
must be a little measurement error. f change slowly over time, so ft−1/12 is informative
about the true ft, .
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Stock Return Forecasts
Table 3. Forecasts of excess stock returns (VWNYSE)

rxt+1 = a+ bxt + εt+1

γ>f (t) d/p (t) y(5) − y(1) (t) R2

1.73 (2.20) 0.07
3.56 (1.80) 3.29 (1.48) 0.08

1.87 (2.38) −0.58 (−0.20) 0.07
1.49 (2.17) 2.64 (1.39) 0.10

MA γ>f 2.11 (3.39) 0.12
MA γ>f 2.23 (3.86) 1.95 (1.02) −1.41 (−0.63) 0.15

• 5 year bond had b = 1.43. Thus, 1.73− 2.11 is what you expect for a perpetuity.

• Does better than D/P and spread; Drives out spread; Survives with D/P

• A common term risk premium in stocks, bonds! Reassurance on fads & measurement
errors
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History
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Ex-post returns

Yields

•Consistent in many episodes

•γ0f and slope are correlated. Both show a rising yield curve but no rate rise

•γ0f improvement in many episodes. γ0f says get out in 1984, 1987, 1994, 2004. What’s
the signal?
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•Green: CP say go. Red: FB say go, CP say no.

•Tent-shaped coefficients interact with tent-shaped forward curve to produce the signal.

•CP: in the past, tent-shape often came with upward slope. Others saw upward slope,
thought that was the signal. But an upward slope without a tent does not work. The tent
is the real signal.
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Real time
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Real time

Regression forecasts γ̂>ft. “Real-time” re-estimates the regression at each t from 1965 to t.
(Note: Just because we don’t have data before 1964 doesn’t mean people don’t know what’s
going on. Out of sample is not crucial, but it is interesting.)
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Macro

1965 1970 1975 1980 1985 1990 1995 2000

Return forecast
Unemployment

•Is it real, a time-varying risk premium? Or is it some new psychological “effect,” an
unexploited profit opportunity?

• Here, γ0f is correlated with business cycles, and lower frequency. (Level, not growth.)
Suggests a “business cycle related risk premium.”

• Also significant that the same signal predicts all bonds, and predicts stocks. If “over-
looked” it is common to a lot of markets!
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Relation to factor models (why is this news?)
(Postpone until we understand factor models)
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Panel A: We can express γ0f as a function of yields too. γ0f = γ∗0y; What yield curve
signals high returns on long term bonds (not forward curve)? A: γ∗ ≈ Slope plus 4-5 spread.

Panel B: γ0f has nothing to do with slope (symmetry: γ0 linear = 0) and curvature
(curved at the long, not short end). (These are the linear combinations of yields you use to
create the factors. More next week.)

Panel C: rxt+1 = a + b × levelt + c × slopet + εt+1. Then, from the construction
levelt = q0yt, you can figure out the implied regression coefficients of rxt+1 on yt. The graph
plots those implied coefficients. Moral: You can’t approximate γ0f well with level, slope, and
curvature factors.

•Moral 1 Term structure models need L, S, C to get yield behavior and γ0f to get
expected returns.

•Adding γ0f will not help much to hit yields (pricing errors) but it will help to get tran-
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sition dynamics right (i.e. expected returns, yield differences)

•Moral 2. You can’t first reduce to L, S, C, then examine Etrxt+1 →Reason #1 this was
missed.

Panel D: The pattern is stable as we add forward rates.
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Failures and spread trades

•What this is about (so far): when, overall is there a risk premium (high expected
returns) in long term vs. short term bonds. “Trade” is just betting on long vs. short
maturity, “betting on interest rate movements.”

•What this is not about (so far). Much fixed income “arbitrage” involves relative pricing,
small deviations from the yield curve. “Trade” might be short 30 year, long 29.5 year.

A hint of spread trades

If the one-factor model is exactly right, then deviations from the single-factor model
should not be predictable.

rx
(2)
t+1 − b2rxt+1 = a(2) + 00ft + εt+1 = a(2) + 00yt + εt+1

(Why?

rx
(2)
t+1 = α(2) + b2 (γ

0ft) + ε
(2)
t+1

rxt+1 = α+ γ0ft + ε
(2)
t+1

multiply the second by b2 and subtract.)

