
Foundations and Trends R© in
Finance
Vol. 6, No. 3 (2011) 165–219
c© 2012 J. H. Cochrane
DOI: 10.1561/0500000037

Continuous-Time Linear Models

By John Cochrane

Contents

1 Introduction 166

2 Linear Models and Lag Operators 167

2.1 Discrete Time Operators 167

2.2 A Note on Linear Processes 168

2.3 Continuous-time Operators 169

2.4 Laplace Transforms 172

3 Moving Average Representation and Moments 175

4 ARMA Models 177

4.1 Discrete Time 177

4.2 Continuous Time 178

4.3 How not to Define ARMA Models 179

5 Differences 182

5.1 Levels to Differences in Discrete Time 182

5.2 Levels to Differences in Continuous Time 183

6 Impulse-response Function 186

6.1 Discrete Time 186

6.2 Continuous Time 187

7 Hansen–Sargent Formulas 191

7.1 Discrete Time 191

7.2 Continuous Time 193

7.3 Derivation 195

8 Integration and Cointegration 199

8.1 Difference-stationary Series 199

8.2 Differences to Levels in Discrete Time;

Beveridge and Nelson 200

8.3 Differences to Levels in Continuous Time 203

8.4 Cointegration 206

9 Summary 210

Acknowledgments 217

References 218

Foundations and Trends R© in
Finance
Vol. 6, No. 3 (2011) 165–219
c© 2012 J. H. Cochrane
DOI: 10.1561/0500000037

Continuous-Time Linear Models

John H. Cochrane

University of Chicago Booth School of Business and NBER.
5807 S. Woodlawn, Chicago, IL 60637, USA,
john.cochrane@chicagobooth.edu

Abstract

I translate familiar concepts of discrete-time time series to contnuous-

time equivalent. I cover lag operators, ARMA models, the relation

between levels and differences, integration and cointegration, and the

Hansen–Sargent prediction formulas.

1

Introduction

Discrete-time linear ARMA processes and lag operator notation are

convenient for lots of calculations. Continuous-time representations

often simplify economic models, and can handle interesting nonlin-

earities as well. But standard treatments of continuous-time processes

typically don’t mention how to adapt the discrete-time linear model

concepts and lag operator methods to continuous time. Here I attempt

that translation.

The point of this monograph is to exposit the techniques, under-

stand the intuition, and to make the translation from familiar discrete-

time ideas. I do not pretend to offer anything new. I also don’t dis-

cuss the technicalities. Hansen and Sargent (1991) is a good reference.

Heaton (1993) describes many of these methods and provides a use-

ful application. I assume basic knowledge of discrete-time time-series

representation methods and continuous-time representations. Cochrane

(2005a,b) cover the necessary background, but any standard reference

covers the same material.

The concluding section collects the important formulas in one place.

166

2

Linear Models and Lag Operators

I start by defining lag operators and the inversion formulas.

2.1 Discrete Time Operators

As a reminder, discrete-time linear models can be written in the unique

moving average or Wold representation

xt =
∞∑
j=0

bjεt−j = Zb(L)εt, (2.1)

where the operator L is defined by

Lεt = εt−1 (2.2)

and

Zb(L) =

∞∑
j=0

bjL
j ; Zb(0) = b0 = 1.

This last condition means that we define the variance of the shocks so

that εt is the innovation in xt.

167

168 Linear Models and Lag Operators

The Wold representation and its error are defined from the autore-

gression

xt = −
∞∑
j=1

ajxt−j + εt. (2.3)

We can write this autoregressive representation in lag-operator form,

Za(L)xt = εt; Za(L) =

∞∑
j=0

ajxt−j ; Za(0) = a0 = 1. (2.4)

We can connect the autoregressive and moving average representa-

tions by inversion,

Za(L) = Zb(L)
−1; Zb(L) = Za(L)

−1.

To construct the inverse Za(L)
−1, given the definition (2.2), we use

a power-series interpretation. For example, suppose we want to invert

the AR(1)

Za(L)xt = (1 − ρL)xt = εt.

To interpret 1/(1 − ρL) – to find a Zb(L) such that Zb(L)Za(L) = I –

we use the expansion

1

(1 − ρL)
=

∞∑
j=0

ρjLj

for ‖ρ‖ < 1. With this interpretation, we can use the lag operator nota-

tion to represent the transformation from AR(1) to MA(∞) represen-

tations and back again,

(1 − ρL)xt = εt ⇐⇒

xt =
1

(1 − ρL)
εt =

 ∞∑

j=0

ρjLj

εt =

∞∑
j=0

ρjεt−j . (2.5)

2.2 A Note on Linear Processes

The fundamental autoregressive representations are linear; the condi-

tional mean Et(xt+j) is a linear function of past xt and the conditional

2.3 Continuous-time Operators 169

variance is constant. The process {xt} may also have a nonlinear repre-

sentation, which allows greater predictability. For example, a random

number generator is fully deterministic, xt = f(xt−1) with no error.

The function f is just so complex that when you run linear regressions

of xt on its past, xt looks unpredictable. A precise notation would

use Et−1(xt) = E(xt|xt−1,xt−2, . . .) to denote prediction using all lin-

ear and nonlinear functions, i.e. conditional expectation, which would

give Et−1(xt) = f(xt−1) = xt in this example. We would use a notation

such as P (xt|xt−1,xt−2, . . .) to denote linear prediction. I will not be so

careful, so I will use Et−1 or E(xt|xt−1,xt−2, . . .) and the word “expec-

tation” to mean prediction given the linear models under consideration.

This clarification is especially important as we go to continuos

time. One may object that a linear model is not “right” if there is

an underlying “better” nonlinear model, say a square root process.

That criticism is incorrect. Even if there is an underlying true, or

better-predicting, nonlinear model, there is nothing wrong with also

studying the processes’ linear predictive representation. Analogously,

just because there may be additional variables yt, zt that help to fore-

cast xt+1, there is nothing wrong with studying conditional (on past xt
alone) moments that ignore this extra information.

The conditioning-down assumption can cause trouble if you assume

agents in a model only see the variables or information set that you

the econometrician choose to model. But one does not have to make

that assumption in order to study linear or otherwise conditioned-down

representations.

2.3 Continuous-time Operators

We usually write continuous-time processes in differential or integral

form. For example, the continuous-time AR(1) can be written in dif-

ferential form,

dxt = −φxtdt + σdBt

or in integral form

xt =

∫ ∞

τ=0
e−φτσdBt−τ ,

170 Linear Models and Lag Operators

where dBt denotes increments to standard Brownian motion. I write the

shock as σdBt to preserve the discrete-time convention that a unit shock

to the error is a unit shock to xt, and the continuous-time convention

that Brownian motion has a unit variance.

This integral form is the obvious analogue to the moving-average

form of the discrete-time representation (2.5). Our job is to think about

and manipulate these kinds of expressions using lag operators.

The lag operator can straightforwardly be extended to real numbers

from integers, i.e.

Lτxt = xt−τ .

Since we write differential expressions, dxt in continuous time, it is

convenient to define the differential operator D, i.e.

Dxt =
1

dt
dxt (2.6)

where dxt is the familiar continuous-time forward-difference operator,

dxt = lim
∆→0

(xt+∆ − xt) . (2.7)

(This is not a limit in the usual ε,δ sense, but I’ll leave that to contin-

uous time math books and continue to abuse notation.)

The D and L operators are related by

e−D = L; D = − log(L). (2.8)

We can see this relationship directly: From (2.6),

D = lim
∆→0

L−∆ − 1

∆
= lim

∆→0

e−∆log(L) − 1

∆

= lim
∆→0

− log(L)e−∆log(L)

1
= − log(L).

Now we are ready to write the obvious general moving average pro-

cesses:

xt =

∫ ∞

τ=0
b(τ)σdBt−τ = Lb(D)σDBt (2.9)

where we define

Lb(D) =

∫ ∞

τ=0
e−Dτ b(τ)dτ ; b(0) = 1.

2.3 Continuous-time Operators 171

Mirroring the convention that b0 = 1 in discrete time, so that shocks εt
translate one-to-one to shocks to xt, I write the continuos time shock

σDBt withDBt standard Brownian motion (variance σ2dt) and impose

the normalization b(0) = 1.

It is useful to verify just how each step of this operation works:

Lb(D)σDBt =

∫ ∞

τ=0
e−Dτ b(τ)dτ

(
1

dt
σdBt

)

=

∫ ∞

τ=0
b(τ)e−DτσdBt =

∫ ∞

τ=0
b(τ)σdBt−τ .

Though it breaks the analogy with discrete time a bit, it is more con-

venient to describe continuous-time lag functions in terms of D rather

than L. We could have written Zb(L) =
∫∞
τ=0L

τ b(τ)dτ. However, we

will have to use the D operator frequently, to describe Dxt and DBt,

so it is simpler to use D everywhere. This change means that familiar

quantities from discrete time such as the impact multiplier Zb(L = 0)

and the cumulative multiplier Zb(L = 1) will have counterparts corre-

sponding to Lb(D = −∞) and Lb(D = 0).

