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2 Continuous Time Summary/Review

We need a statistical model that can apply to stock prices, returns, etc. The point of these notes
is to quickly present the standard diffusion model that we use in asset pricing.

We use continuous time when it’s simpler. In point of fact all our data are discretely sampled.
Whether time is “really”continuous or discrete is an issue we’ll leave to physicists and philosophers.
Most of the approximations that took a lot of effort in Chapter 1 of Asset pricing work much more
easily in continuous time.

2.1 Preview/summary:

2.1.1 Continuous time

1. Brownian motion
zt+∆ − zt ∼ N(0,∆)

2. Differential
dzt = lim

∆↘0
(zt+∆ − zt)

3. dz and dt

dzt ∼ O(
√
dt)

dz2
t = dt

Et(dzt) = 0

vart(dzt) = Et(dz
2
t ) = dz2

t = dt

4. Diffusions

dxt = µ(xt, t)dt+ σ(xt, t)dzt

Et (dxt) = µ(xt, t)dt

σ2
t (dxt) = σ2(xt, t)dt

5. Examples

dpt
pt

= µdt+ σdzt

dxt = −φ(xt − µ)dt+ σdzt

1Please report typos to john.cochrane@chicagobooth.edu. Make sure you have the latest version of the document.
If you can report the context of the typo and not just the page number that will help me to find it more quickly.
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6. Ito’s lemma
dxt = µdt+ σdzt; yt = f(t, xt) =⇒

dyt =
∂f

∂t
dt+

∂f

∂x
dxt +

1

2

∂2f

∂x2
dx2

t

dyt =

[
∂f

∂t
+
∂f

∂x
µ+

1

2

∂2f

∂x2
σ2

]
dt+

[
∂f

∂x
σ

]
dz

7. Stochastic calculus: “do second-order expansions, keep the dz and dt terms.”

2.1.2 Solving stochastic differential equations

1. Stochastic integral “add up the changes”

zT − z0 =

∫ T

t=0
dzt ↔ zT − z0 =

T∑
t=1

εt

the result is just a way of saying zT is a normally distributed random variable∫ T

t=0
dzt = zT − z0 ∼ N(0, T )

2. Example 1: diffusion
dxt = µdt+ σdzt∫ T

t=0
dxt = µ

∫ T

t=0
dt+ σ

∫ T

t=0
dzt

xT − x0 = µT + σ (zT − z0)

3. Example 2: lognormal diffusion
dxt
xt

= µdt+ σdzt

d lnxt =

(
µ− 1

2
σ2

)
dt+ σdzt

lnxT − lnx0 =

(
µ− 1

2
σ2

)
T + σ

∫ T

0
dzt

xT = x0e
(µ− 1

2
σ2)T+σ

∫ T
0 dzs

4. Example 3: AR(1)
dxt = −φ(xt − µ)dt+ σdzt

xT − µ = e−φT (x0 − µ) + σ

∫ T

t=0
e−φ(T−t)dzT−t
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5. Continuous-time MA processes

xT =

∫ T

t=0
w(T − t)dzt

6. With solutions, you can find moments. Examples

(a) Lognormal diffusion

xT = x0e
(µ− 1

2
σ2)T+σ

∫ T
0 dzs

E(xT ) = x0e
(µ− 1

2
σ2)T+ 1

2
σ2T = x0e

µT

(b) AR(1)

(xt − µ) = e−φt(x0 − µ) +

∫ t

s=0
e−φ(t−s)σdzs

E0(xt − µ) = e−φt(x0 − µ)

σ2(xt − µ) =

∫ t

s=0
e−2φ(t−s)σ2ds =

1− e−2φt

2φ
σ2

(c) Continuous-time MA.

xt =

∫ t

s=0
w(t− s)dzs,

E0(xt) = E0

(∫ t

s=0
w(t− s)dzs

)
=

∫ t

s=0
w(t− s)Es (dzs) = 0

E0(x2
t ) = E0

(∫ t

s=0
w(t− s)dzs

)2

=

∫ t

s=0
w(t− s)2ds.

2.1.3 Finding Moments and Densities

1. Backward equation. What is
f(xt, t) = Et [φ(xT )]?

We can work backwards using Ito’s lemma to find

∂f(x,t)

∂t
+
∂f(x,t)

∂x
µ(x,t) +

1

2

∂2f(x,t)

∂x2
σ2(x,t) = 0

Then solve this partial differential equation with boundary condition

f(x, T ) = φ(x).

