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The benefits of endowment destruction documented by Ljungqvist and
Uhlig ð2015Þ, and the related possibility that consumption can lower hab-
its, are fragile. Both issues result from a particular way of discretely ap-
proximating the underlying continuous-time model or of adapting it to
jumps. Other ways of calculating the discrete-time approximation or ex-
tending the model to jumps easily overturn the results, while making no
difference to the model’s description of asset prices and quantities. This
analysis gives an example of how to extendmodels so that the jump gives
the same result as a jump limit of continuous-sample-path movements.

I. Beneficial Endowment Destruction?

If a consumer has preferences with habits, lowering consumption today
can lower future habits and potentially raise utility overall. Is habit per-
sistence this strong in the Campbell and Cochrane ð1999, 2000Þ model?
Suppose that a Campbell-Cochrane consumer at time t 5 0 is at the

steady-state log surplus consumption ratio s0 5 �s. Suppose that log en-
dowment grows steadily at the rate g for periods 0, 1, 2, that is, y0 52g,
y1 5 0, y2 5 g. Suppose that the government destroys some of the time
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1 endowment, so that log time 1 consumption c1 5 w < 0. Thereafter the
log endowment follows the usual process,

yt11 5 g 1 yt 1 vt11; t > 2; vt11 ∼Nð0; j2
vÞ; ð1Þ

and ct 5 yt. We simulate this endowment process for a variety of w, and
we evaluate the utility function by averaging over a large number of sim-
ulations.
The solid line in figure 1 presents the consumer’s utility. We include

w > 0, transfers from abroad or manna from heaven, as well as endow-
ment destruction w < 0.
Near w5 0, utility rises with w. Despite habit formation, endowment

destruction hurts and transfers help. However, the relationship is U
shaped so that destroying a discrete amount of the endowment raises
utility. This is Ljungqvist and Uhlig’s ð2015Þ main point.
The solid line uses a monthly time interval, as we did in Campbell and

Cochrane ð1999Þ. The dashed line of figure 1 presents instead the same
endowment destruction episode, with the model simulated at a daily
time interval. Starting at time t5 0 we add ðor subtract, when w < 0Þ w=30

FIG. 1.—Effect of endowment destruction. At time t 5 1, an amount w is added or sub-
tracted to log consumption. The figure plots achieved utility as a function of w. The solid
line uses a monthly time interval and perturbs consumption at month t 5 1 only. The
dashed line uses a daily time interval, modifying consumption in a V-shaped pattern for
2 months.

comments 1215



from log consumption each day for 30 days. We then restore consump-
tion the same way, producing a V-shaped daily consumption pattern that
bottoms out at the same w value on day 30. We simulate the model for-
ward as before.
In this daily simulation, the Ljungqvist and Uhlig pattern disappears.

Output destruction is always harmful, and transfers are always welcome.
Still smaller time intervals lead to visually indistinguishable results.
To produce figure 1, we simulate the monthly or daily version of ð1Þ,

using jv 5 0:015D, where D 5 1/12 or D 5 1/360 is the simulation in-
terval. We then recursively calculate the surplus consumption ratio,

st1D 5 ð12 fDÞ�s 1 fDst 1 lðstÞðct1D 2 ct 2 gDÞ; ð2Þ

where

lðsÞ;
1
�S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 2ðs 2 �s Þ

p
2 1 s ≤ smax

0 s ≥ smax,

8<
: ð3Þ

st 5 log ðStÞ5 log

�
Ct 2 Xt

Ct

�
;

ct 5 logðCtÞ is log consumption, Xt is habit, and �s 5 log �S 5 logð0:057Þ,
f5 0:87, g 5 0.0189, and smax 5 �s 1 1=2ð12 �S 2Þ are parameters. We
then evaluate the utility function

U 5
1

12 g
E o

`

t50;D;2D;:::

dtðCt 2 XtÞ12g

5
1

12 g
Eo

t

dt e ð12gÞðct1st Þ;

with d5 0:89, g5 2:00 by averaging over simulations. This is the
Campbell-Cochrane ð1999Þ model and parameters.
Why are the results of the daily simulation so different from those of

the monthly simulation? Examine ð2Þ closely. During the daily simula-
tion D5 1/360, the surplus consumption ratio responds to each little bit
of consumption each day, and a new lðstÞ is recomputed each day. Dur-
ing the monthly simulation the same lðs0Þ applies to all the daily changes
from t5 0 to t5 1/12, and the same lðs1=12Þ applies to all the daily changes
from t 5 1/12 to t 5 2/12. A daily simulation that uses the beginning-of-
the-month value of lðstÞ rather than the continuously evolving one would
generate Ljungqvist and Uhlig’s result.
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Simulation interval per se is not a key difference. The key difference is
whether the surplus consumption ratio can adjust within the endowment-
destruction period to the evolving consumption decline.
Whether habits adjust contemporaneously to a consumption change

