# Continuous-Time Linear Models 

By John Cochrane

## Contents

1 Introduction ..... 166
2 Linear Models and Lag Operators ..... 167
2.1 Discrete Time Operators ..... 167
2.2 A Note on Linear Processes ..... 168
2.3 Continuous-time Operators ..... 169
2.4 Laplace Transforms ..... 172
3 Moving Average Representation and Moments ..... 175
4 ARMA Models ..... 177
4.1 Discrete Time ..... 177
4.2 Continuous Time ..... 178
4.3 How not to Define ARMA Models ..... 179
5 Differences ..... 182
5.1 Levels to Differences in Discrete Time ..... 182
5.2 Levels to Differences in Continuous Time ..... 183
6 Impulse-response Function ..... 186
6.1 Discrete Time ..... 186
6.2 Continuous Time ..... 187
7 Hansen-Sargent Formulas ..... 191
7.1 Discrete Time ..... 191
7.2 Continuous Time ..... 193
7.3 Derivation ..... 195
8 Integration and Cointegration ..... 199
8.1 Difference-stationary Series ..... 199
8.2 Differences to Levels in Discrete Time; Beveridge and Nelson ..... 200
8.3 Differences to Levels in Continuous Time ..... 203
8.4 Cointegration ..... 206
9 Summary ..... 210
Acknowledgments ..... 217
References ..... 218

# Continuous-Time Linear Models 

## John H. Cochrane

University of Chicago Booth School of Business and NBER. 5807 S. Woodlawn, Chicago, IL 60637, USA, john.cochrane@chicagobooth.edu


#### Abstract

I translate familiar concepts of discrete-time time series to contnuoustime equivalent. I cover lag operators, ARMA models, the relation between levels and differences, integration and cointegration, and the Hansen-Sargent prediction formulas.


## 1

## Introduction

Discrete-time linear ARMA processes and lag operator notation are convenient for lots of calculations. Continuous-time representations often simplify economic models, and can handle interesting nonlinearities as well. But standard treatments of continuous-time processes typically don't mention how to adapt the discrete-time linear model concepts and lag operator methods to continuous time. Here I attempt that translation.

The point of this monograph is to exposit the techniques, understand the intuition, and to make the translation from familiar discretetime ideas. I do not pretend to offer anything new. I also don't discuss the technicalities. Hansen and Sargent (1991) is a good reference. Heaton (1993) describes many of these methods and provides a useful application. I assume basic knowledge of discrete-time time-series representation methods and continuous-time representations. Cochrane (2005a,b) cover the necessary background, but any standard reference covers the same material.

The concluding section collects the important formulas in one place.

## 2

## Linear Models and Lag Operators

I start by defining lag operators and the inversion formulas.

### 2.1 Discrete Time Operators

As a reminder, discrete-time linear models can be written in the unique moving average or Wold representation

$$
\begin{equation*}
x_{t}=\sum_{j=0}^{\infty} b_{j} \varepsilon_{t-j}=\mathcal{Z}_{b}(L) \varepsilon_{t}, \tag{2.1}
\end{equation*}
$$

where the operator $L$ is defined by

$$
\begin{equation*}
L \varepsilon_{t}=\varepsilon_{t-1} \tag{2.2}
\end{equation*}
$$

and

$$
\mathcal{Z}_{b}(L)=\sum_{j=0}^{\infty} b_{j} L^{j} ; \quad \mathcal{Z}_{b}(0)=b_{0}=1
$$

This last condition means that we define the variance of the shocks so that $\varepsilon_{t}$ is the innovation in $x_{t}$.

The Wold representation and its error are defined from the autoregression

$$
\begin{equation*}
x_{t}=-\sum_{j=1}^{\infty} a_{j} x_{t-j}+\varepsilon_{t} . \tag{2.3}
\end{equation*}
$$

We can write this autoregressive representation in lag-operator form,

$$
\begin{equation*}
\mathcal{Z}_{a}(L) x_{t}=\varepsilon_{t} ; \quad \mathcal{Z}_{a}(L)=\sum_{j=0}^{\infty} a_{j} x_{t-j} ; \quad \mathcal{Z}_{a}(0)=a_{0}=1 \tag{2.4}
\end{equation*}
$$

We can connect the autoregressive and moving average representations by inversion,

$$
\mathcal{Z}_{a}(L)=\mathcal{Z}_{b}(L)^{-1} ; \quad \mathcal{Z}_{b}(L)=\mathcal{Z}_{a}(L)^{-1}
$$

To construct the inverse $\mathcal{Z}_{a}(L)^{-1}$, given the definition (2.2), we use a power-series interpretation. For example, suppose we want to invert the $\mathrm{AR}(1)$

$$
\mathcal{Z}_{a}(L) x_{t}=(1-\rho L) x_{t}=\varepsilon_{t} .
$$

To interpret $1 /(1-\rho L)$ - to find a $\mathcal{Z}_{b}(L)$ such that $\mathcal{Z}_{b}(L) \mathcal{Z}_{a}(L)=I-$ we use the expansion

$$
\frac{1}{(1-\rho L)}=\sum_{j=0}^{\infty} \rho^{j} L^{j}
$$

for $\|\rho\|<1$. With this interpretation, we can use the lag operator notation to represent the transformation from $\operatorname{AR}(1)$ to $\mathrm{MA}(\infty)$ representations and back again,

$$
\begin{gather*}
(1-\rho L) x_{t}=\varepsilon_{t} \Longleftrightarrow \\
x_{t}=\frac{1}{(1-\rho L)} \varepsilon_{t}=\left(\sum_{j=0}^{\infty} \rho^{j} L^{j}\right) \varepsilon_{t}=\sum_{j=0}^{\infty} \rho^{j} \varepsilon_{t-j} . \tag{2.5}
\end{gather*}
$$

### 2.2 A Note on Linear Processes

The fundamental autoregressive representations are linear; the conditional mean $E_{t}\left(x_{t+j}\right)$ is a linear function of past $x_{t}$ and the conditional
variance is constant. The process $\left\{x_{t}\right\}$ may also have a nonlinear representation, which allows greater predictability. For example, a random number generator is fully deterministic, $x_{t}=f\left(x_{t-1}\right)$ with no error. The function $f$ is just so complex that when you run linear regressions of $x_{t}$ on its past, $x_{t}$ looks unpredictable. A precise notation would use $E_{t-1}\left(x_{t}\right)=E\left(x_{t} \mid x_{t-1}, x_{t-2}, \ldots\right)$ to denote prediction using all linear and nonlinear functions, i.e. conditional expectation, which would give $E_{t-1}\left(x_{t}\right)=f\left(x_{t-1}\right)=x_{t}$ in this example. We would use a notation such as $P\left(x_{t} \mid x_{t-1}, x_{t-2}, \ldots\right)$ to denote linear prediction. I will not be so careful, so I will use $E_{t-1}$ or $E\left(x_{t} \mid x_{t-1}, x_{t-2}, \ldots\right)$ and the word "expectation" to mean prediction given the linear models under consideration.

This clarification is especially important as we go to continuos time. One may object that a linear model is not "right" if there is an underlying "better" nonlinear model, say a square root process. That criticism is incorrect. Even if there is an underlying true, or better-predicting, nonlinear model, there is nothing wrong with also studying the processes' linear predictive representation. Analogously, just because there may be additional variables $y_{t}, z_{t}$ that help to forecast $x_{t+1}$, there is nothing wrong with studying conditional (on past $x_{t}$ alone) moments that ignore this extra information.

The conditioning-down assumption can cause trouble if you assume agents in a model only see the variables or information set that you the econometrician choose to model. But one does not have to make that assumption in order to study linear or otherwise conditioned-down representations.

### 2.3 Continuous-time Operators

We usually write continuous-time processes in differential or integral form. For example, the continuous-time $\operatorname{AR}(1)$ can be written in differential form,

$$
d x_{t}=-\phi x_{t} d t+\sigma d B_{t}
$$

or in integral form

$$
x_{t}=\int_{\tau=0}^{\infty} e^{-\phi \tau} \sigma d B_{t-\tau},
$$

where $d B_{t}$ denotes increments to standard Brownian motion. I write the shock as $\sigma d B_{t}$ to preserve the discrete-time convention that a unit shock to the error is a unit shock to $x_{t}$, and the continuous-time convention that Brownian motion has a unit variance.

This integral form is the obvious analogue to the moving-average form of the discrete-time representation (2.5). Our job is to think about and manipulate these kinds of expressions using lag operators.

The lag operator can straightforwardly be extended to real numbers from integers, i.e.

$$
L^{\tau} x_{t}=x_{t-\tau} .
$$

Since we write differential expressions, $d x_{t}$ in continuous time, it is convenient to define the differential operator $D$, i.e.

$$
\begin{equation*}
D x_{t}=\frac{1}{d t} d x_{t} \tag{2.6}
\end{equation*}
$$

where $d x_{t}$ is the familiar continuous-time forward-difference operator,

$$
\begin{equation*}
d x_{t}=\lim _{\Delta \rightarrow 0}\left(x_{t+\Delta}-x_{t}\right) . \tag{2.7}
\end{equation*}
$$

(This is not a limit in the usual $\varepsilon, \delta$ sense, but I'll leave that to continuous time math books and continue to abuse notation.)

The $D$ and $L$ operators are related by

$$
\begin{equation*}
e^{-D}=L ; \quad D=-\log (L) . \tag{2.8}
\end{equation*}
$$

We can see this relationship directly: From (2.6),

$$
\begin{aligned}
D & =\lim _{\Delta \rightarrow 0} \frac{L^{-\Delta}-1}{\Delta}=\lim _{\Delta \rightarrow 0} \frac{e^{-\Delta \log (L)}-1}{\Delta} \\
& =\lim _{\Delta \rightarrow 0} \frac{-\log (L) e^{-\Delta \log (L)}}{1}=-\log (L) .
\end{aligned}
$$

Now we are ready to write the obvious general moving average processes:

$$
\begin{equation*}
x_{t}=\int_{\tau=0}^{\infty} b(\tau) \sigma d B_{t-\tau}=\mathcal{L}_{b}(D) \sigma D B_{t} \tag{2.9}
\end{equation*}
$$

where we define

$$
\mathcal{L}_{b}(D)=\int_{\tau=0}^{\infty} e^{-D \tau} b(\tau) d \tau ; b(0)=1 .
$$

Mirroring the convention that $b_{0}=1$ in discrete time, so that shocks $\varepsilon_{t}$ translate one-to-one to shocks to $x_{t}$, I write the continuos time shock $\sigma D B_{t}$ with $D B_{t}$ standard Brownian motion (variance $\sigma^{2} d t$ ) and impose the normalization $b(0)=1$.

It is useful to verify just how each step of this operation works:

$$
\begin{aligned}
\mathcal{L}_{b}(D) \sigma D B_{t} & =\int_{\tau=0}^{\infty} e^{-D \tau} b(\tau) d \tau\left(\frac{1}{d t} \sigma d B_{t}\right) \\
& =\int_{\tau=0}^{\infty} b(\tau) e^{-D \tau} \sigma d B_{t}=\int_{\tau=0}^{\infty} b(\tau) \sigma d B_{t-\tau} .
\end{aligned}
$$

Though it breaks the analogy with discrete time a bit, it is more convenient to describe continuous-time lag functions in terms of $D$ rather than $L$. We could have written $\mathcal{Z}_{b}(L)=\int_{\tau=0}^{\infty} L^{\tau} b(\tau) d \tau$. However, we will have to use the $D$ operator frequently, to describe $D x_{t}$ and $D B_{t}$, so it is simpler to use $D$ everywhere. This change means that familiar quantities from discrete time such as the impact multiplier $\mathcal{Z}_{b}(L=0)$ and the cumulative multiplier $\mathcal{Z}_{b}(L=1)$ will have counterparts corresponding to $\mathcal{L}_{b}(D=-\infty)$ and $\mathcal{L}_{b}(D=0)$.

For example, the continuous-time $\operatorname{AR}(1)$ process in differential form reads

$$
\begin{aligned}
d x_{t}+\phi x_{t} d t & =\sigma d B_{t} \\
(D+\phi) x_{t} & =\sigma D B_{t} .
\end{aligned}
$$

We can "invert" this formula by inverting the "lag operator polynomial" as we do in discrete time:

$$
\begin{aligned}
x_{t} & =\left(\frac{1}{D+\phi}\right) \sigma D B_{t}=\left(\int_{\tau=0}^{\infty} e^{-\phi \tau} e^{-D \tau} d \tau\right) \sigma D B_{t} \\
& =\left(\int_{\tau=0}^{\infty} e^{-\phi \tau} D L^{\tau} d \tau\right) \sigma B_{t}=\int_{\tau=0}^{\infty} e^{-\phi \tau} \sigma d B_{t-\tau} .
\end{aligned}
$$

The second equality uses the formula for the integral of an exponential $\int_{\tau=0}^{\infty} e^{-(D+\phi) \tau} d \tau$ to interpret $1 /(D+\phi)$ given the definition of $D$, as we used the power series expansion $\sum_{j=0}^{\infty} \rho^{j} L^{j}$ to interpret $1 /(1-\rho L)$ given the definition of $L$.

### 2.4 Laplace Transforms

The justification for these techniques fundamentally comes from Laplace transforms. While it is not necessary to know a lot about Laplace transforms to use lag and differential operators, it helps to have some familiarity with the underlying idea.

If a process $\left\{y_{t}\right\}$ is generated from another $\left\{x_{t}\right\}$ by

$$
y_{t}=\int_{\tau=0}^{\infty} b(\tau) x_{t-\tau} d \tau
$$

the Laplace transform of this operation is defined as

$$
\mathcal{L}_{b}(D)=\int_{\tau=0}^{\infty} e^{-D \tau} b(\tau) d \tau
$$

where $D$ is a complex number.
Given this definition, the Laplace transform of the lag operation $y_{t}=L^{j} x_{t}=x_{t-j}$ is

$$
\mathcal{L}_{L^{j}}(D)=e^{-j D} .
$$

This definition directly establishes the relationship between lag and differential operators (2.8), avoiding my odd-looking limits.