2. Densities and the Forward Equation.
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(a) Define f(x, t|x0) = the probability density of xt given x0 at time 0. It’s a delta function
at t = 0, x = x0. Looking forward it solves

∂f(x, t|x0)

∂t
+
∂ [µ(x)f(x, t|x0)]

∂x
=

1

2

∂2
[
σ2(x)f(x, t|x0)

]
∂x2

(b) This fact gives a nice formula for the stationary (unconditional) density. The formula is:

f(x) = k
e
∫ x−2

µ(s)

σ2(s)
ds

σ2(x)

where k is a constant, so we integrate to one. Evaluating k,

f(x) =

∫ e
∫ x 2

µ(s)

σ2(s)
ds

σ2(s)
ds

−1

e
∫ x 2

µ(s)

σ2(s)
ds

σ2(x)

2.1.4 Asset pricing in continuous time

1. Present value formula

pt = Et

∫ ∞
s=0

e−δs
u′(ct+s)

u′(ct)
xt+sds = Et

∫ ∞
s=0

Λt+s
Λt

xt+sds

2. What’s a “return”?

dRt =
dpt
pt

+
xt
pt
dt

3. What’s a “cumulative value process”

dVt
Vt

= dRt

4. What’s a “riskfree rate?”
rft dt

5. What’s an “excess return?”

dRt − rft dt =
dpt
pt

+
xt
pt
dt− rft dt

6. What’s the equivalent of 1 = E(mR)?

Et

[
d (Λtpt)

Λtpt

]
− xt
pt
dt = 0

or Et [d (ΛtVt)] = 0
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7. What’s the equivalent of Rf = 1/E(m)?

rfdt = −Et
[
dΛt
Λt

]
8. What’s the equivalent of E(Re) = −Rfcov(m,Re)?

Et (dRt)− rfdt = −Et
[
dΛt
Λt

dRt

]
9. What’s the equivalent of mt+1 ≈ 1− δ − γ∆ct+1?

dΛt
Λt

= −δdt− γ dct
ct

+
1

2
γ(γ + 1)

dc2
t

ct
dΛt
Λt

= −δdt− γd [log ct] +
1

2
γ2d [log ct]

2

10. What’s the equivalent of Rf ≈ δ + γE(∆c)?

rf = δ + γµc −
1

2
γ2σ2

c

where d log ct = µcdt+ σcdzt

11. What’s the equivalent of E(Re) ≈ γcov(Re,∆c)?

Et (dRt)− rfdt = γEt

[
dct
ct
dRt

]
= γcovt

[
dct
ct
, dRt

]

2.2 A quick discrete time review

I’ll explain continuous time by analogy with discrete time. This is a quick review of the essential
concepts can’t hurt.

1. A sequence of i.i.d. random variables (like a coin flip) forms the basic building block of time
series.

εt ∼ i.i.d.

i.i.d. means “independent and identically distributed.” In particular, it implies that the
conditional mean and variance are constant through time. Our building block series has a
zero mean,

Et(εt+1) = 0

σt(εt+1) = σ2 = const.

The concept of conditional mean and variance is really important here! Et means “expec-
tation conditional on all information at time t.”We sometimes specify that εt are normally
distributed, but they don’t have to be.
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2. We build more interesting time series models from this building block. The AR(1) is the
first canonical example

xt+1 = ρxt + εt+1.

The sequence of conditional means follows

Etxt+1 = Et (ρxt + εt+1) = ρxt

Etxt+2 = Et (ρxt+1 + εt+2) = ρ2xt

Etxt+k = ρkxt.

The AR(1) displays some persistence since after a shock it is expected to stay up for a while,
and then decay gradually back again. A good exercise at this point is to work out the sequence
of conditional variances of the AR(1). The answer is

σ2
t (xt+1) = σ2

ε

σ2
t (xt+2) = (1 + ρ2)σ2

ε

σ2
t (xt+k) = (1 + ρ2 + ...+ ρ2(k−1))σ2

ε

3. We can also write the AR(1) as

xt+1 = ρxt + σεt+1; σ2
ε = 1

The earlier notation is more common in discrete time; the latter notation is more common
as we move to continuous time. In either case, note Etεt+1 = 0 so it’s uncorrelated with xt.
Thus you can estimate an AR(1) by an OLS forecasting regression.

4. The canonical example 2 is the MA(1).

xt+1 = εt+1 + θεt.

Its sequence of conditional means follows

Et(xt+1) = θεt

Et(xt+2) = 0

Et(xt+k) = 0.

It displays some persistence too but only for one period. Problem: work out its conditional
variances.

5. You can transform from AR to MA representations. You can think of this operation as
“solving”the AR(1)

xt = ρxt−1 + εt

xt = ρ (ρxt−2 + εt−1) + εt = ρ2xt−2 + ρεt−1 + εt

xt = ρ3xt−3 + ρ2εt−2 + ρεt−1 + εt

xt = ρtx0 +

t−1∑
j=0

ρjεt−j
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“Solving” the difference equation means, really, expressing xt as a random variable, given
time 0 information. Now we know xt has

E0(xt) = ρkx0;

σ2
0(xt) = (1 + ρ2 + ..+ ρ2(k−1))σ2

ε .

If the ε are normal, so is xt.