For example, the continuous-time AR(1) process in differential form

reads

dxt + φxt dt = σdBt

(D + φ)xt = σDBt.

We can “invert” this formula by inverting the “lag operator poly-

nomial” as we do in discrete time:

xt =

(
1

D + φ

)
σDBt =

(∫ ∞

τ=0
e−φτe−Dτ dτ

)
σDBt

=

(∫ ∞

τ=0
e−φτDLτ dτ

)
σBt =

∫ ∞

τ=0
e−φτσdBt−τ .

The second equality uses the formula for the integral of an exponential∫∞
τ=0 e

−(D+φ)τdτ to interpret 1/(D + φ) given the definition of D, as

we used the power series expansion
∑∞

j=0ρ
jLj to interpret 1/(1 − ρL)

given the definition of L.

172 Linear Models and Lag Operators

2.4 Laplace Transforms

The justification for these techniques fundamentally comes from

Laplace transforms. While it is not necessary to know a lot about

Laplace transforms to use lag and differential operators, it helps to

have some familiarity with the underlying idea.

If a process {yt} is generated from another {xt} by

yt =

∫ ∞

τ=0
b(τ)xt−τdτ,

the Laplace transform of this operation is defined as

Lb(D) =

∫ ∞

τ=0
e−Dτ b(τ)dτ

where D is a complex number.

Given this definition, the Laplace transform of the lag operation

yt = Ljxt = xt−j is

LLj(D) = e−jD.

This definition directly establishes the relationship between lag and

differential operators (2.8), avoiding my odd-looking limits.

One difference in notation between discrete and continuous-time

notation is necessary. It is common to write the discrete-time lag poly-

nomial as

b(L) =
∞∑
j=0

bjL
j.

It would be nice to write similarly

b(D) =

∫ ∞

τ=0
e−Dτ b(τ)dτ,

but we cannot do that, since b(τ) is already a function. If in discrete

time we had written bj = b(j), then b(L) would not have made any

sense either. For this reason, we will have to use a different letter. In

deference to the Laplace transform I use the notation

Lb(D) ≡
∫ ∞

τ=0
e−Dτ b(τ)dτ.

2.4 Laplace Transforms 173

For clarity I also write discrete-time lag polynomial functions as

Zb(L) =
∞∑
j=0

bjL
j

rather than the more common b(L). (Z stands for z-transform, the

discrete counterpart to Laplace transforms.)

To use a lag polynomial expansion

Zb(L) =
1

1 − ρL
xt =

∞∑
j=0

ρjLjεt−j ,

we must have ‖ρ‖ < 1. In general, the poles L : Zb(L) =∞ and the roots

L : Za(L) = Zb(L)
−1 = 0 must lie outside the unit circle. The domain

of Zb(L) is ‖L‖ < ‖ρ‖−1; for which ‖L‖ < 1 will suffice.

When ρ > 1, or if the poles of Zb(L) are inside the unit circle, we

solve in the opposite direction:

‖ρ‖ > 1 =⇒ 1

1 − ρL
εt = − ρ−1L−1

1 − ρ−1L−1
εt = −

 ∞∑

j=1

ρ−jL−j

εt

= −
∞∑
j=1

ρ−jεt+j .

In the corresponding general case, the domain of Zb(L) must be L

outside the unit circle.

Similarly, to interpret

Lb(D)DBt =
1

φ + D
σDBt =

(∫ ∞

τ=0
e−φτe−Dτ dτ

)
σDBt

=

∫ ∞

τ=0
e−φτσdBt−τ

we must have ‖φ‖ > 0, and the domain Re(D) > 0 so that ‖e−D‖ < 1.

More generally, the poles Lb(D) must lie where Re(D) < 0, i.e. where

L = e−D is outside the unit circle.

174 Linear Models and Lag Operators

In the other circumstance, we expand forward, i.e.

Lb(D)σDBt =
1

φ − D
σdBt =

(∫ ∞

τ=0
e−φτ eDτ dτ

)
σDBt

=

∫ ∞

τ=0
e−φτσdBt+τ ,

and use the domain Re(D) < 0 so that ‖eD‖ < 1. More generally, in this

case the poles of Lb(D) must lie where Re(D) > 0, i.e. where L = e−D

is inside the unit circle. (Here I found it clearer to keep φ > 0 and

introduce the negative sign directly.)

Sometimes operators Lb(D) will have poles at both positive and

negative values of Re(D). Then, as in discrete time, we solve “unstable”

roots forward and stable roots backward, and obtain an integral that

runs over both past and future dBt.

Lag operators (Laplace transforms) commute, so we can simplify

expressions by taking them in any order that is convenient,

La(D)Lb(D) = Lb(D)La(D),

Za(L)Zb(L) = Zb(L)Za(L).

This is one of the great simplifications allowed by operator representa-

tions. More generally, lots of the hard integrals one runs into while

manipulating lag operators are special cases of well-known Laplace

transform tricks, and looking up the latter can save a lot of time.

3

Moving Average Representation and Moments

The moving average representation

xt =

∞∑
j=0

bjεt−j = Zb(L)εt

is also a basis for all the second-moment statistical properties of the

series. The variance is

σ2(xt) =

 ∞∑

j=0

b2j

σ2

ε ,

the covariance is

cov(xt,xt−k) =

 ∞∑

j=0

bjbj+k

σ2

ε ,

and the spectral density is

Sx(ω) =
∞∑

j=−∞
e−iωjcov(xt,xt−j) = Zb(e

iω)Zb(e
−iω)σ2

ε .

175

176 Moving Average Representation and Moments

The inversion formula

cov(xt,xt−k) =
1

2π

∫ π

−π
eiωkSx(ω)dω =

σ2
ε

2π

∫ π

−π
eiωkZb(e

iω)Zb(e
−iω)dω

gives us a direct connection between the function Zb(e
iω) and the sec-

ond moments of the series. The variance formula quickly shows you why

square-summable lag coefficients,
∑∞

j=0 b
2
j < ∞ are a standard technical

condition on the moving-average representation.

The continuous-time moving-average representation

xt =

∫ ∞

τ=0
b(τ)σdBt−τ = Lb(D)σDBt

is also the basis for standard moment calculations,

σ2(xt) =

(∫ ∞

τ=0
b2(τ)dτ

)
σ2,

cov(xt,xt−k) =

(∫ ∞

τ=0
b(τ)b(τ + k)dτ

)
σ2

Sx(ω) = Lb(iω)Lb(−iω)σ2,

and the inversion formula

cov(xt,xt−k) =
1

2π

∫ ∞

−∞
eiωkSx(ω)dω =

σ2

2π

∫ ∞

−∞
eiωkLb(iω)Lb(−iω)dω.

The variance formula shows we we impose
∫∞
τ=0 b

2(τ)dτ <∞.

For example, the AR(1) gives

xt =

∫ ∞

τ=0
e−φτσdBt−τ =

1

φ + D
σDBt

σ2(x) = σ2

∫ ∞

τ=0
e−2φτdτ =

σ2

2φ

cov(xt,xt−k) = σ2

∫ ∞

τ=0
e−φτe−φ(t+k)dτ =

σ2

2φ
e−φk

Sx(ω) = Lb(iω)Lb(−iω) =
σ

φ + iω

σ

φ − iω
=

σ2

φ2 + ω2
.

4

ARMA Models

In discrete time, ARMA models provide a tractable class that general-

izes the AR(1) and captures interesting dynamics. Here, I describe the

counterpart to those models in continuous time.

4.1 Discrete Time

We can write ARMA models in lag-polynomial notation

(1 − λ1L)(1 − λ2L) . . . xt = (1 + θ1L)(1 + θ2L) . . . εt. (4.1)

We can express these processes in autoregressive form

(1 − λ1L)(1 − λ2L) . . .

(1 + θ1L)(1 + θ2L) . . .
xt = εt

or moving average form

xt =
(1 + θ1L)(1 + θ2L) . . .

(1 − λ1L)(1 − λ2L) . . .
εt

To calculate and interpret the denominator polynomials, it is useful

to use partial fraction decompositions,

1

(1 − λ1L)(1 − λ2L) · · · =
A

1 − λ1L
+

B

1 − λ2L
+ · · ·

177

178 ARMA Models

For example, the AR(2) is equivalent in this way to the sum of two

AR(1),

xt =
1

(1 − λ1L)(1 − λ2L)
εt =

(
λ1

λ1−λ2

1 − λ1L
+

λ2
λ2−λ1

1 − λ2L

)
εt (4.2)

=
λ1

λ1 − λ2

∞∑
j=0

λj
1εt−j +

λ2

λ2 − λ1

∞∑
j=0

λj
2εt−j . (4.3)

4.2 Continuous Time

The continuous-time analogue to lag-operator polynomial models are

differential-operator polynomial models, of the form

xt =
(D + θ1)(D + θ2) · · ·

(D + λ1)(D + λ2)(D + λ3) · · ·σDBt (4.4)

Unlike the discrete-time case, the order of the denominator must always

be one greater than the order of the numerator, for reasons I discuss

below.

