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This paper exploits the fact that any time series with a unit root can de decomposed into a 
stationary series and a random walk. Since the random walk component can have arbitrarily 
small variance, tests for unit roots or trend stationarity have arbitrarily low power in finite 
samples. Furthermore, there are unit root processes whose likelihood functions and autocorrela- 
tion functions are arbitrarily close to those of any given stationary processes and vice versa, so 
there are stationary and unit root processes for which the result of any inference is arbitrarily 
close in finite samples. 

1. Introduction 

Time series in macroeconomics and finance are commonly detrended or 
first differenced before they are analyzed. For many statistical purposes it 
seems important to distinguish which procedure is appropriate for a given 
series or group of series. For example, Nelson and Kang (1981) observed that 
if one detrends data that are actually generated by a random walk, one will 
infer a time series structure that is not in fact present. Conversely, if one 
takes first differences of data that are actually trend-stationary, one intro- 
duces a unit root into the moving average representation of the series. 

Many tests have been devised to distinguish whether a series is 
difference-stationary (or contains a unit root in its autoregressive representa- 
tion) and should be first differenced or whether it is trend-stationary and 
should be detrended. Dickey and Fuller (1979), Dickey, Bell, and Miller 
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(19861, Phillips (19871, Phillips and Perron (1986), and Lo and Ma&inlay 
(1988) are a small sample. 

Unit root tests are coming into widespread use in macroeconomics. It is 
now commonplace to pretest series to classify them as either trend-stationary 
or difference-stationary, and then impose that form in subsequent analysis. 
That subsequent analysis can include tests whose validity or form depends on 
the trend or difference stationarity of the series, estimation which imposes 
one or the other form, or direct reading of economic importance into the 
trend or difference stationarity of the series. 

However, Schwert (1987), Lo and Ma&inlay (19891, Blough (1988), and 
others have documented that tests for unit roots or trend stationarity can 
have low power against some specific alternatives. Essentially, they show that 
tests for a unit root have low power in finite samples against the local 
alternative of a root close to but below unity. Section 2 of this paper shows 
that any trend-stationary process has similar local unit root alternatives. 
These are formed by adding random walk with an arbitrarily small innovation 
variance to a given stationary series. Therefore, any test for a unit root or 
trend stationarity must have arbitrarily low power against some alternatives 
of the other class. 

By itself, this is not a particularly serious problem. Any test whether a 
continuous parameter 0 is equal to some value 8, has arbitrarily low power 
against alternatives 19,, - F in finite samples. However, in most such cases, the 
difference between B. and B. - E is not particularly important, from either a 
statistical or an economic perspective. What makes the unit root question 
special is the impression that important statistical and economic issues hang 
on the difference between a root of precisely 1 and a root of 1 -F, or 
between a random walk component with innovation variance precisely 0 and 
a random walk component with innovation variance F, in a way that (say) an 
elasticity of demand of - 1.0 is not importantly different from an elasticity of 
- 0.99. 

The apparent statistical importance comes from the fact that the asymp- 
totic distribution theory of many estimators or test statistics is quite sensitive 
to the presence or absence of a unit root, and in fact is discontinuous as the 
largest root approaches 1 or the random walk component approaches 0. 
Therefore, many authors have thought it important to pretest a series for 
inclusion into one or the other class, even if that test has low power, so that 
the ‘correct’ asymptotic distribution theory can be applied at a later stage. 

However, section 3 of this paper shows that there are unit root alternatives 
whose autocorrelation function and likelihood function are arbitrarily close 
to those of stationary series. These local alternatives are again formed by 
adding random walk components, with sample size x innovation variance 
small compared to the variance of the stationary component. For these cases, 
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the asymptotic distribution theory derived under the (false) assumption of 
trend stationarity may be a better guide than the (correct) asymptotic 
distribution theory derived under the assumption of a unit root. Similarly, the 
distribution of test statistics involving a stationary process whose largest 
autoregressive root is close to 1 might be better approximated by the unit 
root asymptotic theory than by the (correct) stationary theory. 

Thus, even if a test for unit roots could successfully distinguish between a 
stationary process and a process with a unit root but small induced random 
walk component, or between a unit root process and a process with a large 
but less than unit root, such a test would not necessarily answer the question: 
which model provides the best approximation to the small sample distribu- 
tion of estimates and test statistics? This observation calls into question the 
common methodology of pretesting for a unit root and then imposing the 
results of that test in subsequent analysis. 

One example of the economic importance of unit roots is that with 
stationary dividend growth and discount rates, the price dividend ratio has a 
unit root if and only if there is a bubble. [See Hamilton and Whiteman (1985) 
and Cochrane (1989I.l No matter how ‘close’ to a unit root, there is no 
bubble if the price dividend ratio is stationary and vice versa. Here the 
finding that unit roots cannot be distinguished from stationary series in finite 
samples tells us that the conceptually distinct economic models - bubble or 
no bubble - also cannot be distinguished in finite samples. Other examples 
of economic importance are hard to find. Christian0 and Eichenbaum (1990) 
give several counterexamples. 