6. Continuing, we can write the AR(1) as

xt =

∞∑
j=0

ρjεt−j

Thus, an AR(1) is the same as an MA(∞). You can similarly write an MA(1) as an AR(∞).
Choose which representation is easiest for what you’re doing. An example: Let’s find the
unconditional mean and variance of the AR(1). One way to do this is with the MA(∞)
representation

E(xt) =

∞∑
j=0

ρjE (εt−j) = 0.

var (xt) = var

 ∞∑
j=0

ρjεt−j

 =

∞∑
j=0

ρ2jσ2
ε =

σ2
ε

1− ρ2

Notice: the ε are all uncorrelated with each other. That’s how we got rid of the covariance term
and all σ2 are the same. We can also find the same quantities from the AR(1) representation

E(xt) = ρE(xt−1) + 0→ E(xt) = 0

var(xt) = ρ2var(xt−1) + σ2
ε → var(xt) =

σ2
ε

1− ρ2
.

To come to the latter conclusions, you have to understand that E(xt) = E(xt−1) and var(xt) =
var(xt−1).

7. All of the familiar tricks for linear ARMA models, including lag operator notation, have con-
tinuous time counterparts. It takes a little work to make the translation. If you’re interested,
see my “Continuous-time linear models”Foundations and Trends in Finance 6 (2011), 165—
219 DOI: 10.1561/0500000037. It’s on my webpage,
http://faculty.chicagobooth.edu/john.cochrane/research/papers/continuous_time_linear_models_FT.pdf

2.3 Continuous time series

1. Preview. In discrete time, our building block is the i.i.d. (normal) shock εt with variance
σ2(εt) = 1. We build up more complex time series from this building block with difference
equation models such as the AR(1),

xt+1 = ρxt + σεt+1
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We “solve”such difference equations to represent xt as a function of its past shocks,

xt =
t−1∑
j=0

ρjσεt−j + ρtx0.

Our task is to do the exact same sort of thing in continuous time.

2. Random walk-Brownian motion zt.

(a) In discrete time, a random walk zt is defined as the sum of independent shocks,

zt − z0 =
t∑

j=1

εj .

Obviously, we recover εt as differences of zt.

∆zt = (zt − zt−1) = εt.

It will turn out to be easier to think first about zt in continuous time and then take
differences than to think directly about εt

(b) Now, let’s examine the properties of zt. The variance of z grows linearly with horizon.

zt+2 − zt = εt+1 + εt+2

E (zt+2 − zt) = 0

var(zt+2 − zt) = 2

zt+k − zt = εt+1 + εt+2 + ..+ εt+k

E (zt+k − zt) = 0

var(zt+k − zt) = k

(remember, I set σε = 1.)

(c) To think about continuous time, just generalize this idea for any time interval. Let’s
define the process zt as one with normal increments,

zt+∆ − zt ∼ N(0,∆)

for any ∆, not just integers. This is a Brownian motion, the continuous-time version of
a random walk.

(d) I.i.d. property In discrete time E(εtεt+1) = 0, i.e. E(zt+2−zt+1, zt+1−zt) = 0. The nat-
ural generalization is E(zt+∆−zt, zt+∆+η−zt+∆) = 0, or more generally Nonoverlapping
differences of {zt} are uncorrelated with each other.

3. The differential dz
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(a) Now let’s take the “derivative”as we took the difference εt = zt − zt−1. Define

dzt = lim
∆↘0

(zt+∆ − zt)

dzt ↔ εt fundamental building block

d is a tiny forward -difference operator.

(b) dz is of size
√
dt. What does this mean? Note

σ2(zt+∆ − zt) = ∆;

σ(zt+∆ − zt) =
√

∆

Thus, dzt is of order (typical size)
√
dt! This means that sample paths of zt are contin-

uous but not differentiable. dz makes sense, but dz/dt does not. dzt is of order
√
dt so

dz/dt→ +/−∞, moving “infinitely fast”(up and down). The zt process is fractal; it’s
jumpy at any time scale; it has an infinite path length.

(c) dz, dzt, and dz(t) are equivalent notations.

(d) Moments:

Et(dzt) = 0; ⇐⇒ Et(zt+∆ − zt) = 0

vart(dzt) = dt; ⇐⇒ var(zt+∆ − zt) = ∆,

cov(dzt, dzs) = 0 s 6= t ⇐⇒ cov(zt+∆ − zt, zs+∆ − zs) = 0

Watch out for notation. Et(dzt) 6= dzt! d is a forward difference operator, so Et (dzt)
means expected value of how much dz will change in the next instant. It really means
Et (zt+∆ − zt), which is obviously not the same thing as zt+∆ − zt

(e) dz2
t = dt. Variance and second moment are the same.

vart(dzt) = Et(dz
2
t ) = dz2 = dt.

Second moments are nonstochastic! It’s not just dz2 is of order dt, but in fact dz2 =
dt. We often write E(dz2) to remind ourselves that for any discrete interval these are
second moments of random variables. But in the limit, in fact, second moments are
nonstochastic. Similarly if we have two Brownians dz and dw, they can be correlated
and the cross product is

covt(dzt, dwt) = Et(dztdwt) = dztdwt.