One difference in notation between discrete and continuous-time notation is necessary. It is common to write the discrete-time lag polynomial as

$$
b(L)=\sum_{j=0}^{\infty} b_{j} L^{j} .
$$

It would be nice to write similarly

$$
b(D)=\int_{\tau=0}^{\infty} e^{-D \tau} b(\tau) d \tau
$$

but we cannot do that, since $b(\tau)$ is already a function. If in discrete time we had written $b_{j}=b(j)$, then $b(L)$ would not have made any sense either. For this reason, we will have to use a different letter. In deference to the Laplace transform I use the notation

$$
\mathcal{L}_{b}(D) \equiv \int_{\tau=0}^{\infty} e^{-D \tau} b(\tau) d \tau .
$$

For clarity I also write discrete-time lag polynomial functions as

$$
\mathcal{Z}_{b}(L)=\sum_{j=0}^{\infty} b_{j} L^{j}
$$

rather than the more common $b(L)$. ( $\mathcal{Z}$ stands for z -transform, the discrete counterpart to Laplace transforms.)

To use a lag polynomial expansion

$$
\mathcal{Z}_{b}(L)=\frac{1}{1-\rho L} x_{t}=\sum_{j=0}^{\infty} \rho^{j} L^{j} \varepsilon_{t-j},
$$

we must have $\|\rho\|<1$. In general, the poles $L: \mathcal{Z}_{b}(L)=\infty$ and the roots $L: \mathcal{Z}_{a}(L)=\mathcal{Z}_{b}(L)^{-1}=0$ must lie outside the unit circle. The domain of $\mathcal{Z}_{b}(L)$ is $\|L\|<\|\rho\|^{-1}$; for which $\|L\|<1$ will suffice.

When $\rho>1$, or if the poles of $\mathcal{Z}_{b}(L)$ are inside the unit circle, we solve in the opposite direction:

$$
\begin{aligned}
\|\rho\|>1 \Longrightarrow \frac{1}{1-\rho L} \varepsilon_{t} & =-\frac{\rho^{-1} L^{-1}}{1-\rho^{-1} L^{-1}} \varepsilon_{t}=-\left(\sum_{j=1}^{\infty} \rho^{-j} L^{-j}\right) \varepsilon_{t} \\
& =-\sum_{j=1}^{\infty} \rho^{-j} \varepsilon_{t+j} .
\end{aligned}
$$

In the corresponding general case, the domain of $\mathcal{Z}_{b}(L)$ must be $L$ outside the unit circle.

Similarly, to interpret

$$
\begin{aligned}
\mathcal{L}_{b}(D) D B_{t} & =\frac{1}{\phi+D} \sigma D B_{t}=\left(\int_{\tau=0}^{\infty} e^{-\phi \tau} e^{-D \tau} d \tau\right) \sigma D B_{t} \\
& =\int_{\tau=0}^{\infty} e^{-\phi \tau} \sigma d B_{t-\tau}
\end{aligned}
$$

we must have $\|\phi\|>0$, and the domain $\operatorname{Re}(D)>0$ so that $\left\|e^{-D}\right\|<1$. More generally, the poles $\mathcal{L}_{b}(D)$ must lie where $\operatorname{Re}(D)<0$, i.e. where $L=e^{-D}$ is outside the unit circle.

In the other circumstance, we expand forward, i.e.

$$
\begin{aligned}
\mathcal{L}_{b}(D) \sigma D B_{t} & =\frac{1}{\phi-D} \sigma d B_{t}=\left(\int_{\tau=0}^{\infty} e^{-\phi \tau} e^{D \tau} d \tau\right) \sigma D B_{t} \\
& =\int_{\tau=0}^{\infty} e^{-\phi \tau} \sigma d B_{t+\tau},
\end{aligned}
$$

and use the domain $\operatorname{Re}(D)<0$ so that $\left\|e^{D}\right\|<1$. More generally, in this case the poles of $\mathcal{L}_{b}(D)$ must lie where $\operatorname{Re}(D)>0$, i.e. where $L=e^{-D}$ is inside the unit circle. (Here I found it clearer to keep $\phi>0$ and introduce the negative sign directly.)

Sometimes operators $\mathcal{L}_{b}(D)$ will have poles at both positive and negative values of $\operatorname{Re}(D)$. Then, as in discrete time, we solve "unstable" roots forward and stable roots backward, and obtain an integral that runs over both past and future $d B_{t}$.

Lag operators (Laplace transforms) commute, so we can simplify expressions by taking them in any order that is convenient,

$$
\begin{aligned}
\mathcal{L}_{a}(D) \mathcal{L}_{b}(D) & =\mathcal{L}_{b}(D) \mathcal{L}_{a}(D) \\
\mathcal{Z}_{a}(L) \mathcal{Z}_{b}(L) & =\mathcal{Z}_{b}(L) \mathcal{Z}_{a}(L)
\end{aligned}
$$

This is one of the great simplifications allowed by operator representations. More generally, lots of the hard integrals one runs into while manipulating lag operators are special cases of well-known Laplace transform tricks, and looking up the latter can save a lot of time.

## 3

## Moving Average Representation and Moments

The moving average representation

$$
x_{t}=\sum_{j=0}^{\infty} b_{j} \varepsilon_{t-j}=\mathcal{Z}_{b}(L) \varepsilon_{t}
$$

is also a basis for all the second-moment statistical properties of the series. The variance is

$$
\sigma^{2}\left(x_{t}\right)=\left(\sum_{j=0}^{\infty} b_{j}^{2}\right) \sigma_{\varepsilon}^{2}
$$

the covariance is

$$
\operatorname{cov}\left(x_{t}, x_{t-k}\right)=\left(\sum_{j=0}^{\infty} b_{j} b_{j+k}\right) \sigma_{\varepsilon}^{2}
$$

and the spectral density is

$$
S_{x}(\omega)=\sum_{j=-\infty}^{\infty} e^{-i \omega j} \operatorname{cov}\left(x_{t}, x_{t-j}\right)=\mathcal{Z}_{b}\left(e^{i \omega}\right) \mathcal{Z}_{b}\left(e^{-i \omega}\right) \sigma_{\varepsilon}^{2}
$$

The inversion formula

$$
\operatorname{cov}\left(x_{t}, x_{t-k}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i \omega k} S_{x}(\omega) d \omega=\frac{\sigma_{\varepsilon}^{2}}{2 \pi} \int_{-\pi}^{\pi} e^{i \omega k} \mathcal{Z}_{b}\left(e^{i \omega}\right) \mathcal{Z}_{b}\left(e^{-i \omega}\right) d \omega
$$

gives us a direct connection between the function $\mathcal{Z}_{b}\left(e^{i \omega}\right)$ and the second moments of the series. The variance formula quickly shows you why square-summable lag coefficients, $\sum_{j=0}^{\infty} b_{j}^{2}<\infty$ are a standard technical condition on the moving-average representation.

The continuous-time moving-average representation

$$
x_{t}=\int_{\tau=0}^{\infty} b(\tau) \sigma d B_{t-\tau}=\mathcal{L}_{b}(D) \sigma D B_{t}
$$

is also the basis for standard moment calculations,

$$
\begin{aligned}
\sigma^{2}\left(x_{t}\right) & =\left(\int_{\tau=0}^{\infty} b^{2}(\tau) d \tau\right) \sigma^{2}, \\
\operatorname{cov}\left(x_{t}, x_{t-k}\right) & =\left(\int_{\tau=0}^{\infty} b(\tau) b(\tau+k) d \tau\right) \sigma^{2} \\
S_{x}(\omega) & =\mathcal{L}_{b}(i \omega) \mathcal{L}_{b}(-i \omega) \sigma^{2},
\end{aligned}
$$

and the inversion formula

$$
\operatorname{cov}\left(x_{t}, x_{t-k}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega k} S_{x}(\omega) d \omega=\frac{\sigma^{2}}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega k} \mathcal{L}_{b}(i \omega) \mathcal{L}_{b}(-i \omega) d \omega
$$

The variance formula shows we we impose $\int_{\tau=0}^{\infty} b^{2}(\tau) d \tau<\infty$.
For example, the $\operatorname{AR}(1)$ gives

$$
\begin{aligned}
x_{t} & =\int_{\tau=0}^{\infty} e^{-\phi \tau} \sigma d B_{t-\tau}=\frac{1}{\phi+D} \sigma D B_{t} \\
\sigma^{2}(x) & =\sigma^{2} \int_{\tau=0}^{\infty} e^{-2 \phi \tau} d \tau=\frac{\sigma^{2}}{2 \phi} \\
\operatorname{cov}\left(x_{t}, x_{t-k}\right) & =\sigma^{2} \int_{\tau=0}^{\infty} e^{-\phi \tau} e^{-\phi(t+k)} d \tau=\frac{\sigma^{2}}{2 \phi} e^{-\phi k} \\
S_{x}(\omega) & =\mathcal{L}_{b}(i \omega) \mathcal{L}_{b}(-i \omega)=\frac{\sigma}{\phi+i \omega} \frac{\sigma}{\phi-i \omega}=\frac{\sigma^{2}}{\phi^{2}+\omega^{2}} .
\end{aligned}
$$

## 4

## ARMA Models

In discrete time, ARMA models provide a tractable class that generalizes the $\operatorname{AR}(1)$ and captures interesting dynamics. Here, I describe the counterpart to those models in continuous time.

### 4.1 Discrete Time

We can write ARMA models in lag-polynomial notation

$$
\begin{equation*}
\left(1-\lambda_{1} L\right)\left(1-\lambda_{2} L\right) \ldots x_{t}=\left(1+\theta_{1} L\right)\left(1+\theta_{2} L\right) \ldots \varepsilon_{t} \tag{4.1}
\end{equation*}
$$

We can express these processes in autoregressive form

$$
\frac{\left(1-\lambda_{1} L\right)\left(1-\lambda_{2} L\right) \ldots}{\left(1+\theta_{1} L\right)\left(1+\theta_{2} L\right) \ldots} x_{t}=\varepsilon_{t}
$$

or moving average form

$$
x_{t}=\frac{\left(1+\theta_{1} L\right)\left(1+\theta_{2} L\right) \ldots}{\left(1-\lambda_{1} L\right)\left(1-\lambda_{2} L\right) \ldots} \varepsilon_{t}
$$

To calculate and interpret the denominator polynomials, it is useful to use partial fraction decompositions,

$$
\frac{1}{\left(1-\lambda_{1} L\right)\left(1-\lambda_{2} L\right) \cdots}=\frac{A}{1-\lambda_{1} L}+\frac{B}{1-\lambda_{2} L}+\cdots
$$

For example, the $\operatorname{AR}(2)$ is equivalent in this way to the sum of two AR(1),

$$
\begin{align*}
x_{t} & =\frac{1}{\left(1-\lambda_{1} L\right)\left(1-\lambda_{2} L\right)} \varepsilon_{t}=\left(\frac{\lambda_{1}}{1-\lambda_{1} L}+\frac{\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}}}{1-\lambda_{2} L}\right) \varepsilon_{t}  \tag{4.2}\\
& =\frac{\lambda_{1}}{\lambda_{1}-\lambda_{2}} \sum_{j=0}^{\infty} \lambda_{1}^{j} \varepsilon_{t-j}+\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}} \sum_{j=0}^{\infty} \lambda_{2}^{j} \varepsilon_{t-j} . \tag{4.3}
\end{align*}
$$

### 4.2 Continuous Time

The continuous-time analogue to lag-operator polynomial models are differential-operator polynomial models, of the form

$$
\begin{equation*}
x_{t}=\frac{\left(D+\theta_{1}\right)\left(D+\theta_{2}\right) \cdots}{\left(D+\lambda_{1}\right)\left(D+\lambda_{2}\right)\left(D+\lambda_{3}\right) \cdots} \sigma D B_{t} \tag{4.4}
\end{equation*}
$$

Unlike the discrete-time case, the order of the denominator must always be one greater than the order of the numerator, for reasons I discuss below.

The partial-fractions decomposition is useful to understand the moving-average form of (4.4). For example, the next-simplest model after the $\mathrm{AR}(1)$ is

$$
\begin{align*}
x_{t} & =\frac{\left(D+\theta_{1}\right)}{\left(D+\lambda_{1}\right)\left(D+\lambda_{2}\right)} \sigma D B_{t} \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left(\frac{\lambda_{1}-\theta_{1}}{D+\lambda_{1}}-\frac{\lambda_{2}-\theta_{1}}{D+\lambda_{2}}\right) \sigma D B_{t} \\
& =\frac{\lambda_{1}-\theta_{1}}{\lambda_{1}-\lambda_{2}} \int_{\tau=0}^{\infty} e^{-\lambda_{1} \tau} \sigma d B_{t-\tau}+\frac{\lambda_{2}-\theta_{1}}{\lambda_{2}-\lambda_{1}} \int_{\tau=0}^{\infty} e^{-\lambda_{2} \tau} \sigma d B_{t-\tau} . \tag{4.5}
\end{align*}
$$

This formula is the analogue of the $\operatorname{AR}(2)$ expressed as the sum of two $\operatorname{AR}(1)$ in (4.2). More generally, we can express (4.4) as

$$
\begin{equation*}
x_{t}=\left[\frac{A}{\left(D+\lambda_{1}\right)}+\frac{B}{\left(D+\lambda_{2}\right)}+\frac{C}{\left(D+\lambda_{3}\right)}+\cdots\right] \sigma D B_{t} \tag{4.6}
\end{equation*}
$$

and understand the general process (4.4) as a sum of many $\operatorname{AR}(1)$ s. The normalization $b(0)=1$ implies

$$
A+B+C+\cdots=1
$$

which you can verify in (4.5).