is also not a key difference. The specification ð2Þ already allows habits to
change contemporaneously with changes in consumption, even with st pre-
determined in lðstÞ. ðThis feature ensures that consumption cannot fall
below habit in this discrete-time version of the model.Þ The key differ-
ence is the nature of habit adjustment when st is held fixed for a month
in lðstÞ versus the nature of habit adjustment when st changes during the
month in lðstÞ.

II. Continuous Time

Ljungqvist and Uhlig might respond, let the government destroy endow-
ment for 1 day only, returning the next day, and the effect is restored.
And we might respond, let the surplus consumption ratio respond each
hour as consumption is being destroyed during the day, and the effect
disappears.
These issues are best understood by writing the underlying continuous-

time version of our model. The endowment follows a geometric Brown-
ian motion

dct 5 gdt 1 jdzt ; ð4Þ

the surplus consumption ratio responds to consumption via

dst 5 ð12 fÞð�s 2 stÞdt 1 lðstÞðdct 2 gdtÞ; ð5Þ

and expected utility is

W 5 EE`

t50

e2dt ðCt 2 XtÞ12g

12 g
dt 5 EE`

t50

e2dt e ð12gÞðct1st Þ

12 g
dt:

This continuous-time diffusion model does not produce benefits of
output destruction. In order to produce Ljungqvist and Uhlig’s result,
one must extend the model to consider endowment jumps,

dct 5 gdt 1 jdzt 1 dJt : ð6Þ

ðFor this purpose, one does not really need jumps in the underlying con-
sumption process, i.e., to specify a stochastic process for dJt including its
frequency and distribution. What matters is that the government can in-
duce a downward jump in consumption and its reversal, which can be com-
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pletely unexpected. If one specifies dJt as a process with nonzero mean,
one should adjust the gdt drift term as usual.Þ
Equation ð5Þ on its own cannot handle jumps, as it is not clear whether

st in lðstÞ refers to the right limit, the left limit, or some intermediate
value. So one must generalize ð5Þ. To produce the endowment destruc-
tion result, one generalizes ð5Þ by specifying that lðst2Þ applies to the
entire jump episode,

dst 5 ð12 fÞð�s 2 stÞdt 1 lðst2Þðdct 2 gdtÞ; ð7Þ

where st2 denotes the left-hand limit, the value of st just before the jump.
One then specifies a downward jump dc0 5 w < 0, followed immedi-

ately by an opposite upward jump, that is, followed by an upward jump
at time ε later, and take the limit as ε→ 0. ðThe endowment destruction
effect can appear for ε > 0, but this limit gives an elegant and simple
version of the result because dt terms drop out.Þ
In the downward jump, the surplus consumption ratio then changes

by

s0 2 s02 5 lðs02Þw: ð8Þ
On the way back up, however,

sε 2 sε2 5 lðsε2Þð2wÞ: ð9Þ
For small ε, so s0 5 sε2 , the round trip produces a net change in the
surplus consumption ratio equal to

sε 2 s02 5 ½lðs02Þ2 lðs0Þ�w:
The slope of the lðsÞ function ðl0ðsÞ < 0Þ means that the surplus con-
sumption ratio rises at time ε by more than it declined at 0, in response
to w < 0, producing a net rise in the surplus consumption ratio, sε > s02
and thus a decline in the habit. As ε→ 0, the endowment destruction
episode has less and less impact on the flow utility from consumption.
In the limit, then, an instantaneous jump-valued endowment destruc-

tion and reversal generate a downward reset of habits, free of any direct
utility cost, simply and costlessly raising future utility. This is a powerful
version of Ljungqvist and Uhlig’s result.
However, suppose we produce the same decline and rise in consump-

tion by a rapid but continuous sample path, such as a V shape, that takes
place in time ε. Return to the diffusion model ð4Þ–ð5Þ, and let us pro-
duce the w decline by a linear path zt 5 2ðw=εÞt , t ∈ ð0; ε=2Þ, and a con-
trary linear recovery between time ε=2 and ε. As ε→ 0, the dt terms of
ð5Þ drop out, so the surplus consumption ratios at times ε=2 and ε solve
the differential equations
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Esε=2