(f) (Optional note.) The fact that squares of random variables are deterministic is hard to
swallow. If dzt is a normal with standard deviation

√
dt, why is dz2

t a number, not a
χ2 distributed random variables? To see why, compare dzt and dz2

t . zt+∆−zt is N(0,∆),
(zt+∆ − zt) /

√
∆ ∼ N(0, 1) so the probability that, say, ‖zt+∆ − zt‖ > 2

√
∆ is 5%. The

“typical size”of a movement zt+∆ − zt goes to zero at rate
√

∆

On the other hand, (zt+∆ − zt)
2/∆ ∼ χ2

1. (χ2
1 or “chi-squared with one degree of

freedom” just means “the distribution of the square of a standard normal.”) The fact
that the distribution (zt+∆ − zt)2/∆ stays the same as ∆ gets small means that the
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probability that, say, (zt+∆ − zt)2 > 2∆ is fixed as ∆ gets small. Thus (zt+∆ − zt)2

goes to zero at rate ∆. The “typical size”of a movement (zt+∆− zt)2 or the probability
that it exceeds any value goes to zero at rate ∆. Things whose movements go to zero at
rate ∆ are differentiable, and hence nonstochastic. (zt+∆ − zt)2 is of order ∆ and hence
nonstochastic.

4. Diffusion processes. We have the building block, the analog to εt. Now, we build more
complex process like AR(1), ARMA, etc. in the same way as we do in discrete time.

(a) Random walk with drift.

discrete: xt+1 = µ+ xt + σεt+1

xt+1 − xt = µ+ σεt

continuous: dxt = µdt+ σdzt

i. Moments of the random walk with drift, which gives you some practice in dz and
dt. The mean is

Et(dxt) = µdt+ σEt (dzt) = µdt

For the variance, notice

dx2
t = (dxt)

2 = µ2dt2 + σ2dz2 + 2µdtdzt = σ2dt

The first parenthesis clears up notation. In calculus, you learned to keep terms of
order dt, and ignore terms of order dt2 and so on, because they get arbitrarily small
as the time interval shrinks. The new rule is, we keep terms of order dz =

√
dt and

dt, but we ignore terms of order dt3/2, dt2, etc. just as in regular calculus. So terms
like dt2 and dtdz drop out. Only the σ2dt term remains. So, the variance is

vart(dxt) = Et(dx
2
t ) = dx2

t = σ2dt

ii. The mean drops out of the variance. Loosely, diffusions vary so much that variances
overwhelm means and it doesn’t matter if you take the mean out when you take
variance or not. You might have objected, and wanted to define

vart(dxt) = Et

{
[dxt − Et (dxt)]

2
}

But watch:

Et

{
[dxt − Et (dxt)]

2
}

= Et

{
[dxt − µdt]2

}
= Et

{
[σdzt]

2
}

= σ2Et
(
dz2
t

)
= σ2dt

We get the same result whether we take the mean out or not. The dzt term is of
order

√
dt, so almost always infinitely bigger than the dt term.

(b) Geometric Brownian motion with drift. This is the standard asset price process, so
worth careful attention.

dpt
pt

= µdt+ σdzt

dpt is the change in price, so dpt/pt is the instantaneous percent (not annualized) change
in price or instantaneous rate of return if there are no dividends. We’ll see how to add
dividends in a moment.
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i. The moments are

Et

(
dpt
pt

)
= µdt

vart

(
dpt
pt

)
= σ2dt

so µ and σ can represent the mean and standard deviation of the arithmetic percent
rate of return. Since they multiply dt, they have annual units. µ = 0.05 and
σ2 = 0.102 are numbers to use for a 5% mean return and 10% standard deviation of
return.

ii. Don’t forget the dt at the end of these expressions

Et

(
dpt
pt

)
= µ, vart

(
dpt
pt

)
= σ2

is tempting but incorrect. It’s ok to write

1

dt
Et

(
dpt
pt

)
= µ,

1

dt
vart

(
dpt
pt

)
= σ2

but it’s better to write

Et

(
dpt
pt

)
= µdt, vart

(
dpt
pt

)
= σ2dt

iii. Sticklers like to write this process

dpt = µptdt+ σptdzt

so it is in the canonical form

dpt = µ(pt, t, ..)dt+ σ(pt, t, ..)dzt.

iv. You can also see here the reason we call it a “stochastic differential equation.”
Without the dzt term, we would “solve”this equation to say

pt = p0e
µt.

i.e. value grows exponentially. We will come back and similarly “solve”the stochastic
differential equation with the dzt term.

(c) AR(1), Ornstein Uhlenbeck process

discrete: xt+1 = (1− ρ)µ+ ρxt + σεt+1

xt+1 − xt = −(1− ρ)(xt − µ) + σεt+1

Et (xt+1 − xt) = −(1− ρ)(xt − µ)

vart (xt+1 − xt) = σ2
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continuous: dxt = −φ(xt − µ)dt+ σdzt

Etdxt = −φ(xt − µ)dt

vartdxt = σ2dt

The part in front of dt is called the “drift” and the part in front of dzt is called the
“diffusion”coeffi cient.

(d) In general, we build complex time series processes from the stochastic differential equa-
tion

dxt = µ(xt, t, ...)dt+ σ(xt, t, ...)dzt.

µ and σ may be nonlinear functions (ARMA in time series are just linear). Note we
often suppress state and time dependence and just write µ, σ or µ(·), σ(·) or µt and σt.