The analysis in this paper is limited to univariate time series. However, the 
points carry over directly to the application of multivariate tests for the 
number of random walk components or, equivalently, tests for cointegration. 
[Stock and Watson (1988) and Phillips and Ouliaris (1987) are some examples 
of such tests. Cochrane and Sbordone (1988) present a multivariate extension 
of the Beveridge and Nelson Decomposition that shows how one can form 
cointegrated series by adding random walk components with variance in- 
creasing from zero.] 

2. Tests for unit roots 

Throughout, I assume that the time series under examination has either a 
difference-stationary Wold representation, 

(l-L)y,=k+ &zj”t_j=p+a(L)E,. (1) 
j=O 

I.E.D.C. B 
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or a trend-stationary Wold representation, 

y, = /.Lt + 5 UjEt_j=Ft + a(L)&t, 
j = 0 

(2) 

where E(E,~Y,-,, Y,_,, . . .> = 0, var(E,) = uF2, a, = a(0) = 1, a(L) is invertible 
(its roots are all outside the unit circle), and CT=,af < ~0. In addition, I will 
assume that CqzOla,j < CQ. Eq. (2) is a limiting case of (l), in which the 
polynomial a(L) can be expressed as (1 - LML), and b(L) satisfies the 
above conditions. The point of tests for unit roots is to distinguish between 
series of the class (1) and those of the class (2). 

Beveridge and Nelson (1981) give a constructive decomposition of series 
with a unit root (1) into a pure random walk with drift and a stationary 
component: 

y, = 2, + c f) 

2, =/A +z,_, +a(l)Ft, a(1) = 5 ai, 
i = 0 

(3) 

*= - 
ak c a,. 

i=k+ 1 

An alternate statement [used by Granger and Engle (1987)] of this decom- 
position is that we can always rewrite the lag polynomial a(L) in (1) as 

(1-L)y,=/L+a(L)E,=/L+((a(l)+(1-L)a*(L))s,. (4) 

If a(L) satisfies the conditions given under cl), a*(L) also satisfies those 
conditions, so the constructed c, = a*(L)&, is a genuine ‘stationary compo- 
nent’. 

The representations (1) and (3)-(4) are equivalent, so ‘difference-sta- 
tionary’, ‘ contains a unit root’, and ‘contains a random walk component’ are 
equivalent. Since the decomposition (3)--(4) is constructed from the represen- 
tation (l), any series with a representation (1) has such a decomposition. 
Trend-stationary series (2) also trivially have such a decomposition with the 
variance of changes to the random walk component equal to 0. Conversely, 
any combination of stationary and random walk components (with arbitrary 
correlation between their innovations) is stationary in first differences, and so 
has a representation (1) by the Wold decomposition theorem. Also, we can 
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construct series with a representation (1) by independently picking any real 
number for a(l) and any stationary stochastic process [satisfying the condi- 
tions under (211 for c, = u*(L)&,.’ 

Various measures based on a(l) can capture the importance of the unit 
root or random walk component. First, zr = lim, +m(Etyr+k - I+), i.e., z, is 
the long-term forecast of yI and a(l) is the response of that long-term 
forecast to a unit innovation at time r. Second, aW2a: is the innovation 
variance of the random walk component z, and the spectral density of 
(1 - L)y, at frequency 0. ~(l)a,~ is also the innovation variance of the 
random walk in any decomposition of the series y, into stationary and 
random walk components. Third, (uW2)g: = (1 + 2c7=‘=,pj)ah2,, where pi is 
the jth autocorrelation coefficient of (1 - L)y,. 

Furthermore, measures based on the quantity u(l) are the only measures 
of the presence of a unit root in a finite sample, in that we can construct a 
trend-stationary series X, that is ‘just like’ a given difference-stationary series 
y, in every respect save u(l). There are three ways to see this point. First, 
start with any difference-stationary process (1). Under normality or quadratic 
loss (or weak stationarity), we can completely characterize a sample of length 
T of the process by its T - 1 autocovariances or T - 1 periodogram ordi- 
nates. Then, we can always construct a trend-stationary process X, such that 
its first difference (1 - L)x, matches the periodogram ordinates of (1 - L)y, 
at the ordinates (1 .2r/T, 2 * 27r/T,. . . , CT - 1) * 27/T]. However, to make 
X, trend-stationary, choose the periodogram ordinate of (1 -15)x, at fre- 
quency 0 to be 0, while that of (1 - L)yl is u(1j2a,‘. Hence this first ordinate 
alone distinguishes the trend-stationary series x, from the difference station- 
ary series yt.2 

Second, we can construct the trend-stationary series X, from the differ- 
ence-stationary y, by choosing x, = pt + u*(L)e,. This is a trend-stationary 
series with the same stationary component as the difference stationary yt. 
Since we can recover all of a(L) in the representation of yt except u(l) from 
the a? (see footnote 11, only u(1) distinguishes this trend-stationary X, from 
the corresponding difference-stationary yt. 