The partial-fractions decomposition is useful to understand the

moving-average form of (4.4). For example, the next-simplest model

after the AR(1) is

xt =
(D + θ1)

(D + λ1)(D + λ2)
σDBt

=
1

λ1 − λ2

(
λ1 − θ1
D + λ1

− λ2 − θ1
D + λ2

)
σDBt

=
λ1 − θ1
λ1 − λ2

∫ ∞

τ=0
e−λ1τσdBt−τ +

λ2 − θ1
λ2 − λ1

∫ ∞

τ=0
e−λ2τσdBt−τ . (4.5)

This formula is the analogue of the AR(2) expressed as the sum of two

AR(1) in (4.2). More generally, we can express (4.4) as

xt =

[
A

(D + λ1)
+

B

(D + λ2)
+

C

(D + λ3)
+ · · ·

]
σDBt (4.6)

and understand the general process (4.4) as a sum of many AR(1)s.

The normalization b(0) = 1 implies

A + B + C + · · · = 1,

which you can verify in (4.5).

4.3 How not to Define ARMA Models 179

To understand the autoregressive representation of this polynomial

operator,

(D + λ1)(D + λ2)(D + λ3) · · ·
(D + θ1)(D + θ2) · · · xt = σDBt (4.7)

it is useful to reexpress the differential-operator polynomial in a differ-

ent way. For example, we can write the second-order model

(D + λ1)(D + λ2)

(D + θ1)
xt = σDBt (4.8)

in the form[
D + (λ1 + λ2 − θ1) +

(θ1 − λ1)(θ1 − λ2)

D + θ1

]
xt = σDBt

or, writing it out,

dxt = −[(λ1 + λ2) − θ1]xt dt

−
(
(θ1 − λ1)(θ1 − λ2)

∫ ∞

τ=0
e−θ1τxt−τdτ

)
dt + σDBt

Here you see a natural generalization of the AR(1), and see the “autore-

gressive” nature of the process. We forecast dxt as a linear function of

the history of {xt}. More generally, we can express (4.7) in the form[
D + A +

B

D + θ1
+

C

D + θ2
+ · · ·

]
xt = σDBt

In this form, we forecast dxt by its level xt and a sum of geometrically-

weigthed integrals over the history of xt.

4.3 How not to Define ARMA Models

The class of models I described in (4.4) displays some notable differ-

ences from the discrete-time ARMA class that I used to motivate them.

Other natural attempts to take ARMA models to continuous time do

not work.

First, I announced the rule that the order of the numerator in (4.4)

must be one less than the denominator, while the order of polynomials

in (4.1) is arbitrary. The underlying reason for this difference is that,

180 ARMA Models

while the L2 operator takes a double lag, theD2 operator takes a second

derivative. For example, consider

D2xt = σDBt

writing it out, this means

1

dt
d

(
1

dt
dxt

)
= σ

1

dt
dBt

dxt =

(
1

dt
dx0 + σ

∫ t

τ=0
dBτ

)
dt.

This dxt does not have a dBt term. xt is a differentiable function of

time, perfectly forecastable dt ahead. Taking the D2 operator takes us

out of the kind of process we are looking for.

As a less trivial example, suppose we tried to write a “continuous

time AR(2)” as

(D + λ1)(D + λ2)xt = σDBt.

Then, we would have

(D + λ1)xt =
1

(D + λ2)
σDBt

dxt + λ1xt dt =

(∫ ∞

τ=0
e−λ2τσdBt−τ

)
dt

Again, we lose the σdBt term and xt is differentiable.

Second, the main feature of ARMA models, that only a finite past of

{xt} or shocks {εt} forms a state vector for forecasting, is not preserved

in models of the form (4.4). One could create perfectly good models

with that feature, but those models do not have the convenience or

tractability that they posses in discrete time. For example, we can

write finite-length processes such as

dxt =

(
γxt +

∫ k

τ=0
a(τ)xt−τ

)
dτ + σdBt

or a finite-length moving average

xt =

∫ k

τ=0
b(τ)dBt−τ .

4.3 How not to Define ARMA Models 181

But the finiteness k of the AR or MA representation does not lead to

easy inversion or manipulation as it does in discrete time.

Similarly, we could try to take the continuous-time limit of an AR(2)

by keeping the second lag fixed, not letting it contract towards zero so

that it create the troublesome second derivative. We would start with

xt = ρ1xt−1 + ρ2xt−2 + εt

xt − xt−1 = −(1 − ρ1)xt−1 + ρ2xt−2 + εt

Then, take the limit by letting the first difference get smaller but keep-

ing the second lag fixed. We get

dxt = (−φxt + φ2xt−κ)dt + dBt

(D + φ + e−κD)xt = DBt

with κ = 2. This is a legitimate process, but the tractability is clearly

lost, as inverting this lag operator will not be fun.

5

Differences

In discrete time, you usually choose to work with levels xt or differences

∆xt depending on which is stationary. In continuous time, we often

work with differences even though the series is stationary in levels. For

example, we write the continuous-time AR(1) as dxt = −φxt dt + σdBt,

which corresponds to expressing the discrete-time AR(1) as xt+1 − xt =

−(1 − ρ)xt + εt+1. This fact accounts for the major difference between

the look of continuous and discrete-time formulas, and means we must

spend a little more time than usual describing the relation between

level and differenced processes.

5.1 Levels to Differences in Discrete Time

First-differencing is simple in discrete time. Given a process in levels,

xt =
∞∑
j=0

bjεt−j

we can write the same process in differences as

xt − xt−1 = εt +
∞∑
j=1

(bj − bj−1)εt−j . (5.1)

182

5.2 Levels to Differences in Continuous Time 183

In operator notation, we transform from the moving average for

levels

xt = Zb(L)εt (5.2)

to a moving average for differences

(1 − L)xt = Zc(L)εt. (5.3)

One way to construct Zc(L) is straightforwardly shown by (5.1),

Zc(L) = (1 − L)Zb(L) = 1 + Z∆b(L). (5.4)

Remember, we normalized the lag polynomial so that b0=Zb(0)=1,

and so that (Et − Et−1)xt = 1 × εt is the impact response to a shock.

In discrete time (Et − Et−1)(xt − xt−1) = 1 × εt as well so we have

Zc(0) = 1 and Z∆b(0) = 0.

5.2 Levels to Differences in Continuous Time

In continuous time, we can similarly model levels or differences,

xt = Lb(D)σDBt (5.5)

or

Dxt = Lc(D)σDBt. (5.6)

Obviously, we can write

Lc(D) =DLb(D),

but there are several other ways to construct, express, and interpret

the differenced representation given the level representation.

Mirroring (5.1) and (5.4), we can find Lc(D) from

Lc(D) =DLb(D) = 1 + Lb′(D) (5.7)

or, explicitly,

dxt =

(∫ ∞

τ=0
b′(τ)σdBt−τ

)
dt + σdBt. (5.8)

184 Differences

This formula is the obvious analogue to (5.1). However, in continuous

time, this expression gives familiar drift and diffusion terms.

Expression (5.7) and the resulting (5.8) is a standard property of

Laplace transforms

DLb(D) = b(0) + Lb′(D) (5.9)

together with the normalization b(0) = 1. To derive it, integrate by

parts:

Lb′(D) =

∫ ∞

τ=0
e−Dτ db(τ)

dτ
dτ = b(τ)e−Dτ

∣∣∞
0

+

∫ ∞

τ=0
De−Dτ b(τ)dτ

= −b(0) + D

∫ ∞

τ=0
e−Dτ b(τ)dτ = −b(0) + DLb(D).

I assume here that b(τ) is differentiable except at τ = 0. The for-

mulas can be extended to include b(τ) with jumps, which give rise to

additional lagged diffusion terms. Correspondingly, to represent some-

thing like (5.8) as a Laplace transform, I allow a δ function in c(τ) at

τ = 0, whose Laplace transform is the constant c(0). A typical moving

average representation for differences will have such a delta function,

i.e. its integral expansion will be of the form

Lc(D) = c(0) +

∫ ∞

τ=0
e−Dτ c(τ)dτ .

In the case of a differential-operator polynomial, this transformation

from levels to differences is simply algebra. For the AR(1), we can write

Dxt =
D

D + φ
σDBt =

(
1 − φ

D + φ

)
σDBt (5.10)

i.e.

dxt = −φ

(∫ ∞

τ=0
e−φτσdBt−τ

)
dt + σdBt.