s0

1
lðsÞ ds 5 jEε=2

t50

dzt 5 cε=2 2 c0 5 w; ð10Þ

Esε

sε=2

1
lðsÞ ds 5 jEε

t5ε=2

dzt 5 cε 2 cε=2 5 2w: ð11Þ

But

Eb

a

1=lðsÞds 52Ea

b

1=lðsÞds;

so sε 5 s0. The second differential equation ð11Þ exactly retraces the
steps of the first one, ð10Þ. This continuous-sample path endowment-
destruction operation produces no change in the surplus consumption
ratio at all and, thus, no change in overall utility.
The difference between the two approaches is clearest to see if we

unite ð8Þ, written as

1
lðs02Þ

ðs0 2 s02Þ5 w;

with its counterpart ð10Þ, taking the ε→ 0 limit,

Es0

s02

1
lðsÞ ds 5 w:

In the first case, lðs02Þ applies to the entire jump, while in the second case,
lðsÞ adapts continuously as the jump adapts.
These are curious results. A jump in consumption produces a differ-

ent result than the jump limit of a continuous change in consumption.
The consumption jump outpaces surplus consumption ratio adjustment,
but a femtosecond continuous consumption change does not. An instan-
taneously reversed jump produces a change in the surplus consumption
ratio, but a continuous V-shaped movement arbitrarily close to the jump
produces no change at all in the surplus consumption ratio. Two jumps
in a row produce a different response than a single jump twice the size.
And in any discretely sampled data, there is no way to tell the difference
between a fast continuous change and a jump.
These results are not, however, necessary features of an extension of

the habit model to jump processes. One can easily extend the specifi-
cation of the surplus consumption ratio adjustment function ð5Þ in a
different way from the left limit approach of ð7Þ, so that jumps in con-
sumption produce the same surplus consumption ratio change as their
continuous sample path limits produce, as follows.
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Write the solutions to the differential equation

Es

s2

1
lðyÞ dy5 c 2 c2 ð12Þ

as

s 2 s2 5 f ðc 2 c2; s2Þ: ð13Þ

Then, write the generalization of ð5Þ to handle jumps, as

dst 5 ð12 fÞð�s 2 st2Þdt 1 f ðdct 2 gdt ; st2Þ
5 ð12 fÞð�s 2 st2Þdt 1 lðst2Þdzt 1 f ðdJt ; st2Þ

ð14Þ

rather than ð5Þ.
Since, by differentiating ð12Þ,

yf ðc 2 c2; s2Þ
yðc 2 c2Þ c2c250

5 lðs2Þ;

ð14Þ is the same as the original specification ð5Þ for diffusion changes, dct
of order dt or dz. We could have written the original specification ð5Þ in
this form. Thus, the form ð14Þ is also a generalization of the original ð5Þ
to handle jumps, not a modification of that specification. And by con-
struction, the specification ð14Þ produces the same result for a jump dct
as for the jump limit of continuous sample paths.
If we generalize the model to jumps via ð14Þ rather than ð7Þ, then the

results of a jump are the same as those of an arbitrarily fast continuous
approximation to the jump. And instantaneous output destruction has
no effect on habits, surplus consumption ratio, or utility.
In our case, with lðsÞ given by ð3Þ,

lðsÞ5 1
�S

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 2ðs 2 �sÞ

p
2 1

�
;

we can perform the integral on the left of ð12Þ yielding1

�S ½log ðlðsÞÞ2 logðlðs2ÞÞ�1 �S2½lðsÞ2 lðs2Þ�5 c 2 c2:

This expression defines f ð�Þ implicitly. However, we cannot solve this
expression for a closed-form representation of f ð�Þ in ð13Þ or ð14Þ.

1 The algebra:

dlðsÞ5 21
�S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 2ðs 2 �sÞp ds 5

21
�S½11 �SlðsÞ� ds;

E 1
lðsÞ ds 5

�SE� 1
l
1 �S

�
dl5 �S logðlÞ1 �S 2:
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To clarify the idea with an explicit example, then, suppose that the
surplus consumption ratio follows consumption by

dct 5 gdt 1 jdzt ; ð15Þ

dst 5 stmdt 1 stdct : ð16Þ

The solutions to ð15Þ and ð16Þ are
st1D 5 st e ðct1D2ct Þ1½m2ð1=2Þj2�D: ð17Þ

Taking the jump limit, D → 0, holding a fixed change in consumption,
the jump model that produces the same response as its continuous
sample path limit is

dct 5 gdt 1 jdzt 1 dJt ; ð18Þ

dst 5 st2ðedct 2 1Þ; f ðdct ; st2Þ
5 st2ðgdt 1 jdztÞ1 edJt :

