Fiscal Theory of the Price Level Typos

John H. Cochrane

December 28, 2022

This is a list of known typos in The Fiscal Theory of the Price Level.
p. 63. "The parameter ρ is a constant of linearization, $\rho=e^{r-g \text { " should read " } \rho=}$ $e^{-(r-g)}$."
p. 76. (3.41) the final $d t$ should be $d \tau$. The equation should read

$$
\frac{V_{t}}{V}=\int_{\tau=0}^{\infty} e^{-r \tau} \frac{s_{t+\tau}}{V} d \tau-\int_{\tau=0}^{\infty} e^{-r \tau}\left(d R_{t+\tau}-r d \tau\right)
$$

p.77. Below (3.45), $d t$ is missing on the right hand side. The equation should read

$$
d s_{t}=-\eta s_{t} d t+\sigma d \varepsilon_{t}
$$

p. 78. Two equations above (3.48) should read

$$
\left(d R_{t}^{n}-r d t\right)=d q_{t}-(r+\omega)\left(q_{t}-1\right) d t,
$$

(Sign error.)
p. 122. Strike this:
"As inflation becomes infinitely sticky, as $\kappa \rightarrow 0$, this model approaches an inflation jump at time 1. That response is not just "Fisherian"-inflation starts at time 2 , one period after the interest rate rise - but "super-Fisherian"-inflation starts immediately at time 1 , and rises exactly by the amount of the nominal interest rate. With very sticky prices, a nominal interest rate permanently above inflation has a large discount rate effect.

Algebra mistake. Though first period inflation does keep rising for a while as κ declines, it eventually turns around and for $\beta<1$, the $\kappa=0$ limit is $\pi_{t}=0$.
p. 167-168. Both in the preview and (5.98) $\beta_{s} d \epsilon_{s, t}$ belongs out of the parentheses. Both should read

$$
d v_{t}^{*}=\left(r v_{t}^{*}-\tilde{s}_{t}\right) d t+\beta_{s} d \varepsilon_{s, t} .
$$

p. 168. Equation (5.99) needs a - sign in front of η, and should read

$$
d u_{s, t}=-\eta u_{s, t} d t+d \varepsilon_{s, t} .
$$

p. 169. All instances of u_{t} on this page should be $u_{s, t}$. (5.102)-(5.103) should read

$$
\begin{aligned}
\tilde{s}_{t} & =\alpha v_{t}^{*}+u_{s, t} \\
u_{s, t} & =\frac{1}{\eta+D} D \varepsilon_{s, t}
\end{aligned}
$$

The expressions below "First eliminate" should read

$$
\begin{aligned}
D v_{t}^{*} & =-(\alpha-r) v_{t}^{*}+\beta_{s} D \varepsilon_{s, t}-u_{s, t} \\
v_{t}^{*} & =-\frac{1}{D+(\alpha-r)}\left(-\beta_{s} D \varepsilon_{s, t}+u_{s, t}\right) .
\end{aligned}
$$

after "substituting back" should read

$$
\tilde{s}_{t}=\left[1-\frac{\alpha}{D+(\alpha-r)}\right] u_{s, t}+\frac{\alpha}{D+(\alpha-r)} \beta_{s} D \varepsilon_{s, t} .
$$

p. 170. Strike $(r+\omega)$ in equation (5.109). The equation should read

$$
d v_{t}^{*}=\left(r v_{t}^{*}+i_{t}-\pi_{t}^{*}-\tilde{s}_{t}\right) d t+d \delta_{q, t}
$$

not

$$
d v_{t}^{*}=\left(r v_{t}^{*}+i_{t}-\pi_{t}^{*}-\tilde{s}_{t}\right) d t+(r+\omega) d \delta_{q, t} .
$$

p. 170 Equations (5.112) and (5.113) should read

$$
\begin{align*}
d u_{i, t} & =-\eta_{i} u_{i, t} d t+d \varepsilon_{i, t} \tag{1}\\
d u_{s, t} & =-\eta_{s} u_{s, t} d t+d \varepsilon_{s, t} . \tag{2}
\end{align*}
$$

The $d t$ on the right hand side is missing.
p. 170. (5.114) is missing $d t$ on the right hand side. It should read

$$
d \delta_{q, t} \equiv d R_{t}^{n}-i_{t} d t .
$$

p. 205. In the last equation, $\delta(1-\gamma)$ should be $\delta+(1-\gamma)$. The equation should read

$$
e^{-\delta+(1-\gamma) g+(1-\gamma)^{2} \sigma^{2} / 2}<1<e^{-\delta+(1-\gamma) g+\gamma^{2} \sigma^{2} / 2}
$$