Recognizing the first term on the right as xt itself, you recognize the

AR(1), but see that it is now written in a moving average representation

for dxt, which is what we were looking for. Construction (5.8) gives the

same answer which is a fun exercise.

5.2 Levels to Differences in Continuous Time 185

For the more general polynomial operator, we can apply the

same algebra to the partial-fractions expansion of the moving average

polynomial,

Lc(D) = DLb(D) =
DA

D + λ1
+

DB

D + λ2
+ · · ·

= A − λ1A

D + λ1
+ B − λ2B

D + λ2
+ · · ·

= 1 − λ1A

D + λ1
− λ2B

D + λ2
− ·· · (5.11)

In each case, notice that Lc(0) = 0. That follows in (5.7) with the

fact that Lb(0) is finite, and it is clear in (5.10) and (5.11). That ends

up being the condition that xt is stationary in levels. The Beveridge–

Nelson decomposition and cointegration follow later from the case of a

differenced representation Dxt = Lc(D)DBt in which Lc(0) �= 0 or is

not full rank.

6

Impulse-response Function

6.1 Discrete Time

The discrete-time moving-average representation is the impulse-

response function. In

xt =
∞∑
j=0

bjεt−j = Zb(L)εt,

the terms of bj measure the response of xt+j to a shock εt,

(Et − Et−1)xt+j = bjεt.

In particular, we can read the impact multiplier — the response

(Et − Et−1)xt off the lag polynomial evaluated at L = 0,

b0 = Zb(0) = 1; (6.1)

we can read the cumulative response — the response of
∑∞

j=0xt+j to

a shock — off the lag polynomial evaluated at L = 1,

Zb(1) =
∞∑
j=0

bj;

186

6.2 Continuous Time 187

and we can read the final response, which needs to be zero for a sta-

tionary process, from the lag polynomial at L =∞,

b∞ = lim
j→∞

bj = lim
L→∞

Zb(L) = Zb(∞).

6.2 Continuous Time

In continuous time, the moving average representation is

xt =

∫ ∞

τ=0
b(τ)σdBt−τ . (6.2)

The quantity b(τ) again gives an “impulse–response” function, namely

how expectations at t about xt+τ are affected by the shock σdBt.

The concept lim∆→0(Et+∆ − Et)xt does not really make sense. It

makes more sense in continuous time to understand the “impulse–

response” as the loading of a difference dxt on the Brownian motion

σdBt term. By transforming the moving-average representation of lev-

els in (6.2) to differences as in (5.8),

dxt =

(∫ ∞

τ=0
b′(τ)σdBt−τ

)
dt + b(0)σdBt,

we get a better sense of b(0) = 1 as the “response of xt to a shock” —

that concept represents how dxt responds to a Brownian increment

σdBt. In discrete time,

xt+1 − xt = b0εt+1 +

∞∑
j=0

(bj+1 − bj)εt−j

the innovation in xt+1 and ∆xt+1 (i.e. xt+1 and dxt+1) are the same.

The difference version makes more sense in continuous time.

Similarly, to see what an “impulse–response” past the first term

really means in continuous time, define

yt = Et(xt+k) =

∫ ∞

τ=0
b(τ + k)σdBt−τ .

Then, following the same logic as in (5.8),

dyt = b(k)σdBt +

(∫ ∞

τ=0
b′(τ + k)σdBt−τ

)
dt.

188 Impulse-response Function

Here you see directly what it means to say that b(k) is the shock

to today’s expectations of xt+k. (We get the same result whether we

interpret dyt as

yt+∆ − yt = Et+∆(xt+k) − Et(xt+k)

or if we interpret dyt as

yt+∆ − yt = Et+∆(xt+k+∆) − Et(xt+k).

These quantities are the same because Et(dxt+k) is of order dt.)

We can recover the impact multiplier from the level operator func-

tion (6.2) via

b(0) = lim
D→∞

DLb(D). (6.3)

This expression is the analogue to (6.1). I am normalizing so that b(0) =

1 for moving average representations, and this expression allows us to

check that fact for general differential-operator functions.

Statement (6.3) is the “initial value theorem” of Lapalce transforms.

To derive this formula, take the limit on both sides of (5.7), which I

repeat here,

DLb(D) = b(0) + Lb′(D),

and note that

lim
D→∞

Lb′(D) = lim
D→∞

∫ ∞

τ=0
e−Dτ b′(τ)dτ = 0.

The form of the differential-operator polynomials (4.4) imposes this

normalization

lim
D→∞

DLb(D) = lim
D→∞

D
(D + θ1)(D + θ2) · · ·

(D + λ1)(D + λ2)(D + λ3) · · · = 1,

but only if there is one less D on top than on the bottom. This obser-

vation gives a little deeper insight for that requirement.

Applying b(0) = limD→∞DLb(D) = 1 to the partial-fractions

expansion of the differential operator polynomial, (4.6),

xt =

[
A

(D + λ1)
+

B

(D + λ2)
+

C

(D + λ3)
+ · · ·

]
σDBt (6.4)

6.2 Continuous Time 189

gives a swift demonstration and interpretation of the fact that

A + B + C + · · · = 1.

Since the differenced moving average Lc(D) = DLb(D), the corre-

sponding requirement is

lim
D→∞

Lc(D) = 1

Since the “impact multiplier” is most easily understood in continuous

time as the response of dxt to σdBt, this requirement makes better

sense of the expression (6.3)

The “final value theorem” of Laplace transforms states

b(∞) = lim
D→0

DLb(D). (6.5)

As in discrete time, to obtain a stationary (finite-variance) series, mov-

ing averages must tail off,

lim
τ→∞b(τ) = 0

(Actually we need
∫∞
τ=0 b

2(τ) <∞ which is stronger.) As in discrete

time, (6.5) tells us how to measure this quantity directly from the

differential operator function Lb(D).

To see the “final value theorem,” simply take the limit of∫ ∞

τ=0
De−Dτ b(τ)dτ.

We also want the equivalent of the cumulative response function,

which measures the response of Et

∫∞
τ=0xt+τ dτ to a shock. Correspond-

ing to Zb(1) in discrete time, we have

Lb(0) =

∫ ∞

τ=0
b(τ)dτ.

We often model the differences

dxt = Lc(D)σDBt

and want to find the final response of the level xt to the shock. Since

limT→∞xt+T =
∫∞
τ=0dxt+τ , the final response of xt is

Lc(0) = 1 +

∫ ∞

τ=0
c(τ)dτ.

190 Impulse-response Function

(The right-hand expansion is for the standard case of a δ function at

zero with c(0) = 1). If xt is stationary, this number like b∞ in (6.5)

should be zero. If dxt is stationary but xt is not, this number is not

zero, and is the key distinguishing level and difference stationary series.

More later.

(Befitting the nontechnical nature of this article, I am not making an

important distinction between Lc(0) and limD→0Lc(D). With Lc(D) =

DLb(D) you can see why the latter formulation might be preferred.

But we can usually write Lc(D) in such a way that the limit and limit

point are the same. For the AR(1) example, DLb(D) =D/(D + φ),

and Lc(D) = 1 − φ/(D + φ). These are the same except at the limit

point D = 0.)

7

Hansen–Sargent Formulas

Here is one great use of the operator notation — and the application

that drove me to figure all this out and write it up. Given a process xt,

how do you calculate

Et

∫ ∞

τ=0
e−rτxt+τ dτ?

This is an operation we run into again and again in modern intertem-

poral macroeconomics and in asset pricing.

7.1 Discrete Time

Hansen and Sargent (1980) gave an elegant answer to this question in

discrete time. You want to calculate Et
∑∞

j=0β
jxt+j . You are given a

moving average representation xt = Zb(L)εt. (Here and below, εt can be

a vector of shocks, which considerably generalizes the range of processes

you can write down.) The answer: the moving-average representation

of the expected discounted sum is

Et

∞∑
j=0

βjxt+j =

(
LZb(L) − βZb(β)

L − β

)
εt =

(Zb(L) − βL−1Zb(β)

1 − βL−1

)
εt.

(7.1)

191

192 Hansen–Sargent Formulas

Hansen and Sargent give the first form. The second form is a

bit less pretty but shows a bit more clearly what you are doing.

Zb(L)εt is just xt. (1 − βL)−1 =
∑∞

j=0β
jL−j takes the forward sum

so (1 − βL−1)−1Zb(L)εt is the actual, ex-post value whose expectation

we seek. But that expression would leave you many terms in εt+j . The

second term ends up subtracting off all the εt+j terms leaving only εt−j

terms, which thus is the conditional expectation.

For example, consider an AR(1). We start with

xt = Zb(L)εt = (1 − ρL)−1εt.

Then the expected discounted sum follows

Et

∞∑
j=0

βjxt+j =

(
L

1−ρL − β
1−ρβ

L − β

)
εt =

1

(1 − ρβ)

1

(1 − ρL)
εt

=
1

(1 − ρβ)

∞∑
j=0

ρjεt−j =
1

(1 − ρβ)
xt.