Table 7. Forecasting the failures of the single-factor model
A. Coefficients and t-statistics

Right hand variable
Left hand var. const. y

(1)
t y

(2)
t y

(3)
t y

(4)
t y

(5)
t

rx
(2)
t+1 − b2rxt+1 −0.11 −0.20 0.80 −0.30 −0.66 0.40

(t-stat) (−0.75) (−1.43) (2.19) (−0.90) (−1.94) (1.68)
rx

(3)
t+1 − b3rxt+1 0.14 0.23 −1.28 2.36 −1.01 −0.30

(t-stat) (1.62) (2.22) (−5.29) (11.24) (−4.97) (−2.26)
rx

(4)
t+1 − b4rxt+1 0.21 0.20 −0.06 −1.18 1.84 −0.82

(t-stat) (2.33) (2.39) (−0.33) (−8.45) (9.13) (−5.48)
rx

(5)
t+1 − b5rxt+1 −0.24 −0.23 0.55 −0.88 −0.17 0.72

(t-stat) (−1.14) (−1.06) (1.14) (−2.01) (−0.42) (2.61)

B. Regression statistics
Left hand var. R2 χ2(5) σ(γ̃>y) σ(lhs) σ(b(n)γ>y) σ(rx

(n)
t+1)

rx
(2)
t+1 − b2rxt+1 0.15 41 0.17 0.43 1.12 1.93

rx
(3)
t+1 − b3rxt+1 0.37 151 0.21 0.34 2.09 3.53

rx
(4)
t+1 − b4rxt+1 0.33 193 0.18 0.30 2.98 4.90

rx
(5)
t+1 − b5rxt+1 0.12 32 0.21 0.61 3.45 6.00

• Pattern: if y(n) is a little out of line with the others (low price), then r(n) is good relative
to all the others.

• No common factor. Bond-specific mean-reversion.

•This is tiny. 17-21 bp, compare to 200-600 bp returns.
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•The single-factor γ0f accounts for all the economically important variation in expected
returns

• But the left hand side is tiny too, so tiny/tiny = good R2

• Tiny isn’t so tiny if you leverage up like crazy!

• But... measurement error looks the same.

13.6 Term structure models to capture risk premia

•How do we construct model to do this? λt but how...Idea:

Et(R
e
t+1)

σt(Re
t+1)

=
σt(m)

Et(m)

we need conditionally heteroskedastic discount rates to produce time vayring risk premia.

•Framework: Multifactor discrete time Vasicek

Xt+1 = μ+ φXt + vt+1; vt+1 ∼ N (0, V ).

Mt+1 = exp

µ
−δ0 − δ>1Xt −

1

2
λ>t V λt − λ>t vt+1

¶
λt = λ0 + λ1Xt.

P
(1)
t = Et(Mt+1) = exp

¡
−δ0 − δ>1Xt

¢
y
(1)
T = δ0 + δ>1Xt

Fact:
p
(n)
t = An −B0

nXt

Just as before, guess then
ep

(n)
t = Et

³
Mt+1e

p
(n−1)
t+1

´
....

Simplest answer

φ∗ ≡ φ− V λ1

μ∗ ≡ μ− V λ0

B>
n = −δ>1 (I + φ∗ + φ∗2 + ..+ φ∗n−1) = −δ>1 (I − φ∗n) (I − φ∗)−1

f
(n−1→n)
t =

µ
δ0 −B>

n−1μ
∗ − 1

2
B>
n−1V Bn−1

¶
+
¡
δ>1 φ

∗n−1¢Xt.

Compare to the earlier discrete time Vasicek — λ1 = 0. There had only a constant
distortion. Now a time-varying distortion as well. “risk neutral” transition matrix
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(long algebra)

Etr
(n)
t+1 − y

(1)
t = B>

n−1V

µ
λ0 −

1

2
Bn−1

¶
+
¡
B>
n−1V λ1

¢
Xt

.