To understand the autoregressive representation of this polynomial operator,

$$
\begin{equation*}
\frac{\left(D+\lambda_{1}\right)\left(D+\lambda_{2}\right)\left(D+\lambda_{3}\right) \cdots}{\left(D+\theta_{1}\right)\left(D+\theta_{2}\right) \cdots} x_{t}=\sigma D B_{t} \tag{4.7}
\end{equation*}
$$

it is useful to reexpress the differential-operator polynomial in a different way. For example, we can write the second-order model

$$
\begin{equation*}
\frac{\left(D+\lambda_{1}\right)\left(D+\lambda_{2}\right)}{\left(D+\theta_{1}\right)} x_{t}=\sigma D B_{t} \tag{4.8}
\end{equation*}
$$

in the form

$$
\left[D+\left(\lambda_{1}+\lambda_{2}-\theta_{1}\right)+\frac{\left(\theta_{1}-\lambda_{1}\right)\left(\theta_{1}-\lambda_{2}\right)}{D+\theta_{1}}\right] x_{t}=\sigma D B_{t}
$$

or, writing it out,

$$
\begin{aligned}
d x_{t}= & -\left[\left(\lambda_{1}+\lambda_{2}\right)-\theta_{1}\right] x_{t} d t \\
& -\left(\left(\theta_{1}-\lambda_{1}\right)\left(\theta_{1}-\lambda_{2}\right) \int_{\tau=0}^{\infty} e^{-\theta_{1} \tau} x_{t-\tau} d \tau\right) d t+\sigma D B_{t}
\end{aligned}
$$

Here you see a natural generalization of the $\operatorname{AR}(1)$, and see the "autoregressive" nature of the process. We forecast $d x_{t}$ as a linear function of the history of $\left\{x_{t}\right\}$. More generally, we can express (4.7) in the form

$$
\left[D+A+\frac{B}{D+\theta_{1}}+\frac{C}{D+\theta_{2}}+\cdots\right] x_{t}=\sigma D B_{t}
$$

In this form, we forecast $d x_{t}$ by its level $x_{t}$ and a sum of geometricallyweigthed integrals over the history of $x_{t}$.

### 4.3 How not to Define ARMA Models

The class of models I described in (4.4) displays some notable differences from the discrete-time ARMA class that I used to motivate them. Other natural attempts to take ARMA models to continuous time do not work.

First, I announced the rule that the order of the numerator in (4.4) must be one less than the denominator, while the order of polynomials in (4.1) is arbitrary. The underlying reason for this difference is that,
while the $L^{2}$ operator takes a double lag, the $D^{2}$ operator takes a second derivative. For example, consider

$$
D^{2} x_{t}=\sigma D B_{t}
$$

writing it out, this means

$$
\begin{aligned}
\frac{1}{d t} d\left(\frac{1}{d t} d x_{t}\right) & =\sigma \frac{1}{d t} d B_{t} \\
d x_{t} & =\left(\frac{1}{d t} d x_{0}+\sigma \int_{\tau=0}^{t} d B_{\tau}\right) d t
\end{aligned}
$$

This $d x_{t}$ does not have a $d B_{t}$ term. $x_{t}$ is a differentiable function of time, perfectly forecastable $d t$ ahead. Taking the $D^{2}$ operator takes us out of the kind of process we are looking for.

As a less trivial example, suppose we tried to write a "continuous time $\operatorname{AR}(2) "$ as

$$
\left(D+\lambda_{1}\right)\left(D+\lambda_{2}\right) x_{t}=\sigma D B_{t} .
$$

Then, we would have

$$
\begin{aligned}
\left(D+\lambda_{1}\right) x_{t} & =\frac{1}{\left(D+\lambda_{2}\right)} \sigma D B_{t} \\
d x_{t}+\lambda_{1} x_{t} d t & =\left(\int_{\tau=0}^{\infty} e^{-\lambda_{2} \tau} \sigma d B_{t-\tau}\right) d t
\end{aligned}
$$

Again, we lose the $\sigma d B_{t}$ term and $x_{t}$ is differentiable.
Second, the main feature of ARMA models, that only a finite past of $\left\{x_{t}\right\}$ or shocks $\left\{\varepsilon_{t}\right\}$ forms a state vector for forecasting, is not preserved in models of the form (4.4). One could create perfectly good models with that feature, but those models do not have the convenience or tractability that they posses in discrete time. For example, we can write finite-length processes such as

$$
d x_{t}=\left(\gamma x_{t}+\int_{\tau=0}^{k} a(\tau) x_{t-\tau}\right) d \tau+\sigma d B_{t}
$$

or a finite-length moving average

$$
x_{t}=\int_{\tau=0}^{k} b(\tau) d B_{t-\tau} .
$$

But the finiteness $k$ of the AR or MA representation does not lead to easy inversion or manipulation as it does in discrete time.

Similarly, we could try to take the continuous-time limit of an $\operatorname{AR}(2)$ by keeping the second lag fixed, not letting it contract towards zero so that it create the troublesome second derivative. We would start with

$$
\begin{aligned}
x_{t} & =\rho_{1} x_{t-1}+\rho_{2} x_{t-2}+\varepsilon_{t} \\
x_{t}-x_{t-1} & =-\left(1-\rho_{1}\right) x_{t-1}+\rho_{2} x_{t-2}+\varepsilon_{t}
\end{aligned}
$$

Then, take the limit by letting the first difference get smaller but keeping the second lag fixed. We get

$$
\begin{aligned}
d x_{t} & =\left(-\phi x_{t}+\phi_{2} x_{t-\kappa}\right) d t+d B_{t} \\
\left(D+\phi+e^{-\kappa D}\right) x_{t} & =D B_{t}
\end{aligned}
$$

with $\kappa=2$. This is a legitimate process, but the tractability is clearly lost, as inverting this lag operator will not be fun.

## 5

## Differences

In discrete time, you usually choose to work with levels $x_{t}$ or differences $\Delta x_{t}$ depending on which is stationary. In continuous time, we often work with differences even though the series is stationary in levels. For example, we write the continuous-time $\mathrm{AR}(1)$ as $d x_{t}=-\phi x_{t} d t+\sigma d B_{t}$, which corresponds to expressing the discrete-time $\operatorname{AR}(1)$ as $x_{t+1}-x_{t}=$ $-(1-\rho) x_{t}+\varepsilon_{t+1}$. This fact accounts for the major difference between the look of continuous and discrete-time formulas, and means we must spend a little more time than usual describing the relation between level and differenced processes.

### 5.1 Levels to Differences in Discrete Time

First-differencing is simple in discrete time. Given a process in levels,

$$
x_{t}=\sum_{j=0}^{\infty} b_{j} \varepsilon_{t-j}
$$

we can write the same process in differences as

$$
\begin{equation*}
x_{t}-x_{t-1}=\varepsilon_{t}+\sum_{j=1}^{\infty}\left(b_{j}-b_{j-1}\right) \varepsilon_{t-j} \tag{5.1}
\end{equation*}
$$

In operator notation, we transform from the moving average for levels

$$
\begin{equation*}
x_{t}=\mathcal{Z}_{b}(L) \varepsilon_{t} \tag{5.2}
\end{equation*}
$$

to a moving average for differences

$$
\begin{equation*}
(1-L) x_{t}=\mathcal{Z}_{c}(L) \varepsilon_{t} . \tag{5.3}
\end{equation*}
$$

One way to construct $\mathcal{Z}_{c}(L)$ is straightforwardly shown by (5.1),

$$
\begin{equation*}
\mathcal{Z}_{c}(L)=(1-L) \mathcal{Z}_{b}(L)=1+\mathcal{Z}_{\Delta b}(L) . \tag{5.4}
\end{equation*}
$$

Remember, we normalized the lag polynomial so that $b_{0}=\mathcal{Z}_{b}(0)=1$, and so that $\left(E_{t}-E_{t-1}\right) x_{t}=1 \times \varepsilon_{t}$ is the impact response to a shock. In discrete time $\left(E_{t}-E_{t-1}\right)\left(x_{t}-x_{t-1}\right)=1 \times \varepsilon_{t}$ as well so we have $\mathcal{Z}_{c}(0)=1$ and $\mathcal{Z}_{\Delta b}(0)=0$.

### 5.2 Levels to Differences in Continuous Time

In continuous time, we can similarly model levels or differences,

$$
\begin{equation*}
x_{t}=\mathcal{L}_{b}(D) \sigma D B_{t} \tag{5.5}
\end{equation*}
$$

or

$$
\begin{equation*}
D x_{t}=\mathcal{L}_{c}(D) \sigma D B_{t} . \tag{5.6}
\end{equation*}
$$

Obviously, we can write

$$
\mathcal{L}_{c}(D)=D \mathcal{L}_{b}(D),
$$

but there are several other ways to construct, express, and interpret the differenced representation given the level representation.

Mirroring (5.1) and (5.4), we can find $\mathcal{L}_{c}(D)$ from

$$
\begin{equation*}
\mathcal{L}_{c}(D)=D \mathcal{L}_{b}(D)=1+\mathcal{L}_{b^{\prime}}(D) \tag{5.7}
\end{equation*}
$$

or, explicitly,

$$
\begin{equation*}
d x_{t}=\left(\int_{\tau=0}^{\infty} b^{\prime}(\tau) \sigma d B_{t-\tau}\right) d t+\sigma d B_{t} . \tag{5.8}
\end{equation*}
$$

This formula is the obvious analogue to (5.1). However, in continuous time, this expression gives familiar drift and diffusion terms.

Expression (5.7) and the resulting (5.8) is a standard property of Laplace transforms

$$
\begin{equation*}
D \mathcal{L}_{b}(D)=b(0)+\mathcal{L}_{b^{\prime}}(D) \tag{5.9}
\end{equation*}
$$

together with the normalization $b(0)=1$. To derive it, integrate by parts:

$$
\begin{aligned}
\mathcal{L}_{b^{\prime}}(D) & =\int_{\tau=0}^{\infty} e^{-D \tau} \frac{d b(\tau)}{d \tau} d \tau=\left.b(\tau) e^{-D \tau}\right|_{0} ^{\infty}+\int_{\tau=0}^{\infty} D e^{-D \tau} b(\tau) d \tau \\
& =-b(0)+D \int_{\tau=0}^{\infty} e^{-D \tau} b(\tau) d \tau=-b(0)+D \mathcal{L}_{b}(D)
\end{aligned}
$$

I assume here that $b(\tau)$ is differentiable except at $\tau=0$. The formulas can be extended to include $b(\tau)$ with jumps, which give rise to additional lagged diffusion terms. Correspondingly, to represent something like (5.8) as a Laplace transform, I allow a $\delta$ function in $c(\tau)$ at $\tau=0$, whose Laplace transform is the constant $c(0)$. A typical moving average representation for differences will have such a delta function, i.e. its integral expansion will be of the form

$$
\mathcal{L}_{c}(D)=c(0)+\int_{\tau=0}^{\infty} e^{-D \tau} c(\tau) d \tau
$$

In the case of a differential-operator polynomial, this transformation from levels to differences is simply algebra. For the $\operatorname{AR}(1)$, we can write

$$
\begin{equation*}
D x_{t}=\frac{D}{D+\phi} \sigma D B_{t}=\left(1-\frac{\phi}{D+\phi}\right) \sigma D B_{t} \tag{5.10}
\end{equation*}
$$

i.e.

$$
d x_{t}=-\phi\left(\int_{\tau=0}^{\infty} e^{-\phi \tau} \sigma d B_{t-\tau}\right) d t+\sigma d B_{t} .
$$

Recognizing the first term on the right as $x_{t}$ itself, you recognize the $\operatorname{AR}(1)$, but see that it is now written in a moving average representation for $d x_{t}$, which is what we were looking for. Construction (5.8) gives the same answer which is a fun exercise.

For the more general polynomial operator, we can apply the same algebra to the partial-fractions expansion of the moving average polynomial,

$$
\begin{align*}
\mathcal{L}_{c}(D) & =D \mathcal{L}_{b}(D)=\frac{D A}{D+\lambda_{1}}+\frac{D B}{D+\lambda_{2}}+\cdots \\
& =A-\frac{\lambda_{1} A}{D+\lambda_{1}}+B-\frac{\lambda_{2} B}{D+\lambda_{2}}+\cdots \\
& =1-\frac{\lambda_{1} A}{D+\lambda_{1}}-\frac{\lambda_{2} B}{D+\lambda_{2}}-\cdots \tag{5.11}
\end{align*}
$$

In each case, notice that $\mathcal{L}_{c}(0)=0$. That follows in (5.7) with the fact that $\mathcal{L}_{b}(0)$ is finite, and it is clear in (5.10) and (5.11). That ends up being the condition that $x_{t}$ is stationary in levels. The BeveridgeNelson decomposition and cointegration follow later from the case of a differenced representation $D x_{t}=\mathcal{L}_{c}(D) D B_{t}$ in which $\mathcal{L}_{c}(0) \neq 0$ or is not full rank.

