# Discussion of "The Returns to Currency Speculation"

John H. Cochrane

January 5, 2007

## UIP

- Uk interest rate = 5%, US interest rate = 2%. Invest in UK?
  - 1. Naive: Yes, Make 3% more
  - 2. Traditional: No, Pound will depreciate 3% (on average)
  - 3. Fact: Pound seems to go up!
  - 4. Evidence

\$ Return<sub>t+1</sub> = 
$$a + b(R_t^f - R_t^d) + \varepsilon_{t+1}$$

 $b \geq 1$ . Small R<sup>2</sup>, but still you make money.

5. Economically large: All interest differential (and more?) is expected return, none expected depreciation (  $\leq 1$  year)

- This paper:
  - 1. Confirm and update evidence
  - 2. Sharpe ratio is large, survives quoted bid/ask spreads
  - 3. Merge with new, fascinating flow/price, "downward sloping demand" literature.
- Conclusion: "Price impact" is large, *marginal* Sharpe ratio is zero.

## Evidence

**Con:** Much to do. i in  $a_i$  is important. Pooled or cross-sectional does *not* work.

\$ Return<sup>*i*</sup><sub>*t*+1</sub> = 
$$a_i + b_i(R_t^i - R_t^d) + \varepsilon_{t+1}^i$$
;  $t = 1, 2, ...T$ 

Pro:

- Common pattern across all assets:
  - 1. Dividend yield forecasts stock returns
  - 2. Long yield short yield forecasts long-short bond returns
  - 3. Foreign domestic yield forecasts foreign domestic returns

- More in common with stocks, bonds
  - 1. "Follow yield," "All price variation = ER"
  - 2. "Missing adjustment" (short run, i.e.  $\leq$  1 year)
  - 3. All together.
    - (a) "Bad times", P/D is low,  $R^f$  is low  $\rightarrow R^f < R^{(10)}$ ,  $R^{f,US} < R^{f,UK}$ .
    - (b) All risk premia are high.
  - 4. Cross-predictability?
    - (a)  $R^{f}$ , term spread, bond forecast factor also forecast stock excess returns
    - (b) One common forecaster, as in bonds? Term  $\rightarrow$  fx?
- In sum:
  - 1. Pervasive common pattern makes FX phenomenon believable.
  - 2. But.. Common timing & pattern needs common explanation. *All* microstructure, limits to arbitrage?

#### Is "Price impact" large, marginal Sharpe Ratio 0?

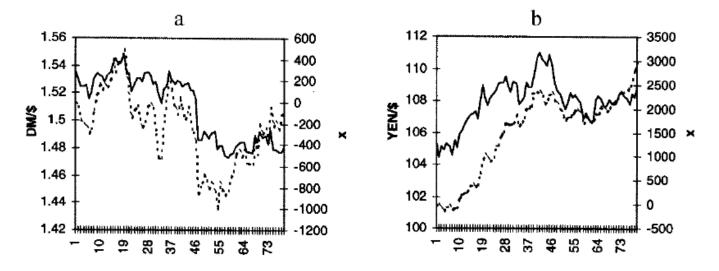
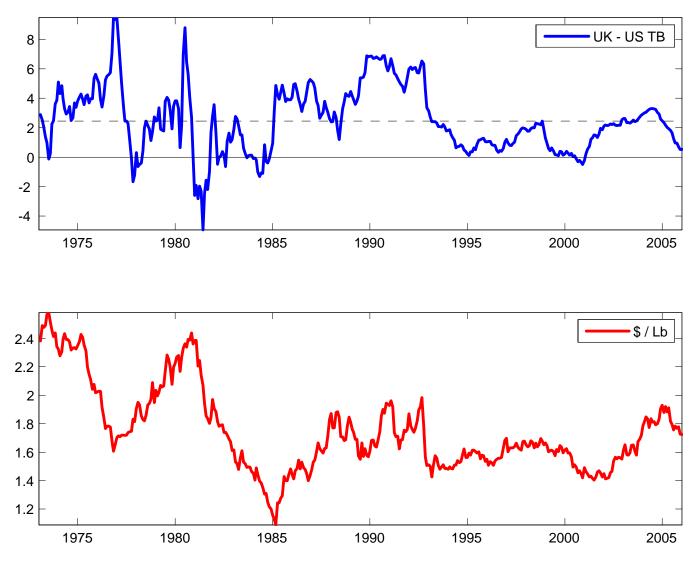



FIG. 1.—Four months of exchange rates (solid) and cumulative order flow (dashed), May 1–August 31, 1996: *a*, deutsche mark/dollar; *b*, yen/dollar.

- Fact: Net order flow is associated with price changes. ("order flow" not "trades")
- Don't jump to: *Any* order *causes* price changes.

"A buy order of 1 billion dollars increases the execution spot exchange rate by 0.54 percent" (p.20, top.)