The formula is even prettier if we start one period ahead, as often

happens in finance:

Et

∞∑
j=1

βj−1xt+j =

(Zb(L) − Zb(β)

L − β

)
εt (7.2)

Just subtract xt = Zb(L)εt from (7.1). This version turns out to look

exactly like the continuous-time formula below.

We often want the impact multiplier – how much does a price

react to a shock? The Hansen–Sargent formula (7.1) says the answer is

Zb(β), i.e.

(Et − Et−1)
∞∑
j=0

βjxt+j = Zb(β)εt. (7.3)

This formula is particularly lovely because you do not have to con-

struct, factor, or invert any lag polynomials. Suppose you start with

7.2 Continuous Time 193

an autoregressive representation

Za(L)xt = εt.

Then, you can first evaluate Za(β) (a number) and then invert that

number, rather than invert a lag-operator polynomial (hard) and then

substitute in a number:

(Et − Et−1)

∞∑
j=0

βjxt+j = [Za(β)]
−1εt.

7.2 Continuous Time

Hansen and Sargent (1991) show that if we express a process in moving-

average form,

xt =

∫ ∞

τ=0
b(τ)σdBt−τ = Lb(D)σDBt,

then we can find the moving average representation of the expected

discounted value by

Et

∫ ∞

τ=0
e−rτxt+τ dτ =

(Lb(D) − Lb(r)

r − D

)
σDBt. (7.4)

The formula is almost exactly the same as (7.2).

The pieces work as in discrete time. The operator

1

r − D
=

∫ ∞

τ=0
e−rτ eDτdτ

takes the discounted forward integral, and creates the ex-post present

value. Subtracting off Lb(r)/(r − D) removes all the terms by which the

discounted sum depends on future realizations of σdBt+τ , leaving an

expression that only depends on the past and hence is the conditional

expectation.

Here is the AR(1) example in continuous time. xt follows

xt =
1

D + φ
σDBt.

194 Hansen–Sargent Formulas

Applying (7.4),

Et

∫ ∞

τ=0
e−rτxt+τ dτ =

1

(r − D)

(
1

D + φ
− 1

r + φ

)
σDBt

=
1

(r + φ)(D + φ)
σDBt

=
1

r + φ

∫ ∞

τ=0
e−φτσdBt−τ =

1

r + φ
xt.

We recover the same result as in discrete time.

The innovation in the expected discounted value, the counterpart

to (7.3), is found as we found impact multipliers in (6.3). From (7.4),

the impact multiplier of the expected discounted value is

lim
D→∞

(
D
Lb(D) − Lb(r)

r − D

)
= Lb(r). (7.5)

(limD→∞DLb(D) = b(0) = 1 is the impact multiplier of xt, so, dividing

by r − D, the first numerator term is zero.) Thus, if we define

yt = Et

∫ ∞

τ=0
e−rτxt+τ dτ,

then

dyt = ()dt + Lb(r)dBt.

This expression reminds us what an impact multiplier means in con-

tinuous time. As in discrete time, (7.5) is a lovely formula because you

may be able to find Lb(r) without knowing the whole Lb(D) function.

(As an example, I use this formula in Cochrane (2012) (below Equa-

tion (4.2), p. 178) to evaluate how much consumption must react to

an endowment shock, in order to satisfy the present-value budget con-

straint in a permanent-income style model with complex habits and

durability. In this case, the habits or durability add “autoregressive”

terms, and it is convenient to invert them as scalar L(r) rather than

functions L(D).)

7.3 Derivation 195

7.3 Derivation

7.3.1 Operator Derivation

Hansen and Sargent give an elegant derivation that illustrates the power

of thinking in terms of Laplace transforms. Start with the ex-post

present value. It has a moving average representation, whose terms

I will denote by d(τ). Then, we want to separate d(τ) into its positive

(past) and negative (future) components. Write∫ ∞

τ=0
e−rτxt+τ dτ =

∫ ∞

τ=−∞
d(τ)dBt−τ

=

∫ 0

τ=−∞
d(τ)dBt−τ +

∫ ∞

τ=0
d(τ)dBt−τ

Lb(D)

r − D
σDBt

= Ld(D)σDBt

= [Ld−(D) + Ld+(D)]σDBt

The second integral runs from −∞ to ∞, because the ex-post present

value depends on future shocks. The differential-operator function

Ld(D) has a pole at D = r, so must be in part solved forward.

In order to break Ld(D) into past and future components, Hansen

and Sargent suggest that we simply add and subtract Lb(r)

Lb(D)

r − D
σDBt =

{[Lb(D) − Lb(r)

r − D

]
+

[Lb(r)

r − D

]}
σDBt

The first term no longer has a pole at D = r, and removing that pole

is a motivation for subtracting Lb(r). Thus, the first term corresponds

to past dBt−τ only. The numerator of the second term is a constant, so

that term has only a pole at D = r, and no poles with negative values

of D. Thus it is expressed in terms of future dBt−τ only.

We have achieved what we are looking for! We broke the moving

average of the ex-post present value into one term that depends only

on past dBt and one that depends only on future dBt. The part load-

ing only on the past, the first term after the equality, must be the

conditional expectation.

Wait a minute, you say. We could have added and subtracted any-

thing. But the answer is no, this separation is unique: if you find any

196 Hansen–Sargent Formulas

way of adding and subtracting something that breaks Ld(D) into past

and future components, you have found the only way of doing so. Sup-

pose we add and subtract an arbitrary L(D). It must have L(r) = Lb(r)

so the numerator of the first term removes the pole at D = r. Still, any

backwards-solvable L(D) with L(r) = Lb(r) would work in the first

term. But any other backwards-solvable L(D) would induce backwards-

solvable parts of the second term. A constant is the only thing we can

add and subtract which removes the pole in the first term, making that

term backwards-solvable, but does not introduce backwards-solvable

parts in the second term. And that constant must be Lb(r) to remove

the pole in the first term.

7.3.2 Brute force

It is easy to check the Hansen–Sargent formula by brute force. It is use-

ful to confirm that the operator logic is correct. Write out the moving

average representation for the ex-post present value,
∑∞

j=0β
jxt+j , then

verify that the Zb(β)/(L − β) term subtracts off the forward-looking

terms. The ex-post present value is(Zb(L)

1 − βL−1

)
εt =

∞∑
j=0

βjxt+j (7.6)

=

+b0εt +b1εt−1 +b2εt−2 · · ·
+βb0εt+1 +βb1εt +βb2εt−1 +βb3εt−2 · · ·

+β2b0εt+2 +β2b1εt+1 +β2b2εt +β2b3εt−1 +β2b4εt−3 · · ·
+β3b0εt+3 +β3b1εt+2 +β3b2εt+1 · · ·

· · ·
Summing the columns,

= · · · + β3Zb(β)εt+3 + β2Zb(β)εt+2 + βZb(β)εt+1 + Zb(β)εt

+(..)εt−1 + (..)εt−2 + · · · (7.7)

The second part of the formula (7.1) gives

βL−1

1 − βL−1
Zb(β)εt = (βL−1 + β2L−2 + β3L−3 + · · ·)Zb(β)εt

= · · · + β3Zb(β)εt+3 + β2Zb(β)εt+2 + βZb(β)εt+1

7.3 Derivation 197

You can see that these are exactly the forward-looking terms in (7.7).

By subtracting these terms, we neatly subtract off all the forward terms

εt+1,εt+2, etc. from the ex-post present value and find the expected

present value.

You can check the continuous-time Hansen–Sargent formula in

the same way. Express the ex-post forward looking present value∫∞
τ=0 e

−rτxt+τ dτ in moving average representation, collect all the dBt−τ

terms in one place for each τ , then notice that the second half of the

Hansen–Sargent formula neatly eliminates all the dBt+τ terms. Start

with

Lb(D)

r − D
σDBt =

∫ ∞

τ=0
e−rτxt+τ dτ

=

∫ ∞

τ=0
e−rτ

(∫ ∞

s=0
b(s)σdBt+τ−s

)
dτ

We transform to an integral over q = τ − s that counts each dBq once,

and separate past dBq from future dBq. To find the limits of the definite

integrals, when q < 0 (past), then τ ≥ 0 means s ≥ −q. When q > 0

(future), then s starts at 0.

∫ ∞

τ=0
e−rτxt+τ dτ

=

∫ ∞

q=−∞

∫ ∞

s=max(0,−q)
e−rqe−rsb(s)σdBt+q ds

=

∫ ∞

q=0

∫ ∞

s=0
e−rqe−rsb(s)σdBt+qds

+

∫ 0

q=−∞

∫ ∞

s=−q
e−rqe−rsb(s)σdBt+qds

=

∫ ∞

q=0
e−rq

(∫ ∞

s=0
e−rsb(s)ds

)
σdBt+q

+

∫ 0

q=−∞
e−rq

(∫ ∞

τ=0
erqe−rτ b(τ − q)dτ

)
σdBt+q

198 Hansen–Sargent Formulas

=

(∫ ∞

s=0
e−rsb(s)ds

)∫ ∞

q=0
e−rqσdBt+q

+

∫ 0

q=−∞

(∫ ∞

s=0
e−rτ b(τ − q)ds

)
σdBt+q.

