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Abstract. Macro-finance addresses the link between asset prices and economic fluctua-
tions. Many models reflect the same rough idea: the market’s ability to bear risk is greater
in good times, and less in bad times. Models achieve this similar result by quite different
mechanisms. I contrast their strengths and weaknesses. I highlight directions for future re-
search, including additional facts to be matched, and limitations of the models that should
prod future theoretical work. I describe how macro-finance models can fundamentally al-
ter macroeconomics, by putting time-varying risk premiums and risk-bearing capacity
at the center of recessions rather than variation in the interest rate and intertemporal
substitution.
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1. Facts

Macro-finance studies the relationship between asset prices and economic fluctuations.
These theories are built on some simple facts.

Asset prices and returns are correlated with business cycles. Stocks rise in good times,
and fall in bad times. Real and nominal interest rates rise and fall with the business cycle.
Stock returns and bond yields also help to forecast macroeconomic events such as GDP
growth and inflation.1

Stocks have a substantially higher average return than bonds. Typical estimates put
the equity premium between 4% and 8%. Even 4% is puzzling. Why do people not try to
hold more stocks, given the power of compound returns to increase wealth dramatically
over long horizons?

The answer is, of course, that stocks are risky. But people accept many risks in life.
In lotteries and at casinos they even seek out risks. The answer must be that stocks

∗This essay is based on a keynote speech at the University of Melbourne 2016 “Finance
Down Under” conference. I am grateful to Carole Comerton-Forde, Vincent Gregoire,
Bruce Grundy and Federico Nardari for inviting me. I am grateful to Alex Edmans, Ivo
Welch, and an anonymous referee for extensive and thoughtful comments.

1 To save space, I do not provide citations to this extensive literature here. See reviews
in Cochrane (2004, 2007, 2011).
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have a special kind of risk, that stock values fall at particularly inconvenient times or in
particularly inconvenient states of nature.

The canonical theory of finance captures this special fear. It starts with the pricing
formula

0 = E(Mt+1R
e
t+1)

or equivalently (as an approximation, and exact in continuous time)

E(Ret+1) = −cov
(
Mt+1, R

e
t+1

)
where M denotes the stochastic discount factor, or growth of marginal utility, and Re is
an excess return, i. e. the difference between the returns on two securities.

In this expression, expected returns are high because stocks fall when investors are
already hungry – high marginal utility, or high discount factor. Other risks, which investors
take more happily, are not correlated with such bad times.

So, just what are the bad times or bad states of nature, in which investors are particu-
larly anxious that their stocks do not fall? Well, something about recessions is an obvious
candidate. Losing money in the stock market is especially fearsome if that event tends to
happen just as you lose your job, your business is losing money, you may lose your house,
and so on.

But what is the feared event exactly? How do we measure that event? And what does
this fear that stocks might fall in recessions tell us about the macroeconomics of recessions?
These questions are what macro-finance is all about.

The standard power-utility consumption-based model is the simplest macro-finance
model:

Mt+1 = e−δ
(
Ct+1

Ct

)−γ
or

E(Ret+1) = γcov
(
∆ct+1, R

e
t+1

)
(1)

where ∆c represents consumption growth and γ is the risk aversion coefficient. This model
identifies the precise, quantifiable, and measurable feature of recessions that induces fear:
consumption falls. (The latter equation is again an approximation in discrete time and
exact in the continuous time version of the model.)

But, as crystallized by the equity premium-riskfree rate puzzle (Mehra and Prescott,
1985; Hansen and Jagannathan, 1991), consumption is just not volatile enough to generate
the observed equity premium in this model, without very large risk aversion coefficients.
From (1),

E(Re)

σ(Re)
≤ γσ(∆ct+1).

With market volatility about 16% on an annual basis, and 4% - 8% average returns, the
Sharpe ratio on the left is 0.25 - 0.5. Aggregate consumption growth only has a 1 - 2%
standard deviation on an annual basis, 0.01 - 0.02. Reconciling these numbers takes a
very high degree of risk aversion γ. Therefore, though the sign is right, and consumption
is positively correlated with stock returns, this model does not quantitatively answer our
motivating question, why are people so afraid of stocks when they do not seem that afraid
of other events?
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One may accept high risk aversion, at least for the representative agent, but the power-
utility model then has trouble with the level of the risk-free rate. This problem is best
seen in the continuous time version of the model, where Rft = 1/Et (Mt+1) becomes

rft dt = δdt+ γEt

(
dC

C

)
− 1

2
γ(γ + 1)σ2

t

(
dC

C

)
.