### 1. Price and order flow: correlation or causation?

- Association of  $\Delta p$  with order flow: "Price pressure" (trade $\rightarrow \Delta p$ ) or "Price discovery" ( $\Delta p \rightarrow$ trade)?
- Regress  $y_{t+1} y_t$  on net order flow (daily data, Brandt and Kavajecz 2004 JF)

1. Price change of off-the-run bonds is associated with on-the-run order flow.

| Maturity         | Own Net Orderflow by Maturity $(\times 100)$ |                |              |              |               |                | On-the-run Net Orderflow by Maturity $(\times 100)$ |                |               |               |               |                |
|------------------|----------------------------------------------|----------------|--------------|--------------|---------------|----------------|-----------------------------------------------------|----------------|---------------|---------------|---------------|----------------|
|                  | 0–6<br>months                                | 6–12<br>months | 1–2<br>years | 2–5<br>years | 5–10<br>years | 10–30<br>years | 0–6<br>months                                       | 6–12<br>months | 1–2<br>years  | 2–5<br>years  | 5–10<br>years | 10–30<br>years |
| Just off-the-run |                                              |                |              |              |               |                |                                                     |                |               |               |               |                |
| 0-6 months       | -0.13                                        | -0.04          | -0.06        | -0.03        | -0.02         | $0.46^{*}$     | $-0.21^{***}$                                       | -0.37***       | $-0.69^{**}$  | $0.43^{**}$   | -0.28         | -0.30          |
| 6–12 months      | -0.80*                                       | 0.15           | -0.16        | 0.08         | -0.04         | 0.15           | $-0.15^{**}$                                        | $-0.56^{***}$  | -0.47***      | $-1.08^{***}$ | -0.54         | -0.34          |
| 1–2 years        | -0.42                                        | 0.00           | -0.31        | -0.04        | $-0.46^{*}$   | $-0.64^{*}$    | $-0.61^{**}$                                        | $-0.52^{**}$   | $-0.99^{***}$ | $-1.77^{***}$ | $-0.98^{**}$  | $-0.45^{*}$    |
| 2-5 years        | -0.70                                        | -0.01          | -0.59        | 0.33         | 0.11          | -0.02          | $-0.42^{**}$                                        | -0.40**        | $-0.82^{**}$  | $-1.32^{**}$  | $-1.25^{***}$ | $-0.72^{**}$   |
| 5–10 years       | 0.25                                         | -0.10          | -0.59        | -0.35        | -0.33         | -0.40          | $-0.93^{**}$                                        | -0.32          | -0.57         | $-1.00^{***}$ | $-1.46^{***}$ | -1.08**        |
| 10–30 years      | -0.24                                        | $0.37^{*}$     | -0.55        | 0.21         | 0.02          | -0.03          | -0.02                                               | $-0.55^{*}$    | -0.33         | $-1.39^{**}$  | $-1.09^{***}$ | $-1.13^{**}$   |

- 2. Price change of each bond is driven by 2-5 year order flow.
- $\rightarrow$  Association of  $\Delta p$ , net order flow need not measure "price impact" of a trade



2. Carry trade is long term, slow moving

- "Carry trade" goes on *for many years at a time*. Easy to sneak on a position! -(Looks just like interest rates.  $a_i$  is vital.)

## 3. Gross and Net, Swaps

- Gross volume, order flow is huge compared to *net* order flow associated with  $\Delta p$ .
  - 1. Evans and Lyons 1999: DM/\$ average \$300billion/day!
  - 2. Does each billion push exchange rates by 0.5%?
- Most fx trading is high frequency bets.
  - 1. Any "asymmetric information," "price impact" is about day to day movements, not interest differentials.
  - 2. Easy to hide "carry trade" in this.
- Don't have to buy billions of spot or forward currency!
  - Simple cash-settled return swap: I agree to pay you \$ *interest*, you agree to pay me *L interest*. No up-front payment, only interest *difference* changes hands ex-post.
  - 2. Transactions costs, yes, but do not swallow up 2-3% interest differentials!

## Summary

- Phenomenon is economically large: all (and maybe more) interest rate spread is expected return, none expected depreciation. (1 year and less horizon).
- Paper: "price impact" is large, marginal sharpe ratio is zero, this does not measure an economically interesting risk premium
- Big question:  $R^{UK} = 5\%$ ,  $R^{US} = 2\%$ 
  - 1. Nobody (else) *wants* to buy  $\mathcal{L}$ ? (Risk premium)
  - 2. Nobody (else) *can* buy *L*? (This paper)

- My doubts:
  - 1. Then why common pattern, timing across assets?
    - (a) Price impact in stocks, bonds too?
    - (b) Just happens to be associated with relative business cycles  $(R^{UK} R^{US})$ ?
  - 2. Is the price impact of carry trades really so large?
    - (a) Flow-price *association* does not mean *price impact*.
    - (b) Even if there is impact, positions are very slow moving -years.
    - (c)  $\rightarrow$  Easy to hide such trades in 1 trillion/day volume of speculators.
  - 3. Even if spot or forward price impact is large, implement with swaps, etc.
- Order flow/price change, "downward sloping demands," "liquidity" are fascinating, and may have big impacts on non-microstructure finance. Just not on this issue.