•How do we pick λ0, λ1 to match CP or other facts? (Said to be a big puzzle!)

“find a discount factor to price a set of assets with given mean, covariance matrix” —
child’s play!

Re
t+1 = a+ bXt + εt+1

Mt+1 = 1/R
f
©
1−Et

¡
Re0
t+1

¢
Σ−1

£
Re
t+1 −Et(R

e
t+1)

¤ª
Et(MRf) = 1

Et (MtR
e0) = 1/Rf

¡
Et(R

e0)− Et (R
e0)Σ−1Σ

¢
= 0

Mt+1 = 1/R
f
©
1− (a+ bXt)

0Σ−1εt+1
ª

i.e.
λt = Σ−1 (a+ bXt) .

All we need to do is adapt this idea to the lognormal world.

•Step 1: 1 = E(MR) in this lognormal world

Et

h
rx

(n)
t+1

i
+
1

2
σ2t (rx

(n)
t+1) = −covt(rx

(n)
t+1,mt+1),

Proof:

1 = Et

h
Mt+1R

(n)
t+1

i
= Et

h
emt+1+r

(n)
t+1

i
0 = Et [mt+1] +Et

h
r
(n)
t+1

i
+
1

2
σ2t (mt+1) +

1

2
σ2t (r

(n)
t+1) + covt(r

(n)
t+1,mt+1)

0 = Et [mt+1] + y
(1)
t +

1

2
σ2t (mt+1),

Et

h
rx

(n)
t+1

i
+
1

2
σ2t (rx

(n)
t+1) = −covt(rx

(n)
t+1,mt+1),

•Fact we want to match:

rxt+1 = βft + εt+1; cov(εt+1ε
>
t+1) = Σ.

•Idea. Load on ε shocks,

Mt+1 = exp

µ
−y(1)t −

1

2
λ>t Σλt − λ>t εt+1

¶
?

Et [rxt+1] +
1

2
σ2t (rxt+1) = βft + diag(Σ)

= −covt(rx(n)t+1,mt+1) = covt(rx
(n)
t+1, ε

0
t+1)λt = Σλt
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λt = Σ−1
∙
βft +

1

2
diag (Σ)

¸

•We’re done! Answer:

rxt+1 = βft + εt+1; cov(εt+1ε
>
t+1) = Σ.

Mt+1 = exp

µ
−y(1)t −

1

2
λ>t Σλt − λ>t εt+1

¶
,

λt = Σ−1
∙
βft +

1

2
diag (Σ)

¸
.

Wait, what about the state variable transition? The first equation isn’t in standard form.
Oh yes it is! Recall

rx
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t + p

(1)
t

so this rx forecasting equation IS

ft+1 = μ+ φft +Qεt+1

or yields or prices.

•Check. Before, I had the idea of using y(1)t as a “state” variable and then checking that
P
(1)
t = E(Mt+1) generates the y

(1)
t we started with. We need to do that again here...

P
(N)
t = Et(Mt+1...Mt+N)

(algebra). Yes, this works, the model is “self-consistent.”

• This is exsistence... much more to "what it looks like" see CPII. Interesting stuff, like
“the risk premium is earned for covariance with level shocks.”

•What is Et (γ
0ft+1) = Etrx

(n)
t+2. What is the term structure of risk premia?

f
(n)
t = Et

³
y
(1)
t+n−1

´
+Et

³
rx

(n)
t+1 − rx

(n−1)
t+1

´
+Et

³
rx

(n−1)
t+2 − rx

(n−2)
t+2

´
+ . . .+Et

³
rx

(2)
t+n−1

´
f
(n)
t = Et

³
y
(1)
t+n−1

´
+ (bn − bn−1) (γ

0ft) + (bn−1 − bn−2)Et (γ
0ft+1) . . .

Geometric decay or interesting dynamics? Is it all the first year premium, or is premium
expected to stay high “random walk”? “forward rate = expectations plus risk premium”
sure, but current or future risk premium? CP II starts answer, much more to do !