## 6

## Impulse-response Function

### 6.1 Discrete Time

The discrete-time moving-average representation is the impulseresponse function. In

$$
x_{t}=\sum_{j=0}^{\infty} b_{j} \varepsilon_{t-j}=\mathcal{Z}_{b}(L) \varepsilon_{t},
$$

the terms of $b_{j}$ measure the response of $x_{t+j}$ to a shock $\varepsilon_{t}$,

$$
\left(E_{t}-E_{t-1}\right) x_{t+j}=b_{j} \varepsilon_{t} .
$$

In particular, we can read the impact multiplier - the response $\left(E_{t}-E_{t-1}\right) x_{t}$ off the lag polynomial evaluated at $L=0$,

$$
\begin{equation*}
b_{0}=\mathcal{Z}_{b}(0)=1 ; \tag{6.1}
\end{equation*}
$$

we can read the cumulative response - the response of $\sum_{j=0}^{\infty} x_{t+j}$ to a shock - off the lag polynomial evaluated at $L=1$,

$$
\mathcal{Z}_{b}(1)=\sum_{j=0}^{\infty} b_{j}
$$

and we can read the final response, which needs to be zero for a stationary process, from the lag polynomial at $L=\infty$,

$$
b_{\infty}=\lim _{j \rightarrow \infty} b_{j}=\lim _{L \rightarrow \infty} \mathcal{Z}_{b}(L)=\mathcal{Z}_{b}(\infty) .
$$

### 6.2 Continuous Time

In continuous time, the moving average representation is

$$
\begin{equation*}
x_{t}=\int_{\tau=0}^{\infty} b(\tau) \sigma d B_{t-\tau} . \tag{6.2}
\end{equation*}
$$

The quantity $b(\tau)$ again gives an "impulse-response" function, namely how expectations at $t$ about $x_{t+\tau}$ are affected by the shock $\sigma d B_{t}$.

The concept $\lim _{\Delta \rightarrow 0}\left(E_{t+\Delta}-E_{t}\right) x_{t}$ does not really make sense. It makes more sense in continuous time to understand the "impulseresponse" as the loading of a difference $d x_{t}$ on the Brownian motion $\sigma d B_{t}$ term. By transforming the moving-average representation of levels in (6.2) to differences as in (5.8),

$$
d x_{t}=\left(\int_{\tau=0}^{\infty} b^{\prime}(\tau) \sigma d B_{t-\tau}\right) d t+b(0) \sigma d B_{t},
$$

we get a better sense of $b(0)=1$ as the "response of $x_{t}$ to a shock" that concept represents how $d x_{t}$ responds to a Brownian increment $\sigma d B_{t}$. In discrete time,

$$
x_{t+1}-x_{t}=b_{0} \varepsilon_{t+1}+\sum_{j=0}^{\infty}\left(b_{j+1}-b_{j}\right) \varepsilon_{t-j}
$$

the innovation in $x_{t+1}$ and $\Delta x_{t+1}$ (i.e. $x_{t+1}$ and $d x_{t+1}$ ) are the same. The difference version makes more sense in continuous time.

Similarly, to see what an "impulse-response" past the first term really means in continuous time, define

$$
y_{t}=E_{t}\left(x_{t+k}\right)=\int_{\tau=0}^{\infty} b(\tau+k) \sigma d B_{t-\tau} .
$$

Then, following the same logic as in (5.8),

$$
d y_{t}=b(k) \sigma d B_{t}+\left(\int_{\tau=0}^{\infty} b^{\prime}(\tau+k) \sigma d B_{t-\tau}\right) d t .
$$

Here you see directly what it means to say that $b(k)$ is the shock to today's expectations of $x_{t+k}$. (We get the same result whether we interpret $d y_{t}$ as

$$
y_{t+\Delta}-y_{t}=E_{t+\Delta}\left(x_{t+k}\right)-E_{t}\left(x_{t+k}\right)
$$

or if we interpret $d y_{t}$ as

$$
y_{t+\Delta}-y_{t}=E_{t+\Delta}\left(x_{t+k+\Delta}\right)-E_{t}\left(x_{t+k}\right) .
$$

These quantities are the same because $E_{t}\left(d x_{t+k}\right)$ is of order $d t$.)
We can recover the impact multiplier from the level operator function (6.2) via

$$
\begin{equation*}
b(0)=\lim _{D \rightarrow \infty} D \mathcal{L}_{b}(D) . \tag{6.3}
\end{equation*}
$$

This expression is the analogue to (6.1). I am normalizing so that $b(0)=$ 1 for moving average representations, and this expression allows us to check that fact for general differential-operator functions.

Statement (6.3) is the "initial value theorem" of Lapalce transforms. To derive this formula, take the limit on both sides of (5.7), which I repeat here,

$$
D \mathcal{L}_{b}(D)=b(0)+\mathcal{L}_{b^{\prime}}(D),
$$

and note that

$$
\lim _{D \rightarrow \infty} \mathcal{L}_{b^{\prime}}(D)=\lim _{D \rightarrow \infty} \int_{\tau=0}^{\infty} e^{-D \tau} b^{\prime}(\tau) d \tau=0
$$

The form of the differential-operator polynomials (4.4) imposes this normalization

$$
\lim _{D \rightarrow \infty} D \mathcal{L}_{b}(D)=\lim _{D \rightarrow \infty} D \frac{\left(D+\theta_{1}\right)\left(D+\theta_{2}\right) \cdots}{\left(D+\lambda_{1}\right)\left(D+\lambda_{2}\right)\left(D+\lambda_{3}\right) \cdots}=1,
$$

but only if there is one less $D$ on top than on the bottom. This observation gives a little deeper insight for that requirement.

Applying $b(0)=\lim _{D \rightarrow \infty} D \mathcal{L}_{b}(D)=1$ to the partial-fractions expansion of the differential operator polynomial, (4.6),

$$
\begin{equation*}
x_{t}=\left[\frac{A}{\left(D+\lambda_{1}\right)}+\frac{B}{\left(D+\lambda_{2}\right)}+\frac{C}{\left(D+\lambda_{3}\right)}+\cdots\right] \sigma D B_{t} \tag{6.4}
\end{equation*}
$$

gives a swift demonstration and interpretation of the fact that $A+B+C+\cdots=1$.

Since the differenced moving average $\mathcal{L}_{c}(D)=D \mathcal{L}_{b}(D)$, the corresponding requirement is

$$
\lim _{D \rightarrow \infty} \mathcal{L}_{c}(D)=1
$$

Since the "impact multiplier" is most easily understood in continuous time as the response of $d x_{t}$ to $\sigma d B_{t}$, this requirement makes better sense of the expression (6.3)

The "final value theorem" of Laplace transforms states

$$
\begin{equation*}
b(\infty)=\lim _{D \rightarrow 0} D \mathcal{L}_{b}(D) . \tag{6.5}
\end{equation*}
$$

As in discrete time, to obtain a stationary (finite-variance) series, moving averages must tail off,

$$
\lim _{\tau \rightarrow \infty} b(\tau)=0
$$

(Actually we need $\int_{\tau=0}^{\infty} b^{2}(\tau)<\infty$ which is stronger.) As in discrete time, (6.5) tells us how to measure this quantity directly from the differential operator function $\mathcal{L}_{b}(D)$.

To see the "final value theorem," simply take the limit of

$$
\int_{\tau=0}^{\infty} D e^{-D \tau} b(\tau) d \tau
$$

We also want the equivalent of the cumulative response function, which measures the response of $E_{t} \int_{\tau=0}^{\infty} x_{t+\tau} d \tau$ to a shock. Corresponding to $\mathcal{Z}_{b}(1)$ in discrete time, we have

$$
\mathcal{L}_{b}(0)=\int_{\tau=0}^{\infty} b(\tau) d \tau .
$$

We often model the differences

$$
d x_{t}=\mathcal{L}_{c}(D) \sigma D B_{t}
$$

and want to find the final response of the level $x_{t}$ to the shock. Since $\lim _{T \rightarrow \infty} x_{t+T}=\int_{\tau=0}^{\infty} d x_{t+\tau}$, the final response of $x_{t}$ is

$$
\mathcal{L}_{c}(0)=1+\int_{\tau=0}^{\infty} c(\tau) d \tau
$$

(The right-hand expansion is for the standard case of a $\delta$ function at zero with $c(0)=1$ ). If $x_{t}$ is stationary, this number like $b_{\infty}$ in (6.5) should be zero. If $d x_{t}$ is stationary but $x_{t}$ is not, this number is not zero, and is the key distinguishing level and difference stationary series. More later.
(Befitting the nontechnical nature of this article, I am not making an important distinction between $\mathcal{L}_{c}(0)$ and $\lim _{D \rightarrow 0} \mathcal{L}_{c}(D)$. With $\mathcal{L}_{c}(D)=$ $D \mathcal{L}_{b}(D)$ you can see why the latter formulation might be preferred. But we can usually write $\mathcal{L}_{c}(D)$ in such a way that the limit and limit point are the same. For the $\operatorname{AR}(1)$ example, $D \mathcal{L}_{b}(D)=D /(D+\phi)$, and $\mathcal{L}_{c}(D)=1-\phi /(D+\phi)$. These are the same except at the limit point $D=0$.)

## 7

## Hansen-Sargent Formulas

Here is one great use of the operator notation - and the application that drove me to figure all this out and write it up. Given a process $x_{t}$, how do you calculate

$$
E_{t} \int_{\tau=0}^{\infty} e^{-r \tau} x_{t+\tau} d \tau ?
$$

This is an operation we run into again and again in modern intertemporal macroeconomics and in asset pricing.

### 7.1 Discrete Time

Hansen and Sargent (1980) gave an elegant answer to this question in discrete time. You want to calculate $E_{t} \sum_{j=0}^{\infty} \beta^{j} x_{t+j}$. You are given a moving average representation $x_{t}=\mathcal{Z}_{b}(L) \varepsilon_{t}$. (Here and below, $\varepsilon_{t}$ can be a vector of shocks, which considerably generalizes the range of processes you can write down.) The answer: the moving-average representation of the expected discounted sum is

$$
\begin{equation*}
E_{t} \sum_{j=0}^{\infty} \beta^{j} x_{t+j}=\left(\frac{L \mathcal{Z}_{b}(L)-\beta \mathcal{Z}_{b}(\beta)}{L-\beta}\right) \varepsilon_{t}=\left(\frac{\mathcal{Z}_{b}(L)-\beta L^{-1} \mathcal{Z}_{b}(\beta)}{1-\beta L^{-1}}\right) \varepsilon_{t} \tag{7.1}
\end{equation*}
$$

Hansen and Sargent give the first form. The second form is a bit less pretty but shows a bit more clearly what you are doing. $\mathcal{Z}_{b}(L) \varepsilon_{t}$ is just $x_{t} .(1-\beta L)^{-1}=\sum_{j=0}^{\infty} \beta^{j} L^{-j}$ takes the forward sum so $\left(1-\beta L^{-1}\right)^{-1} \mathcal{Z}_{b}(L) \varepsilon_{t}$ is the actual, ex-post value whose expectation we seek. But that expression would leave you many terms in $\varepsilon_{t+j}$. The second term ends up subtracting off all the $\varepsilon_{t+j}$ terms leaving only $\varepsilon_{t-j}$ terms, which thus is the conditional expectation.

For example, consider an $\operatorname{AR}(1)$. We start with

$$
x_{t}=\mathcal{Z}_{b}(L) \varepsilon_{t}=(1-\rho L)^{-1} \varepsilon_{t} .
$$

Then the expected discounted sum follows

$$
\begin{aligned}
E_{t} \sum_{j=0}^{\infty} \beta^{j} x_{t+j} & =\left(\frac{\frac{L}{1-\rho L}-\frac{\beta}{1-\rho \beta}}{L-\beta}\right) \varepsilon_{t}=\frac{1}{(1-\rho \beta)} \frac{1}{(1-\rho L)} \varepsilon_{t} \\
& =\frac{1}{(1-\rho \beta)} \sum_{j=0}^{\infty} \rho^{j} \varepsilon_{t-j}=\frac{1}{(1-\rho \beta)} x_{t} .
\end{aligned}
$$

The formula is even prettier if we start one period ahead, as often happens in finance:

$$
\begin{equation*}
E_{t} \sum_{j=1}^{\infty} \beta^{j-1} x_{t+j}=\left(\frac{\mathcal{Z}_{b}(L)-\mathcal{Z}_{b}(\beta)}{L-\beta}\right) \varepsilon_{t} \tag{7.2}
\end{equation*}
$$

Just subtract $x_{t}=\mathcal{Z}_{b}(L) \varepsilon_{t}$ from (7.1). This version turns out to look exactly like the continuous-time formula below.

We often want the impact multiplier - how much does a price react to a shock? The Hansen-Sargent formula (7.1) says the answer is $\mathcal{Z}_{b}(\beta)$, i.e.

$$
\begin{equation*}
\left(E_{t}-E_{t-1}\right) \sum_{j=0}^{\infty} \beta^{j} x_{t+j}=\mathcal{Z}_{b}(\beta) \varepsilon_{t} \tag{7.3}
\end{equation*}
$$

This formula is particularly lovely because you do not have to construct, factor, or invert any lag polynomials. Suppose you start with
an autoregressive representation

$$
\mathcal{Z}_{a}(L) x_{t}=\varepsilon_{t} .
$$

Then, you can first evaluate $\mathcal{Z}_{a}(\beta)$ (a number) and then invert that number, rather than invert a lag-operator polynomial (hard) and then substitute in a number:

$$
\left(E_{t}-E_{t-1}\right) \sum_{j=0}^{\infty} \beta^{j} x_{t+j}=\left[\mathcal{Z}_{a}(\beta)\right]^{-1} \varepsilon_{t} .
$$

### 7.2 Continuous Time

Hansen and Sargent (1991) show that if we express a process in movingaverage form,

$$
x_{t}=\int_{\tau=0}^{\infty} b(\tau) \sigma d B_{t-\tau}=\mathcal{L}_{b}(D) \sigma D B_{t}
$$

then we can find the moving average representation of the expected discounted value by

$$
\begin{equation*}
E_{t} \int_{\tau=0}^{\infty} e^{-r \tau} x_{t+\tau} d \tau=\left(\frac{\mathcal{L}_{b}(D)-\mathcal{L}_{b}(r)}{r-D}\right) \sigma D B_{t} . \tag{7.4}
\end{equation*}
$$

The formula is almost exactly the same as (7.2).
The pieces work as in discrete time. The operator

$$
\frac{1}{r-D}=\int_{\tau=0}^{\infty} e^{-r \tau} e^{D \tau} d \tau
$$

takes the discounted forward integral, and creates the ex-post present value. Subtracting off $\mathcal{L}_{b}(r) /(r-D)$ removes all the terms by which the discounted sum depends on future realizations of $\sigma d B_{t+\tau}$, leaving an expression that only depends on the past and hence is the conditional expectation.