Et (dxt) = µ(xt, t, ..)dt

vart(dxt) = σ2(xt, t, ..)dt

(e) Simulation/approximation. We often use continuous time to derive approximations for
discrete time. We also will often want to simulate forward continuous time processes on
a computer. The “Euler approximation”is a natural way to do this. From

dxt = µ(xt, t)dt+ σ(xt, t)dzt

write
xt+∆ − xt = µ(xt, t)∆ + σ(xt, t)

√
∆εt+∆

where ∆ is a short time interval and εt+∆ ∼ N(0, 1). For example, you could use
∆ = 1/365 to simulate daily data.

5. Ito’s lemma. Given a diffusion process for xt, we can construct a new process yt = f(xt).
How can we find a diffusion representation for yt given the diffusion representation of xt?.
For example, what does the log price process log(pt) look like?

(a) Nonstochastic answer: Given
dxt
dt

= µ

we use the chain rule.

dyt =
∂f

∂x
dxt =

∂f

∂x
µdt

But that assumes dx/dt is meaningful, i.e. dxt = µdt. What if dxt = µtdt+ σdzt?

(b) So our question:

dxt = µdt+ σdzt

yt = f(xt)

dyt =?

Answer:
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• Do a second order Taylor expansion. Keep terms of order dt and dzt =
√
dt, ignore

higher order terms. Don’t forget dz2
t = dt.

The answer is called Ito’s lemma:

dyt =
∂f

∂x
dxt +

1

2

∂2f

∂x2
dx2

t

dyt =

[
∂f

∂x
µ+

1

2

∂2f

∂x2
σ2

]
dt+

[
∂f

∂x
σ

]
dz

Intuition: Jensen’s inequality says, E [y(x)] < y [E(x)] if y (x) is concave. E [u(c)] <
u [E(c)] for example. The second derivative term takes care of this fact. You will see
this in the “convexity”terms of option and bond pricing.

(c) An example. Geometric growth

dpt
pt

= µpdt+ σdzt

yt = ln pt

dyt =
1

pt
dpt −

1

2

1

p2
dp2

t =

(
µp −

1

2
σ2

)
dt+ σdzt

(d) Conversely,

dyt = µydt+ σdzt

pt = eyt

dpt = eytdyt +
1

2
eytdy2

t

dpt
pt

=

(
µy +

1

2
σ2

)
dt+ σdzt

(e) Another example. We will often multiply two diffusions together. What is the product
diffusion? Use the chain rule but go out to second derivatives.

d(xtyt) =
∂(xy)

∂x
dxt +

∂(xy)

∂y
dyt +

1

2
× 2× ∂2(xy)

∂x∂y
dxtdyt

= ytdxt + xtdyt + dxtdyt

The second partials with respect to x and y ∂2(xy)/∂x2 are zero. Notice the extra term
dxtdyt relative to the usual chain rule.

(f) Ito’s lemma more generally. If
y = f(xt, t)

then

dyt =
∂f

∂t
dt+

∂f

∂x
dxt +

1

2

∂2f

∂x2
dx2

t

dyt =

[
∂f

∂t
+
∂f

∂x
µ+

1

2

∂2f

∂x2
σ2

]
dt+

[
∂f

∂x
σ

]
dz

The version with partial derivatives starting from yt = f(x1t, x2t, t) is obvious enough
and long enough that I won’t even write it down.
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2.4 Solving stochastic differential equations.

1. The problem: We want to do the analogue of “solving” difference equations. For example,
when we write an AR(1),

xt = ρxt−1 + εt

we solve backward to

xt = ρtx0 +
t−1∑
j=0

ρjεt−j .

How do we do this in continuous time?

2. Another motivation. If you have a differential equation

dxt = µdt

you know how to solve this. Integrate both sides from 0 to T ,

xT = x0 + µ

∫ T

s=0
dt = x0 + µT.

So, how do you solve a stochastic differential equation,

dxt = µdt+ σdzt?

3. A natural idea: Why don’t we just integrate both sides,∫ T

t=0
dxt = µ

∫ T

t=0
dt+ σ

∫ T

t=0
dzt.

What meaning can we give to the integrals? Why not just “add up all the little changes.”’∫ T

0
dzt = (z∆ − z0) + (z2∆ − z∆) + (z3∆ − z2∆) + ....+ (zT − zT−∆) = zT − z0.

Then our solution reads
xT − x0 = µT + σ (zT − z0) .

Now, we defined (zT − z0) to mean “a normally distributed random variable with mean 0 and
variance T .”So this solution means, “xT −x0 is a normally distributed random variable with
mean µT and variance σ2T .”Similarly, if dzt are the little changes, you get z back if you add
them up.