Task: Understand recent interest rates. Conundrum, or replay the past?
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Forward rates in two recessions. The federal funds rate, 1-5, 10 and 15 year forward rates
are plotted. Federal funds, 1, 5 and 10 year forwards are emphasized. The vertical lines in

the lower panel highlight specific dates that we analyze more closely below.

Two guesses: A cointegrated estimate (no “yields revert to uncdonditional mean”) a) risk
premium high, then declining (zero if graphs parallel)

154



0 5 10 15
0

1

2

3

4

5

Fit f

OLS

Fwds

E(rx10)/2

1231  2001

0 5 10 15
0

1

2

3

4

5

6

E(rx10)/2

Fit f

OLS

Fwds

1231  2003

0 5 10 15
-1.5

-1

-0.5

0

0.5

1
E(rx10)/2

Fit f

OLS

Fwds

331  2006

2000 2002 2004 2006
2

3

4

5

6

7

1
5
Ey(1)

10 y fwd

Forward curve decompositions by the affine model in the spread-difference specification.

13.7 Evolution of term structure models

•Vasicek

dr = φ(r̄ − r)dt+ σdz

dΛ

Λ
= −rdt− σΛdz

p(N, r) = −A(N)−B(N)r

y
(1)
t − δ = φ

³
y
(1)
t−1 − δ

´
+ εt

mt = logMt = −y(1)t −
1

2
λ2σ2ε − λεt

B(N) is just expectations, no time varying risk premium. Single factor. Constant volatility

•CIR

dr = φ(r̄ − r)dt+ σ
√
rdz

dΛ

Λ
= −rdt− σΛ

√
rdz
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Keeps r > 0. Gives some (but not enough) TV risk premium. Allows some TV volatility,
but tied to level

•Multifactor affine
dy = φ(ȳ − y)dt+ Σdw

r = δ0 − δ0y
dΛ

Λ
= −rdt− σ0Λdw

dwi =
q
αi + β0iydzi

Result,
P (N, y) = e−A(N)−B(N)

0y

Allows more time-varying risk premium (but not enough). Allows volatility to vary as a
function of rate spreads too.

Current issues

• Better volatility,

• Fact 1 : there is more volatility when r high. (80s?) fact 2: there is a lot of transient r
volatility (weeks), seen in realized volatility , and short-dated term strucutre options move
a lot. fact 3: transient r volatility does not affect bond prices much. Also, r2t+1 is not well
forecast by y (RB).

• Like stochatic volatility in options
dr = μr(r)dt+ σr(v)dz

dv = μvdt+ σvdw

dΛ

Λ
= −rdt− σΛrdz − σΛvdw

p(r, v, n)

a) puzzle, — p should be a function of any state variable — we should be able to see
volatility in bond prices!

b) In general p(r, v, n) is not a strong function of v. And cases can be worked out where
dp/dv = 0 — exact “unspanned stochastic volatility”.

c)
P = Ee−

R n
s=0 rt+sds = e−

R n
s=0Ert+sds+

1
2
σ2[

R n
s=0 rt+s]

1/2σ2 isn’t that big anyway, and short lasting changes aren’t going to affect bond prices
much.

Hedging volatility sensitive term structure options with treasury zeros doesn’t work that
well.

Solution: calibrate model to options directly.

Is it an arbitrage, in the payoff space? Same issue as BS. 1) If it’s really a factor model,
and really not unspanned exactly, then yes. 2) If not... Just because it’s “close” for bonds
does not mean “close” for options!
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But then.... why are we doing an affine model and fitting to bond/swap data?

• Better mean? —CP

In discrete-time multifactor vasicek, we saw how to construct λt = λ0 + λ1ft to match
return regressions.

• Merge better mean and better volatility?

• “observable macro factors zt” But then why do bond prices not reveal the macro factors
and render them useless? p(..zt)? Could this be generalized to have unspanned macro factors
as well?

• economic models of risk premia,

Mt = β

µ
Ct+1

Ct

¶−γ
with money, etc.? “new keynesian affine term structure models.’
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