Here is the $\operatorname{AR}(1)$ example in continuous time. $x_{t}$ follows

$$
x_{t}=\frac{1}{D+\phi} \sigma D B_{t} .
$$

Applying (7.4),

$$
\begin{aligned}
E_{t} \int_{\tau=0}^{\infty} e^{-r \tau} x_{t+\tau} d \tau & =\frac{1}{(r-D)}\left(\frac{1}{D+\phi}-\frac{1}{r+\phi}\right) \sigma D B_{t} \\
& =\frac{1}{(r+\phi)(D+\phi)} \sigma D B_{t} \\
& =\frac{1}{r+\phi} \int_{\tau=0}^{\infty} e^{-\phi \tau} \sigma d B_{t-\tau}=\frac{1}{r+\phi} x_{t} .
\end{aligned}
$$

We recover the same result as in discrete time.
The innovation in the expected discounted value, the counterpart to (7.3), is found as we found impact multipliers in (6.3). From (7.4), the impact multiplier of the expected discounted value is

$$
\begin{equation*}
\lim _{D \rightarrow \infty}\left(D \frac{\mathcal{L}_{b}(D)-\mathcal{L}_{b}(r)}{r-D}\right)=\mathcal{L}_{b}(r) . \tag{7.5}
\end{equation*}
$$

$\lim _{D \rightarrow \infty} D \mathcal{L}_{b}(D)=b(0)=1$ is the impact multiplier of $x_{t}$, so, dividing by $r-D$, the first numerator term is zero.) Thus, if we define

$$
y_{t}=E_{t} \int_{\tau=0}^{\infty} e^{-r \tau} x_{t+\tau} d \tau,
$$

then

$$
d y_{t}=() d t+\mathcal{L}_{b}(r) d B_{t}
$$

This expression reminds us what an impact multiplier means in continuous time. As in discrete time, (7.5) is a lovely formula because you may be able to find $\mathcal{L}_{b}(r)$ without knowing the whole $\mathcal{L}_{b}(D)$ function. (As an example, I use this formula in Cochrane (2012) (below Equation (4.2), p. 178) to evaluate how much consumption must react to an endowment shock, in order to satisfy the present-value budget constraint in a permanent-income style model with complex habits and durability. In this case, the habits or durability add "autoregressive" terms, and it is convenient to invert them as scalar $\mathcal{L}(r)$ rather than functions $\mathcal{L}(D)$.)

### 7.3 Derivation

### 7.3.1 Operator Derivation

Hansen and Sargent give an elegant derivation that illustrates the power of thinking in terms of Laplace transforms. Start with the ex-post present value. It has a moving average representation, whose terms I will denote by $d(\tau)$. Then, we want to separate $d(\tau)$ into its positive (past) and negative (future) components. Write

$$
\begin{aligned}
\int_{\tau=0}^{\infty} e^{-r \tau} x_{t+\tau} d \tau & =\int_{\tau=-\infty}^{\infty} d(\tau) d B_{t-\tau} \\
& =\int_{\tau=-\infty}^{0} d(\tau) d B_{t-\tau}+\int_{\tau=0}^{\infty} d(\tau) d B_{t-\tau} \frac{\mathcal{L}_{b}(D)}{r-D} \sigma D B_{t} \\
& =\mathcal{L}_{d}(D) \sigma D B_{t} \\
& =\left[\mathcal{L}_{d^{-}}(D)+\mathcal{L}_{d^{+}}(D)\right] \sigma D B_{t}
\end{aligned}
$$

The second integral runs from $-\infty$ to $\infty$, because the ex-post present value depends on future shocks. The differential-operator function $\mathcal{L}_{d}(D)$ has a pole at $D=r$, so must be in part solved forward.

In order to break $\mathcal{L}_{d}(D)$ into past and future components, Hansen and Sargent suggest that we simply add and subtract $\mathcal{L}_{b}(r)$

$$
\frac{\mathcal{L}_{b}(D)}{r-D} \sigma D B_{t}=\left\{\left[\frac{\mathcal{L}_{b}(D)-\mathcal{L}_{b}(r)}{r-D}\right]+\left[\frac{\mathcal{L}_{b}(r)}{r-D}\right]\right\} \sigma D B_{t}
$$

The first term no longer has a pole at $D=r$, and removing that pole is a motivation for subtracting $\mathcal{L}_{b}(r)$. Thus, the first term corresponds to past $d B_{t-\tau}$ only. The numerator of the second term is a constant, so that term has only a pole at $D=r$, and no poles with negative values of $D$. Thus it is expressed in terms of future $d B_{t-\tau}$ only.

We have achieved what we are looking for! We broke the moving average of the ex-post present value into one term that depends only on past $d B_{t}$ and one that depends only on future $d B_{t}$. The part loading only on the past, the first term after the equality, must be the conditional expectation.

Wait a minute, you say. We could have added and subtracted anything. But the answer is no, this separation is unique: if you find any
way of adding and subtracting something that breaks $\mathcal{L}_{d}(D)$ into past and future components, you have found the only way of doing so. Suppose we add and subtract an arbitrary $\mathcal{L}(D)$. It must have $\mathcal{L}(r)=\mathcal{L}_{b}(r)$ so the numerator of the first term removes the pole at $D=r$. Still, any backwards-solvable $\mathcal{L}(D)$ with $\mathcal{L}(r)=\mathcal{L}_{b}(r)$ would work in the first term. But any other backwards-solvable $\mathcal{L}(D)$ would induce backwardssolvable parts of the second term. A constant is the only thing we can add and subtract which removes the pole in the first term, making that term backwards-solvable, but does not introduce backwards-solvable parts in the second term. And that constant must be $\mathcal{L}_{b}(r)$ to remove the pole in the first term.

### 7.3.2 Brute force

It is easy to check the Hansen-Sargent formula by brute force. It is useful to confirm that the operator logic is correct. Write out the moving average representation for the ex-post present value, $\sum_{j=0}^{\infty} \beta^{j} x_{t+j}$, then verify that the $\mathcal{Z}_{b}(\beta) /(L-\beta)$ term subtracts off the forward-looking terms. The ex-post present value is

$$
\begin{gather*}
\left(\frac{\mathcal{Z}_{b}(L)}{1-\beta L^{-1}}\right) \varepsilon_{t}=\sum_{j=0}^{\infty} \beta^{j} x_{t+j}  \tag{7.6}\\
\\
\\
+b_{0} \varepsilon_{t} \quad+b_{1} \varepsilon_{t-1} \quad+b_{2} \varepsilon_{t-2}
\end{gather*} \cdots
$$

$$
\ldots
$$

Summing the columns,

$$
\begin{align*}
= & \cdots+\beta^{3} \mathcal{Z}_{b}(\beta) \varepsilon_{t+3}+\beta^{2} \mathcal{Z}_{b}(\beta) \varepsilon_{t+2}+\beta \mathcal{Z}_{b}(\beta) \varepsilon_{t+1}+\mathcal{Z}_{b}(\beta) \varepsilon_{t} \\
& +(. .) \varepsilon_{t-1}+(. .) \varepsilon_{t-2}+\cdots \tag{7.7}
\end{align*}
$$

The second part of the formula (7.1) gives

$$
\begin{aligned}
\frac{\beta L^{-1}}{1-\beta L^{-1}} \mathcal{Z}_{b}(\beta) \varepsilon_{t} & =\left(\beta L^{-1}+\beta^{2} L^{-2}+\beta^{3} L^{-3}+\cdots\right) \mathcal{Z}_{b}(\beta) \varepsilon_{t} \\
& =\cdots+\beta^{3} \mathcal{Z}_{b}(\beta) \varepsilon_{t+3}+\beta^{2} \mathcal{Z}_{b}(\beta) \varepsilon_{t+2}+\beta \mathcal{Z}_{b}(\beta) \varepsilon_{t+1}
\end{aligned}
$$

You can see that these are exactly the forward-looking terms in (7.7). By subtracting these terms, we neatly subtract off all the forward terms $\varepsilon_{t+1}, \varepsilon_{t+2}$, etc. from the ex-post present value and find the expected present value.

You can check the continuous-time Hansen-Sargent formula in the same way. Express the ex-post forward looking present value $\int_{\tau=0}^{\infty} e^{-r \tau} x_{t+\tau} d \tau$ in moving average representation, collect all the $d B_{t-\tau}$ terms in one place for each $\tau$, then notice that the second half of the Hansen-Sargent formula neatly eliminates all the $d B_{t+\tau}$ terms. Start with

$$
\begin{aligned}
\frac{\mathcal{L}_{b}(D)}{r-D} \sigma D B_{t} & =\int_{\tau=0}^{\infty} e^{-r \tau} x_{t+\tau} d \tau \\
& =\int_{\tau=0}^{\infty} e^{-r \tau}\left(\int_{s=0}^{\infty} b(s) \sigma d B_{t+\tau-s}\right) d \tau
\end{aligned}
$$

We transform to an integral over $q=\tau-s$ that counts each $d B_{q}$ once, and separate past $d B_{q}$ from future $d B_{q}$. To find the limits of the definite integrals, when $q<0$ (past), then $\tau \geq 0$ means $s \geq-q$. When $q>0$ (future), then $s$ starts at 0 .

$$
\begin{aligned}
& \int_{\tau=0}^{\infty} e^{-r \tau} x_{t+\tau} d \tau \\
&= \int_{q=-\infty}^{\infty} \int_{s=\max (0,-q)}^{\infty} e^{-r q} e^{-r s} b(s) \sigma d B_{t+q} d s \\
&= \int_{q=0}^{\infty} \int_{s=0}^{\infty} e^{-r q} e^{-r s} b(s) \sigma d B_{t+q} d s \\
&+\int_{q=-\infty}^{0} \int_{s=-q}^{\infty} e^{-r q} e^{-r s} b(s) \sigma d B_{t+q} d s \\
&= \int_{q=0}^{\infty} e^{-r q}\left(\int_{s=0}^{\infty} e^{-r s} b(s) d s\right) \sigma d B_{t+q} \\
&+\int_{q=-\infty}^{0} e^{-r q}\left(\int_{\tau=0}^{\infty} e^{r q} e^{-r \tau} b(\tau-q) d \tau\right) \sigma d B_{t+q}
\end{aligned}
$$

$$
\begin{aligned}
= & \left(\int_{s=0}^{\infty} e^{-r s} b(s) d s\right) \int_{q=0}^{\infty} e^{-r q} \sigma d B_{t+q} \\
& +\int_{q=-\infty}^{0}\left(\int_{s=0}^{\infty} e^{-r \tau} b(\tau-q) d s\right) \sigma d B_{t+q}
\end{aligned}
$$

To take expectations, we just drop the first term, so the second term is the expected value we are looking for. Translating the first two terms to operator notation, we have

$$
\frac{\mathcal{L}_{b}(D)}{r-D} \sigma D B_{t}=\frac{\mathcal{L}_{b}(r)}{r-D} \sigma D B_{t}+E_{t}\left(\int_{\tau=0}^{\infty} e^{-r \tau} x_{t+\tau} d \tau\right)
$$

## 8

## Integration and Cointegration

So far, I have assumed that the series $x_{t}$ is stationary in levels. We study differences $d x_{t}$ because that is more convenient in continuous time. Here I take up the possibility that $x_{t}$ contains unit roots; that $d x_{t}$ is stationary but $x_{t}$ is not. I describe the transformation from differences to levels, and the unit root and cointegrated representations of difference-stationary series.

### 8.1 Difference-stationary Series

So far, we have been looking at differenced specifications simply because the differential operator is more convenient in continuos time, though the level of the series is stationary, with the $\operatorname{AR}(1) d x_{t}=-\phi x_{t}+\sigma d B_{t}$ as the canonical example. Often, we will model series whose differences are stationary, but the levels are not, such as $d B_{t}$ itself. Hence it is worth writing down what specifications based purely on differences look like.

The moving average is

$$
\begin{aligned}
D x_{t} & =\mathcal{L}_{c}(D) \sigma D B_{t} \\
d x_{t} & =\int_{\tau=0}^{\infty} c(\tau) \sigma d B_{t-\tau}+\sigma d B_{t}
\end{aligned}
$$

As before, I assume that $c(\tau)$ has a $\delta$ function at $c(0)=1$ to generate the Laplace transform $\mathcal{L}_{c}(D)$. Reiterating, we normalize so a unit shock $\sigma d B_{t}$ has a unit effect on $d x_{t}$,

$$
\lim _{D \rightarrow \infty} \mathcal{L}_{c}(D)=1 .
$$

A corresponding "autoregressive" representation is

$$
\mathcal{L}_{c}(D)^{-1} D x_{t}=\sigma D B_{t}
$$

We make sense of these expressions with the usual manipulations. For example, a first-order polynomial model is

$$
D x_{t}=\frac{D+\theta}{D+\lambda} \sigma D B_{t} .
$$

Its moving-average representation can be written as

$$
\begin{aligned}
D x_{t} & =\left(1+\frac{\theta-\lambda}{D+\lambda}\right) \sigma D B_{t} \\
d x_{t} & =(\theta-\lambda)\left(\int_{\tau=0}^{\infty} e^{-\lambda \tau} \sigma d B_{t-\tau}\right) d t+\sigma d B_{t} .
\end{aligned}
$$

The autoregressive representation is

$$
\begin{gathered}
\frac{D+\lambda}{D+\theta} D x_{t}=\sigma D B_{t} \\
\left(1+\frac{\lambda-\theta}{D+\theta}\right) D x_{t}=\sigma D B_{t} \\
d x_{t}=-(\lambda-\theta)\left(\int_{\tau=0}^{\infty} e^{-\theta \tau} d x_{t-\tau}\right) d t+\sigma d B_{t} .
\end{gathered}
$$

Here you see that we forecast future changes using past changes $d x_{t-\tau}$, as we normally would run an autoregression in first differences for series like stock returns or GDP growth.