ð19Þ

The second equality in ð19Þ relates this example to the notation of ð14Þ.
When there is no jump in c, if dct is of order dz or dt, formula ð19Þ reduces
to the original ð16Þ. ðOne needs second-order terms for dðecÞ but not for
edc.Þ Equation ð19Þ is thus a generalization, not a modification, of ð16Þ.
To derive equation ð12Þ, we approximated the jump by differentiable

functions of time. In equation ð19Þ, we get the same result if we approx-
imate the jump as a limit of fast diffusion realizations as well. Though
ð19Þ is a stochastic differential equation, the jump function is still de-
fined by the ordinary differential equation ð12Þ.
The usual left limit,

dst 5 st2dct ; ð20Þ
also reduces to ð16Þ when there are no jumps, so it too is a valid gen-
eralization. This generalization gives a different answer from ð19Þ: the
limit point of a jump occasions a different response from limiting con-
tinuous changes, and two half jumps produce a different answer than a
full jump. For example, ð20Þ allows st to jump to negative values, where
ð19Þ forces st to remain positive for any jump.
A nonlinear function of a jump such as in ð19Þ is a standard idea in the

time-series literature ðsee, e.g., Bass 2004, 5, 6; eq. 3.7Þ. Kurtz, Pardoux,
and Protter ð1995, sec. 6, 365 ff.Þ describe jump processes as a limit of
continuous approximants.
Nonlinear functions are not that common in economics and finance

applications because, when observing only one series, one can change
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instead the distribution of the jump variable. The issue comes up when
one wants to link two observed variables that depend on the same jump,
as in consumption and the surplus consumption ratio, asset prices and
wealth, or stock price and option price.

III. Which Model Is Correct?

The point is not that one or the other method of extending a model
to jumps is right or wrong. The point is that there is a way, ð19Þ, to extend
a diffusion model to include jumps, an alternative to the method ð20Þ
of just substituting left limits for state variables, so that the result of a
jump is the same as the result of infinitely fast continuous movement
and that multiple small jumps have the same result as a large jump.
The continuous-time diffusion version of our model does not produce
benefits of endowment destruction, and there is a way to extend that
model to jumps that also does not produce benefits of endowment
destruction.
Which extension to jumps is correct? The answer depends on the eco-

nomic situation.
For example, consider models with bankruptcy constraints. Agents who

can continuously adjust their investments may always avoid bankruptcy
in a diffusion setting. If we extend such a model to jumps as in ð19Þ, im-
plicitly preserving the investor’s ability to trade as fast as asset prices
change even in the jump limit, we will preserve bankruptcy avoidance in
face of a jump in prices. However, if we model portfolio adjustment to
jumps with the left-limit generalization as in ð20Þ, agents may be forced
into bankruptcy for price jumps.
Sometimes one introduces jumps precisely to model a situation in

which prices can move faster than agents can adjust their portfolios, so
agents may be forced to bankruptcy. Then the left-limit generalization is
correct. But if one wants to extend a model to jumps for other reasons,
while avoiding bankruptcy, negative consumption, negative marginal util-
ity ðconsumption below habits in some habit specificationsÞ, violations
of budget constraints, feasibility conditions, borrowing constraints, and
so forth, then one should choose a generalization such as ð19Þ in which
the jump gives the same result as the continuous limit.
Similarly, when extending option pricing models to jumps, one may

want to model the jump in such a way that investors cannot adjust port-
folios fast enough. Then the left-limit extension is appropriate, and in-
vestors must hold the jump risk. But one may wish to accommodate
jumps in asset prices to better fit asset price dynamics while maintaining
investors’ ability to dynamically hedge. Then the nonlinear extension is
appropriate, maintaining the equivalence between jumps and the lim-
iting diffusion.
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Which is the right way to generalize our habit model to jumps? In our
view, the continuous-limit specification is a more sensible economic
model. While asset prices may move faster than investors can trade, it is
not obvious that one should modify our model so that consumption can
move faster than the surplus consumption ratio can adjust. Already, our
model specifies that habits themselves move contemporaneously with
consumption when consumption changes, even when the surplus con-
sumption ratio stays constant, in order to avoid consumption falling
below habit.
In fact, this is the important lesson we draw from Ljungqvist and

Uhlig’s result. Like them, we regard increases in utility from habit de-
struction as a pathological result. The continuous-time version of this
result is even more pathological: The government can make us all bet-
ter off by shutting down electric power for a millisecond, resetting our
habits as it makes all the clocks flash 12:00. Yes, sensible specifications of
habit persistence utility should not produce such results. Yes, therefore,
write the model in continuous time and extend the model to jumps, if
one wishes to do so, in a way in which jumps have the same effects as
arbitrarily close continuous paths. Let the surplus consumption ratio
adapt as quickly as consumption can change, as habits themselves al-
ready do in our specification.