4. In sum, the building block of solutions is the opposite of our dzt differencing operator, and
completes the analogy we started when defining zT in the first place

zT − z0 =

∫ T

t=0
dzt ↔ zT − z0 =

T∑
t=1

εt
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∫ T
t=0 dzt is called a Stochastic integral. This is a fundamentally different definition of “integral”
which gives mathematicians a lot to play with. For us, it just means “add up all the little
changes.”Recall that zt is not differentiable. That’s why we do not write the usual integral
notation

Yes: zT − z0 =

∫ T

0
dzt

No: zT − z0 =

∫ T

0

(
dz(t)

dt

)
dt

We do not define the integral as the “area under the curve” as you do in regular calculus.
What we mean by “

∫ T
0 dzt” in the end is just a normally distributed random variable with

mean zero and variance t. ∫ T

0
dzt = zT − z0 ∼ N(0, T )

5. Now, to more complex stochastic differential equations. In discrete time, we “solve” the
difference equation:

xt = (1− ρ)µ+ ρxt−1 + εt

xt − µ = ρ (xt−1 − µ) + εt

xT − µ = ρT (x0 − µ) +
T−1∑
j=0

ρjεT−j .

This means we know the conditional distribution of the random variable xT , and really that’s
what it means to have “solved”the stochastic difference equation.

xT |x0 ∼ N

µ+ ρT (x0 − µ) , σ2
ε

T−1∑
j=0

ρ2j


Let’s do the same thing in continuous time.

6. I’ll just do some examples. I won’t use anything fancier than the basic idea: plop
∫ T
t=0 on

both sides of an expression and interpret the results.

(a) Random walk. If we start with dzt and integrate both sides,

zT − z0 =

∫ T

t=0
dzt

zT − z0 ∼ N(0, T )
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(b) Random walk with drift

dxt = µdt+ σdzt∫ T

t=0
dxt =

∫ T

t=0
µdt+

∫ T

t=0
σdzt

xT − x0 = µT + σ

∫ T

t=0
dzt

xT − x0 = µT + ε; ε ∼ N(0, Tσ2)

xT − x0 ∼ N(µT, Tσ2)

As in discrete time,

xT = x0 + µT +
T∑
t=1

εt

(c) Lognormal price process.
dpt
pt

= µdt+ σdzt

By Ito’s lemma

d ln pt =

(
µ− 1

2
σ2

)
dt+ σdzt

now integrate both sides,∫ T

0
d ln pt =

∫ T

t=0

(
µ− 1

2
σ2

)
dt+

∫ T

t=0
σdzt

ln pT − ln p0 =

(
µ− 1

2
σ2

)
T + σ

∫ T

t=0
dzt

pT = p0e
(µ− 1

2
σ2)T+σ

∫ T
t=0 dzt

i.e,
pT = p0e

(µ− 1
2
σ2)T+σ

√
Tε ε ∼ N(0, 1)

pT is lognormally distributed. (Lognormal means log of pT is normally distributed.)

• A geometric diffusion, where the arithmetic return is instantaneously normal, means
that the finite-period return is lognormally distributed.

(d) AR(1)
dxt = −φ(xt − µ)dt+ σdzt

The solution is,

xT − µ = e−φT (x0 − µ) + σ

∫ T

s=0
e−φsdzT−s

this looks just like the discrete time case

xT − µ = ρT (x0 − µ) +
T−1∑
j=0

ρjεt−j .
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i. To derive this answer, you have to be a little clever. Find

d
(
eφt (xt − µ)

)
= φeφt (xt − µ) dt+ eφtdxt

= φeφt (xt − µ) dt+ eφt [−φ(xt − µ)dt+ σdzt]

= σeφtdzt

Now integrate both sides,∫ T

t=0
d
(
eφt (xt − µ)

)
=

∫ T

t=0
σeφtdzt

eφT (xT − µ)− (x0 − µ) = σ

∫ T

t=0
eφtdzt

(xT − µ) = e−φT (x0 − µ) + σ

∫ T

t=0
eφ(t−T )dzt

In the continuous time tradition, we usually express integrals going forward in time,
as this one is. To connect with discrete time, you can also rearrange the integral to
go back in time, ∫ T

t=0
e−φ(t−T )dzt =

∫ T

s=0
e−φsdzT−s.

ii. To check this answer, write it as

xt − µ = e−φt (x0 − µ) + σ

∫ t

s=0
e−φ(t−s)dzs

and take dxt. The first term is just the usual time derivative. Then, we take the
derivative of the stuff inside the integral as time changes, and lastly we account for
the fact that the upper end of the integral changes,

dxt = −φe−φt (x0 − µ) dt+

[
σ

∫ t

s=0
(−φ) e−φ(t−s)dzs

]
dt+ σdzt

dxt = −φ
[
e−φt (x0 − µ) + σ

∫ t

s=0
e−φ(t−s)dzs

]
dt+ σdzt

dxt = −φ (xt − µ) dt+ σdzt

(e) This example adds an important tool to our arsenal. Notice we can weight sums of dzt
terms, just as we weight sums of εt terms. We can produce or write results as continuous
time moving average processes

xT =

∫ T

t=0
w(T − t)dzt

7. Once you have “solved an sde”you have expressed xT as a random variable. Naturally, you
will want to know moments —means and variances of xT . Here are some examples.
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(a) Example: Diffusion:

xT − x0 = µT + σ

∫ T

t=0
dzt

E (xT − x0) = µT + σ

∫ T

t=0
E (dzt) = µT

var (xT − x0) = σ2E

(∫ T

t=0
dzt

)2

= σ2

∫ T

t=0
E
(
dz2
t

)
= σ2

∫ T

t=0
dt = σ2T

I used dztdzs = 0 for t 6= s in the last line.