### 8.2 Differences to Levels in Discrete Time; Beveridge and Nelson

Above, we studied the transition from levels to differences. Next, we study the converse operation. We want to get from

$$
\begin{equation*}
(1-L) x_{t}=\mathcal{Z}_{c}(L) \varepsilon_{t} \tag{8.1}
\end{equation*}
$$

to something like

$$
x_{t}=\mathcal{Z}_{b}(L) \varepsilon_{t} .
$$

Lag operator notation suggests that we construct $\mathcal{Z}_{b}(L)$ as

$$
\begin{equation*}
\mathcal{Z}_{b}(L)=\frac{\mathcal{Z}_{c}(L)}{1-L}=c_{0}+\left(c_{0}+c_{1}\right) L+\left(c_{0}+c_{1}+c_{2}\right) L^{2}+\cdots \tag{8.2}
\end{equation*}
$$

However, this operation only produces a stationary process if $\sum_{j=0}^{\infty} c_{j}=$ $\mathcal{Z}_{c}(1)=0$. That condition need not hold. In general, a process (8.1) is not stationary in levels.

We can handle this situation by defining an initial value $x_{0}$ and a process $\varepsilon_{t}=0$ for all $t \leq 0$. Now

$$
x_{t}-x_{0}=\mathcal{Z}_{b}(L) \varepsilon_{t}=(1-L)^{-1} \mathcal{Z}_{c}(L) \varepsilon_{t}
$$

is finite, though nonstationary.
A more convenient way to handle this possibility is to decompose $x_{t}$ in to stationary and random walk components via the Beveridge and Nelson (1981) decomposition. We rearrange the terms of $\mathcal{Z}_{c}(L)$ as

$$
\begin{equation*}
(1-L) x_{t}=\mathcal{Z}_{c}(L) \varepsilon_{t}=\left[\mathcal{Z}_{c}(1)+(1-L) \mathcal{Z}_{b}(L)\right] \varepsilon_{t} \tag{8.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{Z}_{b}(L)=\sum_{j=0}^{\infty} b_{j} L^{j} \text { with } b_{j}=-\sum_{k=j+1}^{\infty} c_{k} . \tag{8.4}
\end{equation*}
$$

From (8.3) we can write $x_{t}$ as the sum of two components,

$$
x_{t}=z_{t}+w_{t},
$$

where

$$
\begin{aligned}
z_{t} & =z_{t-1}+\mathcal{Z}_{c}(1) \varepsilon_{t} \\
w_{t} & =\mathcal{Z}_{b}(L) \varepsilon_{t} .
\end{aligned}
$$

Now, if $\mathcal{Z}_{c}(1)=0$, then we have $x_{t}=w_{t}=\mathcal{Z}_{b}(L) \varepsilon_{t}$, the representation in levels we are looking for, and $x_{t}$ is stationary. If $\mathcal{Z}_{c}(1) \neq 0$, we have the next best thing; we express $x_{t}$ as an interesting combination of a stationary series $w_{t}$ plus a pure random walk $z_{t}$ component.

To verify the Beveridge-Nelson decomposition by brute force, just write out $\mathcal{Z}_{b}(L)$ as defined by (8.4):

$$
\begin{aligned}
\mathcal{Z}_{b}(L)= & -\left(c_{1}+c_{2}+c_{3}+\cdots\right)-\left(c_{2}+c_{3}+c_{4}+\cdots\right) L \\
& -\left(c_{3}+c_{4}+c_{5}+\cdots\right) L^{2}-\cdots
\end{aligned}
$$

then note

$$
\begin{aligned}
(1-L) \mathcal{Z}_{b}(L) & =-c_{0}-\left(c_{1}+c_{2}+c_{3}+\cdots\right)+c_{0}+c_{1} L+c_{2} L^{2}+\cdots \\
& =-\mathcal{Z}_{c}(1)+\mathcal{Z}_{c}(L) .
\end{aligned}
$$

Since the $\left\{c_{j}\right\}$ are square summable, so are the $\left\{b_{j}\right\}$. This is a key observation, $\mathcal{Z}_{b}(L) \varepsilon_{t}$ defines a level-stationary process.

In operator notation, the decomposition (8.3) consists of just adding and subtracting $\mathcal{Z}_{c}(1)$ :

$$
\begin{equation*}
(1-L) x_{t}=\mathcal{Z}_{c}(L) \varepsilon_{t}=\mathcal{Z}_{c}(1) \varepsilon_{t}+(1-L)\left[\frac{\mathcal{Z}_{c}(L)-\mathcal{Z}_{c}(1)}{1-L}\right] \varepsilon_{t} . \tag{8.5}
\end{equation*}
$$

Then, we define $\mathcal{Z}_{b}(L)$ by

$$
\mathcal{Z}_{b}(L)=\frac{\mathcal{Z}_{c}(L)-\mathcal{Z}_{c}(1)}{1-L}
$$

to arrive at (8.3). This looks too easy - could you add and subtract anything, and multiply and divide by $(1-L)$ ? But the fact that makes it work is that $\mathcal{Z}_{b}(L)=\left[\mathcal{Z}_{c}(L)-\mathcal{Z}_{c}(1)\right] /(1-L)$ is a legitimate lag polynomial of a stationary process. All its poles lie outside the unit circle. (Following usual practice, I do not normalize so $\mathcal{Z}_{b}(0)=1$ in this case.)

The Beveridge-Nelson trend $z_{t}$ has the property

$$
\begin{equation*}
z_{t}=\lim _{j \rightarrow \infty} E_{t}\left(x_{t+j}\right), \tag{8.6}
\end{equation*}
$$

which follows simply from the fact that $w_{t}$ is stationary so $\lim _{j \rightarrow \infty} E_{t} w_{t+j}=0$. This can also be used as the defining property to derive the Beveridge-Nelson decomposition, which is a longer but more satisfying since you construct the answer rather than verify it. Thinking in this way, we can derive the Beveridge-Nelson decomposition as
a case of the Hansen-Sargent formula (7.2) evaluated at $\beta=1$ :

$$
\begin{aligned}
z_{t} & =\lim _{j \rightarrow \infty} E_{t}\left(x_{t+j}\right)=x_{t}+E_{t} \sum_{j=1}^{\infty} \Delta x_{t+j} \\
& =x_{t}+\left(\frac{\mathcal{Z}_{c}(1)-\mathcal{Z}_{c}(L)}{1-L}\right) \varepsilon_{t}, \\
(1-L) z_{t} & =(1-L) \mathcal{Z}_{c}(L) \varepsilon_{t}+(1-L)\left(\frac{\mathcal{Z}_{c}(1)-\mathcal{Z}_{c}(L)}{1-L}\right) \varepsilon_{t} \\
& =\mathcal{Z}_{c}(1) \varepsilon_{t}
\end{aligned}
$$

Defining $w_{t}$ as detrended $x_{t}$,

$$
\begin{aligned}
w_{t} & =x_{t}-z_{t} \\
(1-L) w_{t} & =(1-L) x_{t}+(1-L) z_{t} \\
(1-L) w_{t} & =\left[\mathcal{Z}_{c}(L)+\mathcal{Z}_{c}(1)\right] \varepsilon_{t} .
\end{aligned}
$$

### 8.3 Differences to Levels in Continuous Time

The same operations have natural analogues in continuous time. Before, we found the differenced moving average representation of a levelstationary series, in (5.7). Now we want to ask the converse question. Suppose you have a differential representation,

$$
D x_{t}=\mathcal{L}_{c}(D) \sigma D B_{t} .
$$

How do you find $\mathcal{L}_{b}(D)$ or $b(\tau)$ in

$$
\begin{equation*}
x_{t}=\mathcal{L}_{b}(D) \sigma D B_{t} ? \tag{8.7}
\end{equation*}
$$

The fly in the ointment, as in discrete time, is that the process $x_{t}$ may not be stationary in levels, so the latter integral does not make sense. As a basic example, if you start with simple Brownian motion

$$
d x_{t}=\sigma d B_{t},
$$

you can not invert that to

$$
x_{t}=\sigma B_{t}=\int_{\tau=0}^{\infty} \sigma d B_{t-\tau},
$$

because the latter integral blows up. For this reason, we usually express the level of pure Brownian motion as an integral that only looks back to an initial level,

$$
x_{t}=x_{0}+\int_{\tau=0}^{t} \sigma d B_{t-\tau}=x_{0}+\sigma\left(B_{t}-B_{0}\right) .
$$

As in this example, we can ignore the nonstationarity, use (8.7) directly, and think of a nonstationary process that starts at time 0 with $d B_{t}=0$ for all $t<0$. (Hansen and Sargent (1983), last paragraph.)

Alternatively, we can handle this situation as in discrete time, with the continuous-time Beveridge-Nelson decomposition that isolates the nonstationarity to a pure random walk component. We rearrange the terms of $\mathcal{L}_{c}(D)$,

$$
\begin{equation*}
D x_{t}=\mathcal{L}_{c}(D) \sigma D B_{t}=\left[\mathcal{L}_{c}(0)+D \mathcal{L}_{b}(D)\right] \sigma D B_{t} . \tag{8.8}
\end{equation*}
$$

I will show in a moment how to construct $\mathcal{L}_{b}(D)$, and verify that it is the differential-operator function of a valid stationary process. Once that is done, though, we can write this last equation as

$$
D x_{t}=D z_{t}+D w_{t}
$$

and hence

$$
x_{t}=z_{t}+w_{t}
$$

where $z$ is a pure random walk

$$
D z_{t}=\mathcal{L}_{c}(0) \sigma D B_{t}
$$

and $w_{t}$ is stationary in levels,

$$
w_{t}=\mathcal{L}_{b}(D) \sigma D B_{t} .
$$

Now, if $\mathcal{L}_{c}(0)=0$ we have $x_{t}=w_{t}$ stationary. If $\mathcal{L}_{c}(0) \neq 0$, then we isolate the nonstationarity to a pure random walk component $z_{t}$ and put all the dynamics in a level-stationary stochastically detrended component $w_{t}$.

Now, how do we construct $\mathcal{L}_{b}(D)$ given $\mathcal{L}_{c}(D)$ ? The operator derivation is nearly trivial. By construction,

$$
\mathcal{L}_{c}(D)=\mathcal{L}_{c}(0)+D\left[\frac{\mathcal{L}_{c}(D)-\mathcal{L}_{c}(0)}{D}\right]
$$

Therefore, we just define

$$
\begin{equation*}
\mathcal{L}_{b}(D)=\frac{\mathcal{L}_{c}(D)-\mathcal{L}_{c}(0)}{D} \tag{8.9}
\end{equation*}
$$

Adding and subtracting $\mathcal{L}_{c}(0)$ and multiplying and dividing by $D$ looks artificial, but the key is that $\left(\mathcal{L}_{c}(D)-\mathcal{L}_{c}(0)\right) / D$ is a valid levelstationary process, since $-\mathcal{L}_{c}(0)$ removes the pole at 0 . Equivalently, it produces a new difference operator function $\mathcal{L}_{c^{*}}(D)=\mathcal{L}_{c}(D)-\mathcal{L}_{c}(0)$, which does have the property $\mathcal{L}_{c^{*}}(0)=0$ and hence $\mathcal{L}_{b}(D)=\mathcal{L}_{c^{*}}(D) / D$ is a proper level-stationary process.

We can construct the terms $b(\tau)$ by integrating $c(\tau)$

$$
b(\tau)=-\int_{s=\tau}^{\infty} c(s) d s
$$

This is the obvious inverse to our construction of terms $c(\tau)$ by differentiating $b(\tau)$ in (5.7), and it mirrors the discrete-time formula (8.4). To see where this expression comes from, let us write

$$
\mathcal{L}_{c}(D)=c(0)+\int_{\tau=0}^{\infty} e^{-D \tau} c(\tau) d \tau
$$

Then,

$$
\begin{align*}
\mathcal{L}_{b}(D) & =\frac{\mathcal{L}_{c}(D)-\mathcal{L}_{c}(0)}{D} \\
& =\frac{c(0)+\int_{s=0}^{\infty} e^{-D s} c(s) d s-\left[c(0)+\int_{s=0}^{\infty} c(s) d s\right]}{D} \\
& =\frac{\int_{s=0}^{\infty}\left[e^{-D s}-1\right] c(s) d s}{D}=-\int_{s=0}^{\infty}\left[\int_{\tau=0}^{s} e^{-D \tau} d \tau\right] c(s) d s \\
& =-\int_{\tau=0}^{\infty} e^{-D \tau}\left[\int_{s=\tau}^{\infty} c(s) d s\right] d \tau \tag{8.10}
\end{align*}
$$

In sum, as we used the identity (5.7)

$$
\mathcal{L}_{c}(D)=D \mathcal{L}_{b}(D)=b(0)+\mathcal{L}_{b^{\prime}}(D)
$$

to construct $\mathcal{L}_{c}(D)$ from a given $\mathcal{L}_{b}(D)$, here we use the identity

$$
\mathcal{L}_{b}(D)=\frac{\mathcal{L}_{c}(D)-\mathcal{L}_{c}(0)}{D}=\mathcal{L}_{\int_{c}}(D)
$$

where I use the notation $\mathcal{L}_{\int c}(D)$ to refer to the transform in (8.10)

The random walk component $z_{t}$ has the property

$$
z_{t}=\lim _{T \rightarrow \infty} E_{t}\left(x_{t+T}\right),
$$

and this property can be used to derive the decomposition. Doing so as a case of the Hansen-Sargent prediction formula (7.4) with $r=0$ provides more intuition for the operator definition (8.9). We write

$$
z_{t}=x_{t}+E_{t}\left(\int_{s=0}^{\infty} d x_{t+s}\right)=x_{t}+\left(\frac{\mathcal{L}_{c}(D)-\mathcal{L}_{c}(0)}{-D}\right) \sigma D B_{t}
$$

Therefore,

$$
\begin{aligned}
D z_{t} & =D x_{t}-\left[\mathcal{L}_{c}(D)-\mathcal{L}_{c}(0)\right] \sigma D B_{t} \\
& =\left\{\mathcal{L}_{c}(D)-\left[\mathcal{L}_{c}(D)-\mathcal{L}_{c}(0)\right]\right\} \sigma D B_{t} \\
& =\mathcal{L}_{c}(0) \sigma D B_{t} .
\end{aligned}
$$

Defining $w_{t}=x_{t}-z_{t}$ we recover the decomposition.