IV. Habits That Move the Wrong Way

Figure 2 presents the relationship between monthly log consumption
growth and log habit. The evolution of the surplus consumption ratio
described by ð2Þ or ð5Þ is really just a means to this end, a description of
how habits x adapt to consumption c. The figure calculates st1D from ð2Þ
and then unwinds the definition of st1D to the implied habit xt1D.
The solid line verifies Ljungqvist and Uhlig’s second paradoxical re-

sult: Discrete increases in consumption can lead to a contemporaneous
decline in habits. This result is behind their benefits of endowment de-
struction. It is not so much the decline in consumption pushing habits
down that does the work. Rather it is the further decline in habits when
consumption takes the second discrete upward jump that leads to the
benefits of endowment destruction.
The dashed line in figure 2 again subdivides the monthly consump-

tion change into 30 increments. This line is also visually identical for any
finer time interval and to the continuous-time result for arbitrarily fast
but continuous consumption changes. We see that in this version, habit
is a nondecreasing function of consumption throughout.
The negative relation between consumption and habit is also an ar-

tifact of introducing jumps in such a way that the jump produces a dif-
ferent result from its continuous limit.
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Figure 2 presents the calculation when the surplus consumption ratio
is at its steady state �s, which is the hardest case. The derivative dxt=dct 5 0
at the expected value Dct 5 g in this case, represented by the slope of the
solid line where it intersects the vertical line at Dct 5 g. For other values
of the initial surplus consumption ratio, we have dxt=dct > 0 at Dct 5 g ;
the solid curve moves to the right leaving a positive derivative in the
middle. This leaves a larger area with a positive derivative and requires a
larger positive consumption realization to see a decline in habit.

V. Conclusion

We verify and generalize Ljungqvist and Uhlig’s ð2015Þ results: In the
Campbell and Cochrane ð1999Þ model, specified in discrete time at a
monthly frequency, a 1-month discrete endowment destruction can raise
utility, and a discrete increase in consumption can lower habits.
However, when the model is simulated at a daily frequency, these

results are overturned. And the underlying continuous-time diffusion

FIG. 2.—The effect of log consumption growth Dct11 on contemporaneous log habit xt11

when st 5 �s. The solid line uses a monthly time interval. The dashed line subdivides the
consumption change into 30 steps. The vertical line indicates the value of consumption
ct11 2 ct 5 g at which the term multiplying lðstÞ is zero in the surplus consumption ratio
transition equation.
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model shows neither result. Extending the model to jumps in one way,
in which consumption jumps produce a different effect on habits from
the jump limit of continuous consumption movements, produces ben-
eficial endowment destruction and habits that go the wrong way. Extend-
ing the model to jumps in another way, in which consumption jumps
have the same effects as the jump limits of continuous movements,
again removes the benefits of endowment destruction and contrary move-
ment of habits.
None of these variations affect the model’s description of the joint

movements of asset prices and consumption for which the model was
designed and for which we chose the simple monthly discretization and
simulation interval.
More directly, in our model one can add to the utility function any

function of aggregate consumption vðcat Þ and thereby change the wel-
fare implications of endowment addition or destruction completely, while
not changing at all the individual’s first-order conditions and therefore
asset pricing and quantity predictions. Just add a U-shaped vðca1 Þ func-
tion to figure 1 matching the U shape shown there, and utility becomes a
smoothly rising function of time 1 consumption w, even in the monthly
simulation.
Though models with temporally dependent preferences often do im-

ply interesting optimal dynamics, we agree that beneficial output de-
struction would be an unwelcome prediction of our model. However,
one wishes for a fundamental, robust critique of a model, either of its
predictions for data or of its policy implications, that the critique is not
easily resolved by small changes in specification or numerical approxi-
mation procedure that have no effect on the points for which the model
was created.
For this reason, we take as the important lesson of Ljungqvist and

Uhlig’s ð2015Þ result that if one wishes to extend our habit model to
continuous time and consumption jump processes, one should choose
the extension that does not produce benefits of endowment destruction
and in which jumps have the same effect as their continuous sample
path limits. We also are reminded that evaluating simplified models,
taken literally, on the basis of policy prescriptions or features of the data
far beyond the range of phenomena for which they were developed can
often lead to fragile results.
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