‘It might seem that the conditions a, = 1 and a$ = -c”_ ,_-k+ 1 aj uniquely determine a(L) 
and hence a(l). so the stationarv and random walk comuonents could not be nicked indenen- _, 
dently: we know aa = 1 and the second condition impties aj = -(a,%, - a,* j for j 2 1. ‘The 
reason this argument fails is that u*(L) is not necessarily normalized to a$ = 1. To construct y, 
from a choice of u*(L) and u(l), you can either pick a, - * - 1 which is the conventional 
normalization, add an arbitrary u(l), and then rescale the variance of E, so that a, = 1; or you 
can pick an arbitrary a$. Either technique amounts to an arbitrary choice of the size of the 
random walk component added to the given stationary process. 

*These propositions hold only for finite samples. Since the slope of the spectral density at 0 is 
also 0, the spectral density in an E neighborhood of 0 does provide information about the 
spectral density at 0 asymptotically. See Phillips and Ouliaris (1987). 
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Third, recall that (~(l)~>a: = (1 + 2cq=,pj)a&. For any finite set of N 
autocorrelations {p,, . . . , pNJ of (1 - L)y,, we can construct a trend-stationary 
series x, such that the first N autocorrelations of (1 - L)x, match those of 
(1 - L)yl, but the infinite sum of the autocorrelations of (1 - L)x, is 0. 

In summary, periodogram ordinates other than that at frequency 0, aspects 
of the moving average a(L) other than a(l), or aspects of the autocorrelation 
of (1 - L)y, other than their infinite sum carry no information about whether 
the series is trend- or difference-stationary.” 

Thus any test for trend stationarity is a test of the hypothesis a(l) = 0 
against the alternative la(l)l > 0, and any test for unit roots is a test of the 
hypothesis [u(l>l > 0 against the alternative u(l) = 0. The likelihood function 
is continuous in the parameters of u(L), so in any finite sample a test of the 
null hypothesis of trend stationarity has arbitrarily low power against the 
alternative of a unit root process with a small enough u(l) or random walk 
component. Similarly, a test of the null hypothesis that the series has a unit 
root has no power against the adjacent alternative that the series is trend- 
stationary. 

The only way out of this dilemma is add some restriction to the class of 
processes u(L) that will be allowed. For example, we can test the hypothesis 
~(1)~ > v against u(l) = 0 or we can test the hypothesis u(l) = 0 against the 
alternative ~(1)~ > V, where v is bounded away from 0. In particular, we can 
test the null hypothesis of a pure random walk [u(l) = 11 against the alterna- 
tive of trend stationarity [u(l) = 01, and vice versa, by assuming away all the 
possibilities in between. 

Alternately, we can assume that the slope of the spectral density is small in 
a region near 0, so that evidence from ordinates other than 0 can provide 
evidence about its value at the point w = 0. This is essentially the assumption 
behind the estimates Fama and French (1988), Huizinga (19871, Lo and 
Ma&inlay (19881, and I myself [Cochrane (19881, Cochrane and Sbordone 
(198811 used. 

Every test in the literature includes some restriction of this sort. The 
restrictions are usually made to vanish as sample size increases, to derive the 
asymptotic distribution of the test under seemingly quite general assump- 
tions. The test of Dickey and Fuller (1979) requires that u(L) have an 
autoregressive representation of known finite order. Said and Dickey (1984) 
allow u(L) to have an ARMA(p, 4) representation, and allow the lag length 
used in autoregression to increase as T ‘I3 Phillips and Perron (1986) and . 
Stock and Watson (1988) require a maximum lag length for computed 

“Note also that in all the interpretations given above, u(l) is a property of the extremely 
long-run behavior of a series alone. The unit root question started as the question of the first 
autoregression coefficient: in y, = p + bt + pyI_, + E,, is p = 1 or is p < l? What makes it a 
purely long-run question is the possibility of an arbitrary stationary time series process for F,. 
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autocorrelations, which increases as T + m. The point of this paper is not to 
criticize those extra restrictions, but to emphasize that they must be included 
in a finite sample. 

3. Other tests 

Tests for unit roots are popular in part because the asymptotic distribution 
theory of many time series estimators or test statistics are sensitive to the 
difference between trend-stationary and difference-stationary series. Thus, it 
has seemed important to pretest a series to see in which class it falls, even if 
the tests have low power. 