### 8.4 Cointegration

Cointegration is really a vector generalization of the differences-tolevels issues. Here, I translate the basic representation theorems, such as Engle and Granger (1987). Let $x_{t}$ now denote a vector of $N$ time series, and $d B_{t}$ a vector of $N$ independent standard Brownian motions. The moving average representations such as

$$
\begin{aligned}
x_{t} & =\int_{\tau=0}^{\infty} b(\tau) V d B_{t-\tau} \\
d x_{t} & =\left(\int_{\tau=0}^{\infty} c(\tau) V d B_{t-\tau}\right) d t+V d B_{t}
\end{aligned}
$$

or in operator notation

$$
\begin{align*}
x_{t} & =\mathcal{L}_{b}(D) V D B_{t} \\
D x_{t} & =\mathcal{L}_{c}(D) V D B_{t} \tag{8.11}
\end{align*}
$$

represent matrix operations with $\mathcal{L}(D)$ and $V$ denoting $N \times N$ matrices.

For a scalar, the level/difference issue is whether $\mathcal{L}_{c}(0)=0$ or not. For a vector, we have the additional possibility that $\mathcal{L}_{c}(0)$ may be nonzero but not full rank. In that case, the elements of $x_{t}$ are cointegrated. To keep the discussion simple I will mostly consider the case $N=2$, and $x_{t}=\left[\begin{array}{ll}x_{1 t} & x_{2 t}\end{array}\right]^{\prime}$.

Cointegrated series have a common trend representation: if $\mathcal{L}_{c}(0)$ has rank 1, then we can write

$$
\begin{equation*}
\mathcal{L}_{c}(0)=\delta \beta^{\prime} \tag{8.12}
\end{equation*}
$$

where $\delta$ and $\beta$ are $2 \times 1$ vectors. Building on the Beveridge-Nelson decomposition (8.8), define a scalar random walk component $z_{t}$,

$$
D z_{t}=\beta^{\prime} V D B_{t},
$$

and we can write the two components of $x_{t}$ as a sum of this shared random walk component and stationary components,

$$
x_{t}=\delta z_{t}+w_{t},
$$

i.e.

$$
\left[\begin{array}{l}
x_{1 t}  \tag{8.13}\\
x_{2 t}
\end{array}\right]=\left[\begin{array}{l}
\delta_{1} \\
\delta_{2}
\end{array}\right] z_{t}+\left[\begin{array}{l}
w_{1 t} \\
w_{2 t}
\end{array}\right] .
$$

To derive this representation in operator notation, we proceed exactly as we did in deriving the Beveridge-Nelson decomposition, interpreting the symbols as matrices, and introducing $\mathcal{L}_{c}(0)=\delta \beta^{\prime}$ at the right time. From (8.11),

$$
\begin{aligned}
D x_{t} & =\mathcal{L}_{c}(0) V D B_{t}+D\left[\frac{\mathcal{L}_{c}(D)-\mathcal{L}_{c}(0)}{D}\right] V D B_{t} \\
D x_{t} & =\delta \beta^{\prime} V D B_{t}+D \mathcal{L}_{b}(D) V D B_{t} \\
D x_{t} & =\delta D z_{t}+D \mathcal{L}_{b}(D) V D B_{t}
\end{aligned}
$$

or, in levels

$$
x_{t}=\delta z_{t}+\mathcal{L}_{b}(D) D B_{t} .
$$

The cointegrating vector gives the linear combination of $x_{t}$ that is stationary in levels, though the individual components of $x_{t}$ are not.

Since $\mathcal{L}_{c}(0)=\delta \beta^{\prime}$ is singular by assumption, we can find $\alpha$ such that $\alpha^{\prime} \delta=0$, and $\alpha^{\prime} \mathcal{L}_{c}(0)=0$, and we can find a $\phi$ such that $\beta^{\prime} \phi=0$ and $\mathcal{L}_{c}(0) \phi=0$. Then, from (8.13),

$$
\alpha^{\prime} x_{t}=\alpha^{\prime} w_{t}
$$

i.e., $\alpha^{\prime} x_{t}$ is stationary. To get there directly, we can just write

$$
\begin{aligned}
D x_{t} & =\delta \beta^{\prime} V D B_{t}+D \mathcal{L}_{b}(D) V D B_{t} \\
\alpha^{\prime} D x_{t} & =\left(\alpha^{\prime} \delta\right) \beta^{\prime} V D B_{t}+\alpha^{\prime} D \mathcal{L}_{b}(D) V D B_{t} \\
\alpha^{\prime} D x_{t} & =\alpha^{\prime} D \mathcal{L}_{b}(D) V D B_{t} \\
\alpha^{\prime} x_{t} & =\alpha^{\prime} \mathcal{L}_{b}(D) V D B_{t} .
\end{aligned}
$$

The error-correction representation is also very useful. For example, forecasting regressions of stock returns and dividend growth on dividend yields, or consumption and income growth on the consumption/income ratio are good examples of useful error-correction representations.

A useful form of the error correction representation is

$$
d x_{t}=-\phi\left(\alpha^{\prime} x_{t}\right) d t+\left[\int_{\tau=0}^{\infty} e^{-D \tau} d(\tau) V d B_{t-\tau}\right] d t+V d B_{t} .
$$

Here $\phi$ is a $2 \times 1$ vector which shows how the lagged cointegrating vector affects changes in each of the two differences. I allow extra stationary components in the middle term, expressed as moving averages or "serially correlated errors" in discrete-time parlance. We could also follow the discrete-time VAR literature and write these as lags of $d x_{t}$ which help to forecast $d x_{t}$. The cointegrated $\operatorname{AR}(1)$ is a useful special case, in which the middle term is missing. Finally, we have the shock term.

In operator notation, this error correction representation is

$$
\begin{equation*}
D x_{t}=-\phi\left(\alpha^{\prime} x_{t}\right)+\mathcal{L}_{d}(D) V D B_{t} . \tag{8.14}
\end{equation*}
$$

The cointegrated $\operatorname{AR}(1)$ is the special case $\mathcal{L}_{d}(D)=I$.
Applying $\alpha^{\prime}$ to both sides, the cointegrating vector itself follows

$$
D\left(\alpha^{\prime} x_{t}\right)=-\left(\alpha^{\prime} \phi\right)\left(\alpha^{\prime} x_{t}\right)+\alpha^{\prime} \mathcal{L}_{b}(D) V D B_{t} .
$$

Note $\alpha^{\prime} \phi$ is a scalar (in general a full-rank matrix). Therefore, the scalar process $\alpha^{\prime} x_{t}$ is stationary in levels, and has the moving-average representation

$$
\begin{equation*}
\left(\alpha^{\prime} x_{t}\right)=\frac{1}{D+\alpha^{\prime} \phi} \alpha^{\prime} \mathcal{L}_{b}(D) V D B_{t} . \tag{8.15}
\end{equation*}
$$

For the cointegrated $\operatorname{AR}(1)$ special case, this is just a scalar $\operatorname{AR}(1)$.
Now, let us connect the error correction representation to the above moving-average characterizations. We can substitute (8.15) back in to (8.14) to obtain the moving average differential operator $\mathcal{L}_{c}(D)$,

$$
D x_{t}=\left(I-\frac{\phi \alpha^{\prime}}{D+\alpha^{\prime} \phi}\right) \mathcal{L}_{b}(D) V D B_{t}=\mathcal{L}_{c}(D) V d B_{t} .
$$

Since $\mathcal{L}_{b}(0)=I$, this moving average operator obeys

$$
\mathcal{L}_{c}(0)=I-\phi\left(\alpha^{\prime} \phi\right)^{-1} \alpha^{\prime} .
$$

This is a rank 1 idempotent matrix, confirming the condition (8.12) that defines cointegration, and generalizing the usual special cases $\mathcal{L}_{c}(0)=0$ (stationary in levels) and $\mathcal{L}_{c}(0)=I$ (stationary in differences.) Furthermore,

$$
\begin{aligned}
\alpha^{\prime} \mathcal{L}_{c}(0) & =\alpha^{\prime}\left(I-\phi\left(\alpha^{\prime} \phi\right)^{-1} \alpha^{\prime}\right)=0 \\
\mathcal{L}_{c}(0) \phi & =\left(I-\phi\left(\alpha^{\prime} \phi\right)^{-1} \alpha^{\prime}\right) \phi=0
\end{aligned}
$$

so the cointegrating vector $\alpha$ defined by the error-correction mechanism is the same as that which results from the condition $\alpha^{\prime} \mathcal{L}_{c}(0)=0$.

## 9

## Summary

- Basic operators.

$$
\begin{aligned}
L^{\tau} x_{t} & =x_{t-\tau} \\
D x_{t} & =\frac{1}{d t} d x_{t} \\
L & =e^{-D} ; D=-\log (L)
\end{aligned}
$$

- Lag operators, differential operators, Laplace transforms, moving average representation.

$$
\begin{aligned}
x_{t} & =\sum_{j=0}^{\infty} b_{j} \varepsilon_{t-j}=\mathcal{Z}_{b}(L) \varepsilon_{t} ; \mathcal{Z}_{b}(L)=\sum_{j=0}^{\infty} b_{j} L^{j} ; b_{0}=1 \\
x_{t} & =\int_{\tau=0}^{\infty} b(\tau) \sigma d B_{t-\tau}=\mathcal{L}_{b}(D) \sigma D B_{t} ; \\
\mathcal{L}_{b}(D) & =\int_{\tau=0}^{\infty} e^{-D \tau} b(\tau) d \tau ; b(0)=1 .
\end{aligned}
$$

- The AR(1).

$$
\begin{aligned}
x_{t+1} & =\rho x_{t}+\varepsilon_{t} \Rightarrow x_{t}=\sum_{j=0}^{\infty} \rho^{j} \varepsilon_{t-j} \\
d x_{t} & =-\phi x_{t} d t+\sigma d B_{t} \Rightarrow x_{t}=\int_{\tau=0}^{\infty} e^{-\phi \tau} d B_{t-\tau} .
\end{aligned}
$$

- Operators and inverting the $\operatorname{AR}(1)$.

$$
\begin{aligned}
(1-\rho L) x_{t} & =\varepsilon_{t} \Rightarrow \\
x_{t} & =\frac{1}{1-\rho L} \varepsilon_{t}=\left(\sum_{j=0}^{\infty} \rho^{j} L^{j}\right) \varepsilon_{t} \\
(D+\phi) x_{t} & =D B_{t} \Rightarrow \\
x_{t} & =\frac{1}{D+\phi} D B_{t}=\left(\int_{\tau=0}^{\infty} e^{-\phi \tau} e^{-D \tau} d \tau\right) \frac{1}{d t} d B_{t} .
\end{aligned}
$$

- Forward-looking operators.

$$
\begin{aligned}
\|\rho\|>1 \Rightarrow\left(\frac{1}{1-\rho L}\right) \varepsilon_{t} & =-\left(\frac{\rho^{-1} L^{-1}}{1-\rho^{-1} L^{-1}}\right) \varepsilon_{t} \\
& =-\left(\sum_{j=1}^{\infty} \rho^{-j} L^{-j}\right) \varepsilon_{t} \\
& =-\sum_{j=1}^{\infty} \rho^{-j} \varepsilon_{t+j} \\
\|\phi\|>0 \Rightarrow \frac{1}{D-\phi} \sigma D B_{t} & =-\left(\int_{\tau=0}^{\infty} e^{-\phi \tau} e^{+D \tau} d \tau\right) \sigma D B_{t} \\
& =-\int_{\tau=0}^{\infty} e^{-\phi \tau} \sigma d B_{t+\tau} .
\end{aligned}
$$

- Moving averages and moments.

$$
\begin{aligned}
\sigma^{2}\left(x_{t}\right) & =\int_{\tau=0}^{\infty} b^{2}(\tau) \sigma^{2} d \tau, \\
\operatorname{cov}\left(x_{t}, x_{t-k}\right) & =\int_{\tau=0}^{\infty} b(\tau) b(t+k) \sigma^{2} d \tau
\end{aligned}
$$

$$
\begin{aligned}
S_{x}(\omega) & =\int_{\tau=-\infty}^{\infty} \operatorname{cov}\left(x_{t} x_{t-\tau}\right) d \tau=\mathcal{L}_{b}(i \omega) \mathcal{L}_{b}(-i \omega) \sigma^{2} \\
\operatorname{cov}\left(x_{t}, x_{t-k}\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega k} S_{x}(\omega) d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega k} \mathcal{L}_{b}(i \omega) \mathcal{L}_{b}(-i \omega) \sigma^{2} d \omega .
\end{aligned}
$$