To take expectations, we just drop the first term, so the second term is

the expected value we are looking for. Translating the first two terms

to operator notation, we have

Lb(D)

r − D
σDBt =

Lb(r)

r − D
σDBt + Et

(∫ ∞

τ=0
e−rτxt+τdτ

)
.

8

Integration and Cointegration

So far, I have assumed that the series xt is stationary in levels. We

study differences dxt because that is more convenient in continuous

time. Here I take up the possibility that xt contains unit roots; that

dxt is stationary but xt is not. I describe the transformation from dif-

ferences to levels, and the unit root and cointegrated representations

of difference-stationary series.

8.1 Difference-stationary Series

So far, we have been looking at differenced specifications simply because

the differential operator is more convenient in continuos time, though

the level of the series is stationary, with the AR(1) dxt = −φxt + σdBt

as the canonical example. Often, we will model series whose differences

are stationary, but the levels are not, such as dBt itself. Hence it is worth

writing down what specifications based purely on differences look like.

The moving average is

Dxt = Lc(D)σDBt

dxt =

∫ ∞

τ=0
c(τ)σdBt−τ + σdBt

199

200 Integration and Cointegration

As before, I assume that c(τ) has a δ function at c(0) = 1 to generate

the Laplace transform Lc(D). Reiterating, we normalize so a unit shock

σdBt has a unit effect on dxt,

lim
D→∞

Lc(D) = 1.

A corresponding “autoregressive” representation is

Lc(D)−1Dxt = σDBt

We make sense of these expressions with the usual manipulations.

For example, a first-order polynomial model is

Dxt =
D + θ

D + λ
σDBt.

Its moving-average representation can be written as

Dxt =

(
1 +

θ − λ

D + λ

)
σDBt

dxt = (θ − λ)

(∫ ∞

τ=0
e−λτσdBt−τ

)
dt + σdBt.

The autoregressive representation is

D + λ

D + θ
Dxt = σDBt(

1 +
λ − θ

D + θ

)
Dxt = σDBt

dxt = −(λ − θ)

(∫ ∞

τ=0
e−θτ dxt−τ

)
dt + σdBt.

Here you see that we forecast future changes using past changes dxt−τ ,

as we normally would run an autoregression in first differences for series

like stock returns or GDP growth.

8.2 Differences to Levels in Discrete Time;
Beveridge and Nelson

Above, we studied the transition from levels to differences. Next, we

study the converse operation. We want to get from

(1 − L)xt = Zc(L)εt (8.1)

8.2 Differences to Levels in Discrete Time; Beveridge and Nelson 201

to something like

xt = Zb(L)εt.

Lag operator notation suggests that we construct Zb(L) as

Zb(L) =
Zc(L)

1 − L
= c0 + (c0 + c1)L + (c0 + c1 + c2)L

2 + · · · (8.2)

However, this operation only produces a stationary process if
∑∞

j=0 cj =

Zc(1) = 0. That condition need not hold. In general, a process (8.1) is

not stationary in levels.

We can handle this situation by defining an initial value x0 and a

process εt = 0 for all t ≤ 0. Now

xt − x0 = Zb(L)εt = (1 − L)−1Zc(L)εt

is finite, though nonstationary.

A more convenient way to handle this possibility is to decompose xt
in to stationary and random walk components via the Beveridge and

Nelson (1981) decomposition. We rearrange the terms of Zc(L) as

(1 − L)xt = Zc(L)εt = [Zc(1) + (1 − L)Zb(L)]εt (8.3)

where

Zb(L) =

∞∑
j=0

bjL
j with bj = −

∞∑
k=j+1

ck. (8.4)

From (8.3) we can write xt as the sum of two components,

xt = zt + wt,

where

zt = zt−1 + Zc(1)εt

wt = Zb(L)εt.

Now, if Zc(1) = 0, then we have xt = wt = Zb(L)εt, the representation

in levels we are looking for, and xt is stationary. If Zc(1) �= 0, we have

the next best thing; we express xt as an interesting combination of a

stationary series wt plus a pure random walk zt component.

202 Integration and Cointegration

To verify the Beveridge–Nelson decomposition by brute force, just

write out Zb(L) as defined by (8.4):

Zb(L) = −(c1 + c2 + c3 + · · ·) − (c2 + c3 + c4 + · · ·)L
−(c3 + c4 + c5 + · · ·)L2 − ·· ·

then note

(1 − L)Zb(L) = −c0 − (c1 + c2 + c3 + · · ·) + c0 + c1L + c2L
2 + · · ·

= −Zc(1) + Zc(L).

Since the {cj} are square summable, so are the {bj}. This is a key

observation, Zb(L)εt defines a level-stationary process.

In operator notation, the decomposition (8.3) consists of just adding

and subtracting Zc(1):

(1 − L)xt = Zc(L)εt = Zc(1)εt + (1 − L)

[Zc(L) − Zc(1)

1 − L

]
εt. (8.5)

Then, we define Zb(L) by

Zb(L) =
Zc(L) − Zc(1)

1 − L

to arrive at (8.3). This looks too easy — could you add and subtract

anything, and multiply and divide by (1 − L)? But the fact that makes

it work is that Zb(L) = [Zc(L) − Zc(1)]/(1 − L) is a legitimate lag

polynomial of a stationary process. All its poles lie outside the unit

circle. (Following usual practice, I do not normalize so Zb(0) = 1 in

this case.)

The Beveridge–Nelson trend zt has the property

zt = lim
j→∞

Et(xt+j), (8.6)

which follows simply from the fact that wt is stationary so

limj→∞Etwt+j = 0. This can also be used as the defining property to

derive the Beveridge–Nelson decomposition, which is a longer but more

satisfying since you construct the answer rather than verify it. Think-

ing in this way, we can derive the Beveridge–Nelson decomposition as

8.3 Differences to Levels in Continuous Time 203

a case of the Hansen–Sargent formula (7.2) evaluated at β = 1:

zt = lim
j→∞

Et(xt+j) = xt + Et

∞∑
j=1

∆xt+j

= xt +

(Zc(1) − Zc(L)

1 − L

)
εt,

(1 − L)zt = (1 − L)Zc(L)εt + (1 − L)

(Zc(1) − Zc(L)

1 − L

)
εt

= Zc(1)εt

Defining wt as detrended xt,

wt = xt − zt

(1 − L)wt = (1 − L)xt + (1 − L)zt

(1 − L)wt = [Zc(L) + Zc(1)]εt.

8.3 Differences to Levels in Continuous Time

The same operations have natural analogues in continuous time. Before,

we found the differenced moving average representation of a level-

stationary series, in (5.7). Now we want to ask the converse question.

Suppose you have a differential representation,

Dxt = Lc(D)σDBt.

How do you find Lb(D) or b(τ) in

xt = Lb(D)σDBt? (8.7)

The fly in the ointment, as in discrete time, is that the process xt
may not be stationary in levels, so the latter integral does not make

sense. As a basic example, if you start with simple Brownian motion

dxt = σdBt,

you can not invert that to

xt = σBt =

∫ ∞

τ=0
σdBt−τ ,

204 Integration and Cointegration

because the latter integral blows up. For this reason, we usually express

the level of pure Brownian motion as an integral that only looks back

to an initial level,

xt = x0 +

∫ t

τ=0
σdBt−τ = x0 + σ(Bt − B0).

As in this example, we can ignore the nonstationarity, use (8.7) directly,

and think of a nonstationary process that starts at time 0 with dBt = 0

for all t < 0. (Hansen and Sargent (1983), last paragraph.)

Alternatively, we can handle this situation as in discrete time, with

the continuous-time Beveridge–Nelson decomposition that isolates the

nonstationarity to a pure random walk component. We rearrange the

terms of Lc(D),

Dxt = Lc(D)σDBt = [Lc(0) + DLb(D)]σDBt. (8.8)

I will show in a moment how to construct Lb(D), and verify that it

is the differential-operator function of a valid stationary process. Once

that is done, though, we can write this last equation as

Dxt =Dzt + Dwt

and hence

xt = zt + wt

where z is a pure random walk

Dzt = Lc(0)σDBt

and wt is stationary in levels,

wt = Lb(D)σDBt.

Now, if Lc(0) = 0 we have xt = wt stationary. If Lc(0) �= 0, then

we isolate the nonstationarity to a pure random walk component zt
and put all the dynamics in a level-stationary stochastically detrended

component wt.

Now, how do we construct Lb(D) given Lc(D)? The operator deriva-

tion is nearly trivial. By construction,

Lc(D) = Lc(0) + D

[Lc(D) − Lc(0)

D

]
.