(b) Example: Lognormal price process

dpt
pt

= µdt+ σdzt.

The solution is
pt = p0e

(µ− 1
2
σ2)t+σ

∫ t
s=0 dzs

and then we can find the expected value

E0(pt) = p0e
(µ− 1

2
σ2)t+ 1

2
σ2
∫ t
s=0 ds = x0e

(µ− 1
2
σ2)t+ 1

2
σ2t = x0e

µt

(In the last line I use the fact that for normal y, E(ey) = eE(y)+ 1
2
σ2(y).)

(c) Example: AR(1). Start with the solution, then use the fact that E(dzt) = 0, E(dz2
t ) =

dt, E(dztdzs) = 0, for t 6= s.

(xt − µ) = e−φt(x0 − µ) +

∫ t

s=0
e−φ(t−s)σdzs

E0(xt − µ) = e−φt(x0 − µ)

σ2(xt − µ) = E

[(∫ t

s=0
e−φ(t−s)σdzs

)2
]

=

∫ t

s=0
e−2φ(t−s)σ2ds =

1− e−2φt

2φ
σ2

as in discrete time

E0 (xt+j − µ) = ρj(x0 − µ)

var0 (xt − µ) = E

 t−1∑
j=0

ρjεt−j

2 =
t−1∑
j=0

ρ2jσ2 =
1− ρ2t

1− ρ2
σ2
ε

(d) Example: Continuous-time MA. If you have a solution

xt =

∫ t

0
g(t− s)dzs,

18



then

E0(xt) = E0

(∫ t

0
g(t− s)dzs

)
=

∫ t

0
g(t− s)Es (dzs) = 0

and

E0(x2
t ) = E0

(∫ t

0
g(t− s)dzs

)2

=

∫ t

0
g(t− s)2ds;

8. In general, solving SDE’s is not so easy! As with regular differential equation, you can’t just
integrate both sides, because you might have an x on the right side as well that you can’t
easily get rid of. The idea is simple, from

dxt = µ(xt, t)dt+ σ(xt, t)dzt

you can write

xT = x0 +

∫ T

0
µ(xt, t)dt+

∫ T

0
σ(xt, t)dzt

We end up describing a random variable f(xT |x0). The hard part is finding closed-form
expressions, when the µ and σ depend on x. The first term is just a standard differential
equation. (And remember how “easy”that is!)

9. Simulation. You can easily find distributions and moments by simulating the solution to a
stochastic differential equation. Use the random number generator and program

xt+∆ = xt + µ(xt, t)∆ + σ(xt, t)
√

∆εt+∆; εt+∆ ∼ N(0, 1)

10. A last example. The CIR (Cox Ingersoll Ross) square root process. Suppose we generate xt
from zt by

dxt = −φ(xt − µ)dt+ σ
√
xtdzt.

The AR(1) process ranges from −∞ to ∞. As x → 0, volatility goes down, and the drift is
pulling it back, so xt can’t cross zero. That fact, and the fact that it’s more volatile when the
level is higher, makes it a good process for nominal interest rates. It’s a nonlinear process,
not in ARMA class. A strong point for continuous time is that we can handle many of these
nonlinear processes in continuous time, though we really can’t really do much with them in
discrete time. For example, the discrete-time square root process is

xt = ρxt−1 +
√
xtεt

Now what do you do? There are closed form solutions for the CIR process and many other
nonlinear processes. I won’t give those here.

2.5 Finding Moments more generally

(The remaining sections will not be used in Asset Pricing or my courses.)

Often you don’t really need the whole solution, you only want moments. If xT is a cash payoff
at time T , you might want to know its expected value, Et(xT ). You might want the expected value
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of a function of xT , i.e. Et [φ(xT )]. This happens in option pricing, where φ is the call option payoff
function. The most basic asset pricing valuation formula is a moment E0

[∫
e−ρtmtxtdt

]
.

We saw above how to find moments after you have a full solution. but that’s hard. But you
can often find moments without first finding the whole “solution” or distribution of the random
variable, i.e. xT or φ(xT ) itself.

1. But we can also find moments directly because Moments follow nonstochastic differential
equations. You don’t have to solve stochastic differential equations to find the moments.

(a) Example.
dxt = µdt+ σ(·)dz

Let’s suppose we want to find the mean. Now,

E0(xt+∆)− E0(xt) = d [E0(xt)] = E0(dxt) = µdt

Watch the birdie here. By d [E0(xt)] I mean, how does the expectation E0(xt) move
forward in time. But now the point: Since the dz term is missing, you can find the mean
of x without solving the whole equation.

(b) Example: lognormal pricing
dx

x
= µdt+ σdz

The mean follows

dE0(xt)

E0(xt)
= µdt

dE0(xt) = µE0(xt)dt

E0(xt) = x0e
µt

This is the same solution we had before. Look how much easier that was!