- Polynomial models and autoregressive representations.

$$
x_{t}=\frac{\left(D+\theta_{1}\right)\left(D+\theta_{2}\right) \cdots}{\left(D+\lambda_{1}\right)\left(D+\lambda_{2}\right)\left(D+\lambda_{3}\right) \cdots} \sigma D B_{t} .
$$

Moving average in partial fractions form

$$
x_{t}=\left[\frac{A}{D+\lambda_{1}}+\frac{B}{D+\lambda_{2}}+\frac{C}{D+\lambda_{3}}+\cdots\right] \sigma D B_{t} .
$$

Autoregressive form

$$
\left[D+A+\frac{B}{D+\theta_{1}}+\frac{C}{D+\theta_{2}}+\cdots\right] x_{t}=\sigma D B_{t} .
$$

- "AR(2)."

$$
x_{t}=\frac{\left(D+\theta_{1}\right)}{\left(D+\lambda_{1}\right)\left(D+\lambda_{2}\right)} \sigma D B_{t} .
$$

Moving average

$$
\begin{aligned}
x_{t} & =\frac{1}{\lambda_{1}-\lambda_{2}}\left(\frac{\lambda_{1}-\theta_{1}}{D+\lambda_{1}}-\frac{\lambda_{2}-\theta_{1}}{D+\lambda_{2}}\right) \sigma D B_{t} \\
& =\frac{\lambda_{1}-\theta_{1}}{\lambda_{1}-\lambda_{2}} \int_{\tau=0}^{\infty} e^{-\lambda_{1} \tau} \sigma d B_{t-\tau}+\frac{\lambda_{2}-\theta_{1}}{\lambda_{2}-\lambda_{1}} \int_{\tau=0}^{\infty} e^{-\lambda_{2} \tau} \sigma d B_{t-\tau} .
\end{aligned}
$$

Autoregression

$$
\begin{aligned}
{[D} & \left.+\left(\lambda_{1}+\lambda_{2}-\theta_{1}\right)+\frac{\left(\theta_{1}-\lambda_{1}\right)\left(\theta_{1}-\lambda_{2}\right)}{D+\theta_{1}}\right] x_{t}=\sigma D B_{t} \\
d x_{t}= & -\left[\left(\lambda_{1}+\lambda_{2}\right)-\theta_{1}\right] x_{t} d t \\
& -\left(\left(\theta_{1}-\lambda_{1}\right)\left(\theta_{1}-\lambda_{2}\right) \int_{\tau=0}^{\infty} e^{-\theta_{1} \tau} x_{t-\tau} d \tau\right) d t+\sigma D B_{t} .
\end{aligned}
$$

- Moving average representations for differences.

$$
(1-L) x_{t}=\mathcal{Z}_{c}(L) \varepsilon_{t}=(1-L) \mathcal{Z}_{b}(L) \varepsilon_{t}=\left[1+\mathcal{Z}_{\Delta b}(L)\right] \varepsilon_{t}
$$

The representation:

$$
\begin{aligned}
d x_{t} & =\left(\int_{\tau=0}^{\infty} c(\tau) \sigma d B_{t-\tau}\right) d t+\sigma d B_{t} \\
D x_{t} & =\mathcal{L}_{c}(D) \sigma D B_{t} .
\end{aligned}
$$

Finding $\mathcal{L}_{c}(D)$ from $\mathcal{L}_{b}(D)$ :

$$
\begin{aligned}
\mathcal{L}_{c}(D) & =D \mathcal{L}_{d}(D)=1+\mathcal{L}_{b^{\prime}}(D) \\
d x_{t} & =\left(\int_{\tau=0}^{\infty} b^{\prime}(\tau) \sigma d B_{t-\tau}\right) d t+\sigma d B_{t} .
\end{aligned}
$$

The $\operatorname{AR}(1)$ :

$$
\begin{aligned}
D x_{t} & =\frac{D}{D+\phi} \sigma D B_{t}=\left(1-\frac{\phi}{D+\phi}\right) \sigma D B_{t} \\
d x_{t} & =-\phi\left(\int_{\tau=0}^{\infty} e^{-\phi \tau} \sigma d B_{t-\tau}\right) d t+\sigma d B_{t} .
\end{aligned}
$$

Polynomials:

$$
\mathcal{L}_{c}(D)=1-\frac{\lambda_{1} A}{D+\lambda_{1}}-\frac{\lambda_{2} B}{D+\lambda_{2}}-\cdots
$$

- Impulse-response functions and multipliers.

$$
\begin{aligned}
\left(E_{t}-E_{t-1}\right) x_{t+j} & =b_{j} \varepsilon_{t} . \\
" \lim _{\Delta \rightarrow 0}\left(E_{t+\Delta}-E_{t}\right) " \quad x_{t+\tau} & =b(\tau) \sigma d B_{t}
\end{aligned}
$$

meaning, if $y_{t}=E_{t} x_{t+\tau}$, then

$$
d y_{t}=() d t+b(\tau) \sigma d B_{t} .
$$

Impact multiplier:

$$
\begin{aligned}
b_{0} & =\mathcal{Z}_{b}(0)=1 \\
b(0) & =\lim _{D \rightarrow \infty}\left[D \mathcal{L}_{b}(D)\right]=1 \\
c(0) & =\lim _{D \rightarrow \infty}\left[\mathcal{L}_{c}(D)\right]=1 .
\end{aligned}
$$

Final multiplier:

$$
\begin{aligned}
b_{\infty} & =\mathcal{Z}_{b}(\infty) \\
b(\infty) & =\lim _{D \rightarrow 0}\left[D \mathcal{L}_{b}(D)\right] .
\end{aligned}
$$

These should be zero for a stationary $x_{t}$.
Cumulative response of $\int_{\tau=0}^{\infty} x_{t+\tau} d \tau$ :

$$
\begin{aligned}
\mathcal{Z}_{b}(1) & =\sum_{j=0}^{\infty} b_{j} \\
\mathcal{L}_{b}(0) & =\int_{\tau=0}^{\infty} b(\tau) d \tau .
\end{aligned}
$$

Cumulative response of $x_{t}=\int_{\tau=0}^{\infty} d x_{t+\tau}$ :

$$
\begin{aligned}
& \mathcal{Z}_{c}(1)=\sum_{j=0}^{\infty} c_{j} \\
& \mathcal{L}_{c}(0)=1+\int_{\tau=0}^{\infty} c(\tau) d \tau
\end{aligned}
$$

These should be zero for a stationary $x_{t}$.

- Hansen-Sargent prediction formulas.

$$
\begin{aligned}
& E_{t} \sum_{j=0}^{\infty} \beta^{j} x_{t+j}=\left(\frac{L \mathcal{Z}_{b}(L)-\beta \mathcal{Z}_{b}(\beta)}{L-\beta}\right) \varepsilon_{t} \\
& E_{t} \sum_{j=1}^{\infty} \beta^{j-1} x_{t+j}=\left(\frac{\mathcal{Z}_{b}(L)-\mathcal{Z}_{b}(\beta)}{L-\beta}\right) \varepsilon_{t} \\
& \left(E_{t}-E_{t-1}\right) \sum_{j=0}^{\infty} \beta^{j} x_{t+j}=\mathcal{Z}_{b}(\beta) \varepsilon_{t} . \\
& E_{t} \int_{\tau=0}^{\infty} e^{-r \tau} x_{t+\tau} d \tau=\left(\frac{\mathcal{L}_{b}(D)-\mathcal{L}_{b}(r)}{r-D}\right) \sigma D B_{t} . \\
& " \lim _{\Delta \rightarrow 0}\left(E_{t+\Delta}-E_{t}\right) " \int_{\tau=0}^{\infty} e^{-r \tau} x_{t+\tau} d \tau=\mathcal{L}_{b}(r) \sigma d B_{t} .
\end{aligned}
$$

- Difference-stationary processes.

$$
\begin{aligned}
D x_{t} & =\mathcal{L}_{c}(D) \sigma D B_{t} \\
d x_{t} & =\int_{\tau=0}^{\infty} c(\tau) \sigma d B_{t-\tau}+\sigma d B_{t}
\end{aligned}
$$

Polynomial example. In moving average form:

$$
\begin{aligned}
D x_{t} & =\frac{D+\theta}{D+\lambda} \sigma D B_{t} \\
D x_{t} & =\left(1+\frac{\theta-\lambda}{D+\lambda}\right) \sigma D B_{t} \\
d x_{t} & =(\theta-\lambda)\left(\int_{\tau=0}^{\infty} e^{-\lambda \tau} \sigma d B_{t-\tau}\right) d t+\sigma d B_{t} .
\end{aligned}
$$

In autoregressive form:

$$
\begin{gathered}
\frac{D+\lambda}{D+\theta} D x_{t}=\sigma D B_{t} \\
\left(1+\frac{\lambda-\theta}{D+\theta}\right) D x_{t}=\sigma D B_{t} \\
d x_{t}=-(\lambda-\theta)\left(\int_{\tau=0}^{\infty} e^{-\theta \tau} d x_{t-\tau}\right) d t+\sigma d B_{t} .
\end{gathered}
$$

- Transforming from differences to levels, Beveridge-Nelson decompositions.

$$
\mathcal{Z}_{c}(L)=\mathcal{Z}_{c}(1)+(1-L) \mathcal{Z}_{b}(L) ; b_{j}=-\sum_{k=j+1}^{\infty} c_{k}
$$

implies

$$
\begin{aligned}
x_{t} & =z_{t}+w_{t} ; \\
(1-L) z_{t} & =\mathcal{Z}_{c}(1) \varepsilon_{t} ; \quad w_{t}=\mathcal{Z}_{b}(L) \varepsilon_{t} .
\end{aligned}
$$

In continuous time,

$$
D x_{t}=\mathcal{L}_{c}(D) \sigma D B_{t}=\left[\mathcal{L}_{c}(0)+D \mathcal{L}_{b}(D)\right] \sigma D B_{t}
$$

implies

$$
\begin{aligned}
x_{t} & =z_{t}+w_{t} \\
D z_{t} & =\mathcal{L}_{c}(0) \sigma D B_{t} ; w_{t}=\mathcal{L}_{b}(D) .
\end{aligned}
$$

Constructing $\mathcal{L}_{b}(D)$ :

$$
\begin{aligned}
\mathcal{L}_{b}(D) & =\frac{\mathcal{L}_{c}(D)-\mathcal{L}_{c}(0)}{D} \\
b(\tau) & =-\int_{s=\tau}^{\infty} c(s) d s
\end{aligned}
$$

$z_{t}$ has the "trend" property

$$
z_{t}=\lim _{T \rightarrow \infty} E_{t}\left(x_{t+T}\right)=x_{t}+E_{t} \int_{\tau=0}^{\infty} d x_{t+\tau} .
$$

- Cointegration. Given the moving average representation,

$$
D x_{t}=\mathcal{L}_{c}(D) V D B_{t}
$$

$x_{t}$ are cointegrated if $\mathcal{L}_{c}(0)$ has rank less than $N$. Then

$$
\mathcal{L}_{c}(0)=\delta \beta^{\prime}
$$

and there exist $\alpha, \phi$ :

$$
\alpha^{\prime} \delta=\alpha^{\prime} \mathcal{L}_{c}(0)=0 ; \quad \beta^{\prime} \phi=\mathcal{L}_{c}(0) \phi=0 .
$$

The common trend representation

$$
\begin{aligned}
D z_{t} & =\beta^{\prime} V D B_{t} \\
x_{t} & =\delta z_{t}+w_{t} .
\end{aligned}
$$

The cointegrating vector $\alpha^{\prime} x_{t}=\alpha^{\prime} w_{t}$ is stationary.
The error correction representation is

$$
D x_{t}=-\phi\left(\alpha^{\prime} x_{t}\right)+\mathcal{L}_{d}(D) V D B_{t} .
$$

## Acknowledgments

I thank George Constantinides for helpful comments. I acknowledge research support from CRSP.

## References

Beveridge, S. and C. R. Nelson (1981), 'A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the 'business cycle". Journal of Monetary Economics 7, 151-174. http://dx.doi. org/10.1016/0304-3932(81)90040-4.
Cochrane, J. H. (2005a), Asset Pricing: Revised Edition. Princeton: Princeton University Press. http://press.princeton.edu/titles/7836. html.
Cochrane, J. H. (2005b), 'Time series for macroeconomics and finance'. Manuscript, University of Chicago. http://faculty.chicagobooth.edu/ john.cochrane/research/papers/time_series_book.pdf.
Cochrane, J. H. (2012), 'A continous-time asset pricing model with habits and durability'. Manuscript, University of Chicago. http://faculty.chicagobooth.edu/john.cochrane/research/papers/ linquad_asset_price_example.pdf.
Engle, R. F. and C. W. J. Granger (1987), 'Co-integration and error correction: Representation, estimation, and testing'. Econometrica 55, 251-276.

Hansen, L. P. and T. J. Sargent (1980), 'Formulating and estimating dynamic linear rational-expectations models'. Journal of Economic Dynamics and Control 2, 7-46.
Hansen, L. P. and T. J. Sargent (1981), 'A note on Wiener-Kolmogorov prediction formulas for rational expectations models'. Economics Letters 8, 255-260.
Hansen, L. P. and T. J. Sargent (1991), 'Prediction formulas for continuous-time linear rational expectations models'. Chapter 8 of Rational Expectations Econometrics. https://files.nyu.edu/ts43/ public/books/TOMchpt.8.pdf.
Heaton, J. (1993), 'The interaction between time-nonseparable preferences and time aggregation'. Econometrica 61, 353-385. http:// www.jstor.org/stable/2951555.