8.3 Differences to Levels in Continuous Time 205

Therefore, we just define

Lb(D) =
Lc(D) − Lc(0)

D
. (8.9)

Adding and subtracting Lc(0) and multiplying and dividing by D

looks artificial, but the key is that (Lc(D) − Lc(0))/D is a valid level-

stationary process, since −Lc(0) removes the pole at 0. Equivalently, it

produces a new difference operator function Lc∗(D) = Lc(D) − Lc(0),

which does have the property Lc∗(0) = 0 and hence Lb(D) = Lc∗(D)/D

is a proper level-stationary process.

We can construct the terms b(τ) by integrating c(τ)

b(τ) = −
∫ ∞

s=τ
c(s)ds.

This is the obvious inverse to our construction of terms c(τ) by differ-

entiating b(τ) in (5.7), and it mirrors the discrete-time formula (8.4).

To see where this expression comes from, let us write

Lc(D) = c(0) +

∫ ∞

τ=0
e−Dτc(τ)dτ.

Then,

Lb(D) =
Lc(D) − Lc(0)

D

=
c(0) +

∫∞
s=0 e

−Dsc(s)ds − [c(0) + ∫∞
s=0 c(s)ds

]
D

=

∫∞
s=0[e

−Ds − 1]c(s)ds

D
= −

∫ ∞

s=0

[∫ s

τ=0
e−Dτdτ

]
c(s)ds

= −
∫ ∞

τ=0
e−Dτ

[∫ ∞

s=τ
c(s)ds

]
dτ. (8.10)

In sum, as we used the identity (5.7)

Lc(D) =DLb(D) = b(0) + Lb′(D)

to construct Lc(D) from a given Lb(D), here we use the identity

Lb(D) =
Lc(D) − Lc(0)

D
= L∫

c(D)

where I use the notation L∫
c(D) to refer to the transform in (8.10)

206 Integration and Cointegration

The random walk component zt has the property

zt = lim
T→∞

Et(xt+T),

and this property can be used to derive the decomposition. Doing so

as a case of the Hansen–Sargent prediction formula (7.4) with r = 0

provides more intuition for the operator definition (8.9). We write

zt = xt + Et

(∫ ∞

s=0
dxt+s

)
= xt +

(Lc(D) − Lc(0)

−D

)
σDBt

Therefore,

Dzt =Dxt − [Lc(D) − Lc(0)]σDBt

= {Lc(D) − [Lc(D) − Lc(0)]}σDBt

= Lc(0)σDBt.

Defining wt = xt − zt we recover the decomposition.

8.4 Cointegration

Cointegration is really a vector generalization of the differences-to-

levels issues. Here, I translate the basic representation theorems, such

as Engle and Granger (1987). Let xt now denote a vector of N time

series, and dBt a vector of N independent standard Brownian motions.

The moving average representations such as

xt =

∫ ∞

τ=0
b(τ)VdB t−τ

dxt =

(∫ ∞

τ=0
c(τ)VdB t−τ

)
dt + VdB t

or in operator notation

xt = Lb(D)VDB t

Dxt = Lc(D)VDB t (8.11)

represent matrix operations with L(D) and V denoting N × N

matrices.

8.4 Cointegration 207

For a scalar, the level/difference issue is whether Lc(0) = 0 or not.

For a vector, we have the additional possibility that Lc(0) may be

nonzero but not full rank. In that case, the elements of xt are cointe-

grated. To keep the discussion simple I will mostly consider the case

N = 2, and xt = [x1t x2t]
′.

Cointegrated series have a common trend representation: if Lc(0)

has rank 1, then we can write

Lc(0) = δβ′ (8.12)

where δ and β are 2 × 1 vectors. Building on the Beveridge–Nelson

decomposition (8.8), define a scalar random walk component zt,

Dzt = β′V DBt,

and we can write the two components of xt as a sum of this shared

random walk component and stationary components,

xt = δzt + wt,

i.e. [
x1t
x2t

]
=

[
δ1
δ2

]
zt +

[
w1t

w2t

]
. (8.13)

To derive this representation in operator notation, we proceed

exactly as we did in deriving the Beveridge–Nelson decomposition,

interpreting the symbols as matrices, and introducing Lc(0) = δβ′ at
the right time. From (8.11),

Dxt = Lc(0)V DBt + D

[Lc(D) − Lc(0)

D

]
V DBt

Dxt = δβ′V DBt + DLb(D)V DBt

Dxt = δDzt + DLb(D)V DBt

or, in levels

xt = δzt + Lb(D)DBt.

The cointegrating vector gives the linear combination of xt that is

stationary in levels, though the individual components of xt are not.

208 Integration and Cointegration

Since Lc(0) = δβ′ is singular by assumption, we can find α such that

α′δ = 0, and α′Lc(0) = 0, and we can find a φ such that β′φ = 0 and

Lc(0)φ = 0. Then, from (8.13),

α′xt = α′wt,

i.e., α′xt is stationary. To get there directly, we can just write

Dxt = δβ′V DBt + DLb(D)V DBt

α′Dxt = (α′δ)β′V DBt + α′DLb(D)V DBt

α′Dxt = α′DLb(D)V DBt

α′xt = α′Lb(D)V DBt.

The error-correction representation is also very useful. For exam-

ple, forecasting regressions of stock returns and dividend growth on

dividend yields, or consumption and income growth on the consump-

tion/income ratio are good examples of useful error-correction repre-

sentations.

A useful form of the error correction representation is

dxt = −φ(α′xt)dt +
[∫ ∞

τ=0
e−Dτd(τ)V dBt−τ

]
dt + V dBt.

Here φ is a 2 × 1 vector which shows how the lagged cointegrating

vector affects changes in each of the two differences. I allow extra sta-

tionary components in the middle term, expressed as moving averages

or “serially correlated errors” in discrete-time parlance. We could also

follow the discrete-time VAR literature and write these as lags of dxt
which help to forecast dxt. The cointegrated AR(1) is a useful special

case, in which the middle term is missing. Finally, we have the shock

term.

In operator notation, this error correction representation is

Dxt = −φ(α′xt) + Ld(D)V DBt. (8.14)

The cointegrated AR(1) is the special case Ld(D) = I.

Applying α′ to both sides, the cointegrating vector itself follows

D(α′xt) = −(α′φ)(α′xt) + α′Lb(D)V DBt.

8.4 Cointegration 209

Note α′φ is a scalar (in general a full-rank matrix). Therefore, the

scalar process α′xt is stationary in levels, and has the moving-average

representation

(α′xt) =
1

D + α′φ
α′Lb(D)V DBt. (8.15)

For the cointegrated AR(1) special case, this is just a scalar AR(1).

Now, let us connect the error correction representation to the above

moving-average characterizations. We can substitute (8.15) back in to

(8.14) to obtain the moving average differential operator Lc(D),

Dxt =

(
I − φα′

D + α′φ

)
Lb(D)V DBt = Lc(D)V dBt.

Since Lb(0) = I, this moving average operator obeys

Lc(0) = I − φ(α′φ)−1α′.

This is a rank 1 idempotent matrix, confirming the condition (8.12) that

defines cointegration, and generalizing the usual special cases Lc(0) = 0

(stationary in levels) and Lc(0) = I (stationary in differences.) Further-

more,

α′Lc(0) = α′(I − φ(α′φ)−1α′) = 0

Lc(0)φ = (I − φ(α′φ)−1α′)φ = 0

so the cointegrating vector α defined by the error-correction mechanism

is the same as that which results from the condition α′Lc(0) = 0.

9

Summary

• Basic operators.

Lτxt = xt−τ

Dxt =
1

dt
dxt

L = e−D; D = − log(L).

• Lag operators, differential operators, Laplace transforms,

moving average representation.

xt =

∞∑
j=0

bjεt−j = Zb(L)εt; Zb(L) =

∞∑
j=0

bjL
j; b0 = 1

xt =

∫ ∞

τ=0
b(τ)σdBt−τ = Lb(D)σDBt;

Lb(D) =

∫ ∞

τ=0
e−Dτ b(τ)dτ ; b(0) = 1.

210

211

• The AR(1).

xt+1 = ρxt + εt ⇒ xt =

∞∑
j=0

ρjεt−j

dxt = −φxt dt + σdBt ⇒ xt =

∫ ∞

τ=0
e−φτ dBt−τ .

• Operators and inverting the AR(1).

(1 − ρL)xt = εt ⇒

xt =
1

1 − ρL
εt =

 ∞∑

j=0

ρjLj

εt

(D + φ)xt = DBt ⇒

xt =
1

D + φ
DBt =

(∫ ∞

τ=0
e−φτe−Dτ dτ

)
1

dt
dBt.

• Forward-looking operators.