(c) Similarly, to find moments E0φ(x), find the diffusion representation for E0φ(x) by Ito’s
lemma.

(d) Alas, this technique is limited. If µ(xt) then E0(dxt) = E0(µ(xt))dt. You need to know
the distribution of xt to get anywhere.

2. The “Backward equation.”What is Et [φ(xT )]? We know that ET [φ(xT )] = φ(xT ). We can
work backwards using Ito’s lemma to find Et [φ(xT )]. We have a process

dx = µ(·)dt+ σ(·)dz

and we want a moment, say
Et [φ(xT )] .

In particular, Et(xT ) is φ(xt) = xt, Et(x
2
T ) is φ(xt) = x2

t . Define

f(xt, t) = Et [φ(xT )]
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Since it’s a conditional expectation, Et [Et+∆(·)] = Et(·), so

Et(dft) = 0.

Applying Ito’s lemma to f,

df =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

∂2f

∂x2
dx2

Et(df)

dt
=
∂f

∂t
+
∂f

∂x
µ(·) +

1

2

∂2f

∂x2
σ2(·) = 0

Thus, the conditional expectation solves the “backward equation”

∂f(x,t)

∂t
+
∂f(x,t)

∂x
µ(x,t) +

1

2

∂2f(x,t)

∂x2
σ2(x,t) = 0

starting from the boundary condition

f(x, T ) = φ(x)

(a) This is a partial differential equation (ugh). The usual way to solve it is to guess and
check —you guess a functional form with some free parameters, and then you see what
the free parameters have to be to make it work. It is also the kind of equation you can
easily solve numerically. Use the spatial derivatives at time t to find the time derivative,
and hence find the function at time t−∆. Loop. That may be easier numerically than
solving for Etφ(xT ) by Monte-Carlo simulation of xT forward. Or, the Monte-Carlo
simulation may turn out to be an easy way to solve partial differential equations.

3. Finding densities. You can also find the density by an Ito’s lemma differential equation
rather than solving the whole thing as we did above. This is called the “Forward equation.”

(a) The density at t+ ∆ must be the density at t times the transition density to go from t
to t+ ∆.

f(xt+∆|x0) =

∫
f(xt|x0)f(xt+∆|xt)dxt

=

∫
f(xt|x0)N

[
(xt+∆ − xt − µ(xt)∆)

σ(xt)
√

∆

]
dxt

...Ito’s lemma and lots of algebra, and allowing explicit f(x, t), ...

∂f(x, t|x0)

∂t
+
∂ [µ(x)f(x, t|x0)]

∂x
=

1

2

∂2
[
σ2(x)f(x, t|x0)

]
∂x2

Note the µ and σ2 are inside the derivative. This is because its µ(xt)∆ not µ(xt+∆)∆.

(b) This fact gives a nice formula for the stationary (unconditional) density. The formula is:

f(x) = k
e
∫ x−2

µ(s)

σ2(s)
ds

σ2(x)
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where k is a constant, so we integrate to one. Evaluating k,

f(x) =

∫ e
∫ x 2

µ(s)

σ2(s)
ds

σ2(s)
ds

−1

e
∫ x 2

µ(s)

σ2(s)
ds

σ2(x)

This is often pretty easy to use.

i. Derivation: The unconditional density satisfies ∂f/∂t = 0 so from the forward equa-
tion,

d [µ(x)f(x)]

dx
=

1

2

d2
[
σ2(x)f(x)

]
dx2

µ(x)f(x) =
1

2

d
[
σ2(x)f(x)

]
dx

2
µ(x)

σ2(x)

[
σ2(x)f(x)

]
=
d
[
σ2(x)f(x)

]
dx

σ2(x)f(x) = ke
∫ x 2

µ(s)

σ2(s)
ds

f(x) = k
e
∫ x 2

µ(s)

σ2(s)
ds

σ2(x)

Normalizing so
∫
f(x)dx = 1,

f(x) =

∫ e
∫ x 2

µ(s)

σ2(s)
ds

σ2(s)
ds

−1

e
∫ x 2

µ(s)

σ2(s)
ds

σ2(x)
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2.6 Problems

1. Suppose yt = x2
t and dxt = µdt+ σdzt.

(a) Find dyt. Express your answer in standard form dyt = µ(yt, t)dt+ σ(yt, t, )dzt

(b) xt varies over the whole real line, yet yt must remain positive. What force keeps y from
going negative? Hint: look at the drift and diffusion terms as y approaches zero.

2. Suppose dyt = µdt+ σdzt. What is d(y2
t )? What is (dyt)

2

3. We’ll think about the lognormal diffusion

dpt
pt

= µdt+ σdzt

as a model for stocks. Use µ = 0.06 and σ = 0.18 (i.e. 6% and 18%)

(a) What are the mean and standard deviation of horizon ∆ log returns,

E [log (pt+∆/pt)] ; σ [log (pt+∆/pt)]?

Give the answer in a formula.

(b) Find the mean and standard deviation of monthly ∆ = 1/12 log returns using the given
numbers. Express your answer in percent (5, not 0.05).
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