However, the point of the last section generalizes: there is always a 
difference-stationary series for which the results of any estimate or test (not 
just tests for unit roots) is arbitrarily close to the results of that estimate or 
test applied to a given stationary series. This point is demonstrated by 
showing that there are difference-stationary series whose likelihood functions 
and autocorrelation functions are arbitrarily close to those of any trend- 
stationary series. 

Start from the representation (4). Then, we can write 

yk=yo+kj&+a(l)[&,+E2+ *.- +Ek]+a*(L)&,-a*(L)&,. (5) 

We can construct a trend-stationary series by using the stationary component 
of (5). It has a corresponding representation: 

x,=r,+kp +u*(L)&,-u*(L)EO. (6) 

The conditional likelihood function (conditional on {y,, .q,, E_ ,, . . . } or 

1x0, &a, E- 1,. . .)) of either process follows by inverting (5) or (6) for E, and 
knowledge of the distribution of E,. 

Recall from section 2 that we can independently pick a*(L) as the lag 
polynomial of the moving average of any stationary process and a(l) as any 
real number. From (5) and the fact that limj,, a,+ = 0, the likelihood 
function for a set of difference-stationary observations (y,, . . . , yT} condi- 
tional on y, or on {y,, Ed, E_ ,, . . . } will be asymptotically dominated by the 
term following a(1) no matter how small a(l), so long as a(l) > 0. It is also 
clear that for any finite T, we may choose u(l) small enough that the 
likelihood function for the difference-stationary process (5) and the trend- 
stationary process (6) are arbitrarily close.4 

4Precisely, for any T, any set of parameters a*(L), and any 6 > 0, there is an a(l) > 0 such 
that the likelihood function generated from (6) and that generated from (5) differ by less than 6. 
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Alternately, consider the conditional autocorrelation 
5 

Yk+s:- 

COV(Yk,Yk+JIYO,&o,&-,,... ) 

var( Y, lyol 6f1, E _ , , . . 1 

k-l k-l 

ka(l)*+a(l) c (a? +a;*,,) + c a,*a,*,, 
j = 0 j=O 

= 
k-l 

ka( 1j2 -t 24 l)C;:,fat + c .,,Z 
, -0 

function of yk and 

(7) 

Since lim j _ x a,* = 0, the second and third terms in both the numerator and 
denominator of (7) eventually must grow slower than linearly. Hence, so long 
as a(l) > 0, the first term in both the numerator and denominator eventually 
dominates the other terms as k grows, so that the conditional autocorrelation 
of y, .approaches 1 at all lags s for high enough k. On the other hand. if 
a(l) = 0, y, is stationary, so its autocorrelations die out at large s for any k. 

This seems like a sharp difference in behavior between the cases u(l) = 0 and 
u(1) > 0. 

However, in any finite sample we can only compute T - 1 autocorrelations. 
Hence, for any trend-stationary process (6) and for any desired degree of 

“To derive eq. (7). start with the representation (5), 

?.r=?.,,+k~++(l)[t,+F~+ “’ +F~]+II*(L)P,~((L(L)PI,. 

then 

and 

\‘A - E(JJL’,,,F,,.F ,_..-,=& +“(1))‘1,_{. 
,=_(I 

and similarly for y, +,. Then. the conditional covariance is 

cov(Y,:YA+,lY,,,FCI.~ -I.... ) 

Expanding the product, keeping terms in of, 
h-l 

cov( Y, .YL + , IYO > t‘(j) f , . l=c+Jr2 (aF+a(l))(a,*,,+a(l)) 
1-0 

i 

X-I x- I 

= ka(l)2+a(l) C (u~+a;C+,)+ 1 a,?aI*+, ~7: 
,=o ,=o i 

The variance is the same expression evaluated at s = 0 
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accuracy, we can pick a small enough a(l) to construct a corresponding 
difference-stationary process 6) whose first T - 1 autocorrelations are within 
the desired accuracy of the first T - 1 autocorrelations of the trend-stationary 
process. 

4. Concluding remarks 

These results of this paper are not a criticism of the unit root tests per se. 
Rather, they are a warning that application of unit root tests without 
consideration for their low power and for the restrictions that they inevitably 
impose in a finite sample can be misleading. In particular, the results of unit 
root tests do not necessarily answer one important question, namely: which 
distribution theory provides a better small sample approximation? 

The borderline cases discussed here are not just a technical curiosity. 
Fama and French (1988), Huizinga (1987), Campbell and Mankiw (1987), and 
I [Cochrane (1988)l found that stock prices, exchange rates, and GNP, 
respectively, are all potentially of the ‘borderline’ type. First differences of 
these series have large positive autocorrelations for the first few lags, and 
then a series of small negative autocorrelations at very high lags which may 
add up to a small a(1). In each case the time scale required before a(l) can 
be plausibly estimated is at least five or ten years. 
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