‖ρ‖ > 1⇒
(

1

1 − ρL

)
εt = −

(
ρ−1L−1

1 − ρ−1L−1

)
εt

= −

 ∞∑

j=1

ρ−jL−j

εt

= −
∞∑
j=1

ρ−jεt+j

‖φ‖ > 0 ⇒ 1

D − φ
σDBt = −

(∫ ∞

τ=0
e−φτe+Dτ dτ

)
σDBt

= −
∫ ∞

τ=0
e−φτσdBt+τ .

• Moving averages and moments.

σ2(xt) =

∫ ∞

τ=0
b2(τ)σ2 dτ,

cov(xt,xt−k) =

∫ ∞

τ=0
b(τ)b(t + k)σ2 dτ

212 Summary

Sx(ω) =

∫ ∞

τ=−∞
cov(xtxt−τ)dτ = Lb(iω)Lb(−iω)σ2

cov(xt,xt−k) =
1

2π

∫ ∞

−∞
eiωkSx(ω)dω

=
1

2π

∫ ∞

−∞
eiωkLb(iω)Lb(−iω)σ2dω.

• Polynomial models and autoregressive representations.

xt =
(D + θ1)(D + θ2) · · ·

(D + λ1)(D + λ2)(D + λ3) · · ·σDBt.

Moving average in partial fractions form

xt =

[
A

D + λ1
+

B

D + λ2
+

C

D + λ3
+ · · ·

]
σDBt.

Autoregressive form[
D + A +

B

D + θ1
+

C

D + θ2
+ · · ·

]
xt = σDBt.

• “AR(2).”

xt =
(D + θ1)

(D + λ1)(D + λ2)
σDBt.

Moving average

xt =
1

λ1 − λ2

(
λ1 − θ1
D + λ1

− λ2 − θ1
D + λ2

)
σDBt

=
λ1 − θ1
λ1 − λ2

∫ ∞

τ=0
e−λ1τσdBt−τ +

λ2 − θ1
λ2 − λ1

∫ ∞

τ=0
e−λ2τσdBt−τ .

Autoregression[
D + (λ1 + λ2 − θ1) +

(θ1 − λ1)(θ1 − λ2)

D + θ1

]
xt = σDBt

dxt = −[(λ1 + λ2) − θ1]xt dt

−
(
(θ1 − λ1)(θ1 − λ2)

∫ ∞

τ=0
e−θ1τxt−τ dτ

)
dt + σDBt.

213

• Moving average representations for differences.

(1 − L)xt = Zc(L)εt = (1 − L)Zb(L)εt = [1 + Z∆b(L)]εt

The representation:

dxt =

(∫ ∞

τ=0
c(τ)σdBt−τ

)
dt + σdBt

Dxt = Lc(D)σDBt.

Finding Lc(D) from Lb(D):

Lc(D) = DLd(D) = 1 + Lb′(D)

dxt =

(∫ ∞

τ=0
b′(τ)σdBt−τ

)
dt + σdBt.

The AR(1):

Dxt =
D

D + φ
σDBt =

(
1 − φ

D + φ

)
σDBt

dxt = −φ

(∫ ∞

τ=0
e−φτσdBt−τ

)
dt + σdBt.

Polynomials:

Lc(D) = 1 − λ1A

D + λ1
− λ2B

D + λ2
− ·· ·

• Impulse–response functions and multipliers.

(Et − Et−1)xt+j = bjεt.

“ lim
∆→0

(Et+∆ − Et)” xt+τ = b(τ)σdBt,

meaning, if yt = Etxt+τ , then

dyt = ()dt + b(τ)σdBt.

Impact multiplier:

b0 = Zb(0) = 1

b(0) = lim
D→∞

[DLb(D)] = 1

c(0) = lim
D→∞

[Lc(D)] = 1.

214 Summary

Final multiplier:

b∞ = Zb(∞)

b(∞) = lim
D→0

[DLb(D)].

These should be zero for a stationary xt.

Cumulative response of
∫∞
τ=0xt+τ dτ :

Zb(1) =

∞∑
j=0

bj

Lb(0) =

∫ ∞

τ=0
b(τ)dτ.

Cumulative response of xt =
∫∞
τ=0dxt+τ :

Zc(1) =
∞∑
j=0

cj

Lc(0) = 1 +

∫ ∞

τ=0
c(τ)dτ.

These should be zero for a stationary xt.

• Hansen–Sargent prediction formulas.

Et

∞∑
j=0

βjxt+j =

(
LZb(L) − βZb(β)

L − β

)
εt

Et

∞∑
j=1

βj−1xt+j =

(Zb(L) − Zb(β)

L − β

)
εt

(Et − Et−1)
∞∑
j=0

βjxt+j = Zb(β)εt.

Et

∫ ∞

τ=0
e−rτxt+τ dτ =

(Lb(D) − Lb(r)

r − D

)
σDB t.

“ lim
∆→0

(Et+∆ − Et)”

∫ ∞

τ=0
e−rτxt+τ dτ = Lb(r)σdBt.

215

• Difference-stationary processes.

Dxt = Lc(D)σDBt

dxt =

∫ ∞

τ=0
c(τ)σdBt−τ + σdBt.

Polynomial example. In moving average form:

Dxt =
D + θ

D + λ
σDBt

Dxt =

(
1 +

θ − λ

D + λ

)
σDBt

dxt = (θ − λ)

(∫ ∞

τ=0
e−λτσdBt−τ

)
dt + σdBt.

In autoregressive form:

D + λ

D + θ
Dxt = σDBt(

1 +
λ − θ

D + θ

)
Dxt = σDBt

dxt = −(λ − θ)

(∫ ∞

τ=0
e−θτ dxt−τ

)
dt + σdBt.

• Transforming from differences to levels, Beveridge–Nelson

decompositions.

Zc(L) = Zc(1) + (1 − L)Zb(L); bj = −
∞∑

k=j+1

ck

implies

xt = zt + wt;

(1 − L)zt = Zc(1)εt; wt = Zb(L)εt.

In continuous time,

Dxt = Lc(D)σDBt = [Lc(0) + DLb(D)]σDBt

implies

xt = zt + wt;

Dzt = Lc(0)σDBt;wt = Lb(D).

216 Summary

Constructing Lb(D):

Lb(D) =
Lc(D) − Lc(0)

D

b(τ) = −
∫ ∞

s=τ
c(s)ds.

zt has the “trend” property

zt = lim
T→∞

Et (xt+T) = xt + Et

∫ ∞

τ=0
dxt+τ .

• Cointegration. Given the moving average representation,

Dxt = Lc(D)V DBt

xt are cointegrated if Lc(0) has rank less than N . Then

Lc(0) = δβ′

and there exist α,φ :

α′δ = α′Lc(0) = 0; β′φ = Lc(0)φ = 0.

The common trend representation

Dzt = β′V DBt

xt = δzt + wt.

The cointegrating vector α′xt = α′wt is stationary.

The error correction representation is

Dxt = −φ(α′xt) + Ld(D)V DBt.

Acknowledgments

I thank George Constantinides for helpful comments. I acknowledge

research support from CRSP.

217

References

Beveridge, S. and C. R. Nelson (1981), ‘A new approach to decompo-

sition of economic time series into permanent and transitory com-

ponents with particular attention to measurement of the ‘business

cycle”. Journal of Monetary Economics 7, 151–174. http://dx.doi.

org/10.1016/0304-3932(81)90040-4.

Cochrane, J. H. (2005a), Asset Pricing: Revised Edition. Princeton:

Princeton University Press. http://press.princeton.edu/titles/7836.

html.

Cochrane, J. H. (2005b), ‘Time series for macroeconomics and finance’.

Manuscript, University of Chicago. http://faculty.chicagobooth.edu/

john.cochrane/research/papers/time series book.pdf.

Cochrane, J. H. (2012), ‘A continous-time asset pricing model

with habits and durability’. Manuscript, University of Chicago.

http://faculty.chicagobooth.edu/john.cochrane/research/papers/

linquad asset price example.pdf.

Engle, R. F. and C. W. J. Granger (1987), ‘Co-integration and error

correction: Representation, estimation, and testing’. Econometrica

55, 251–276.

218

References 219

Hansen, L. P. and T. J. Sargent (1980), ‘Formulating and estimating

dynamic linear rational-expectations models’. Journal of Economic

Dynamics and Control 2, 7–46.

Hansen, L. P. and T. J. Sargent (1981), ‘A note on Wiener–Kolmogorov

prediction formulas for rational expectations models’. Economics

Letters 8, 255–260.

Hansen, L. P. and T. J. Sargent (1991), ‘Prediction formulas for

continuous-time linear rational expectations models’. Chapter 8

of Rational Expectations Econometrics. https://files.nyu.edu/ts43/

public/books/TOMchpt.8.pdf.

Heaton, J. (1993), ‘The interaction between time-nonseparable pref-

erences and time aggregation’. Econometrica 61, 353–385. http://

www.jstor.org/stable/2951555.