With 1-2% mean consumption growth, a high γ such as 25 implies by the second term
25-50% risk free rates. Worse, γ = 25 implies that a one percentage point rise in mean
consumption growth must correspond to a 25 percentage point rise in risk free rates.
The third, precautionary savings term can come to the rescue for very high γ, but then
we require a knife-edge balance between conditional mean, conditional variance, and risk
aversion to produce the observed low and relatively stable risk free rate.

Risk premiums also vary over time, with a clear business-cycle correlation. You can
forecast stock, bond, and currency returns by regressions of the form

Ret+1 = a+ byt + εt+1 (2)

using as the forecasting variable yt the price/dividend or price/earnings ratio of stocks,
yield spreads of bonds, or interest rate spreads across countries.

In each case the one-month or one-year R2 and t statistics are not overwhelming. But
measures of economic importance are large. Expected returns vary over time as much as
their level: σ[Et(R

e
t+1)] = σ(a+ byt) is large compared to E(Re). If the equity premium

is 6% on average, it is as likely to be 1% or 11% at any moment in time. (A regression of
returns on dividend yields gives a standard error of expected returns σ(Et(R

e
t+1) = σ(byt)

of 5.5 percentage points. See Cochrane (2011), Table I.)
Furthermore, expected returns are high, prices are low, and risk premiums are high,

in a coordinated way across many asset classes, in the bottoms of recessions. Expected
returns are low, prices are high, and risk premiums are low at the tops of booms (Fama
and French, 1989).

Price volatility is another measure of the economic significance of expected-return varia-
tion. Shiller (1981) (see also Shiller 2014) famously found that higher or lower stock prices
do not signal higher or lower subsequent dividends. This observation is arithmetically
equivalent to regressions of the form (2) (Cochrane, 1991). High prices relative to current
dividends must imply higher future dividends or lower future returns. If higher prices do
not correspond to higher future dividends, then high prices mechanically correspond to
lower future returns. The “excess” volatility of prices is exactly the same phenomenon as
the predictability of returns and time-variation of the risk premium.

In sum, we face two main questions. First, the equity premium question: What is
there about recessions, or some other measure of economic bad times, that makes people
particularly afraid that stocks will fall during those bad times – and so people require
a large upfront premium to bear that risk? Second, the predictability question: What is
there about recessions, or some other measure of economic bad times, that makes that
premium rise – that makes people, in bad times, even more afraid of taking the same risk
going forward?

These are two separate questions. People could hate the event of a recession, but not
become more risk averse during recessions. Power utility has this property – people dislike
losses, but losses do not make them more averse to taking risk going forward. Some
gamblers have the opposite response, doubling up on risk when they lose. Or people could
become more risk averse at times that do not involve painful losses. Recessions seem to
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combine both effects, current pain and additional risk aversion about future prospects.
But the two effects may not be perfectly correlated and different mechanisms or aspects
of recessions – job loss vs. financial crisis, say – may control each one.

The questions are related, however. A mechanism that makes people more risk averse
in recessions will drive them to try to sell stocks. With inelastic supply, they will drive
down prices and cause prices to be lower in recessions, so if recessions are also painful, the
betas will be higher.

The challenge is not one of telling stories or “explaining” facts or events ex post. The
consumption-based model works well at a qualitative level, as does the story that people
are afraid of recessions, and become more risk averse during recessions. The challenge is
to find concrete, quantitative, and theoretically explicit measures of fearful outcomes and
of risk aversion, that quantitatively account for asset pricing facts.

2. Theories

To explain these facts, the macro-finance literature explored a wide range of alternative
preferences and market structures. A sampling with a prominent example of each case:2

1. Habits (Campbell and Cochrane, 1999a,b).
2. Recursive utility (Epstein and Zin, 1989).
3. Long run risks (Bansal and Yaron, 2004; Bansal, Kiku, and Yaron, 2012).
4. Idiosyncratic risk (Constantinides and Duffie, 1996).
5. Heterogeneous preferences (Gârleanu and Panageas, 2015).
6. Rare Disasters (Reitz, 1988; Barro, 2006).
7. Utility nonseparable across goods (Piazzesi, Schneider, and Tuzel, 2007).
8. Leverage; balance-sheet; “institutional finance” (Brunnermeier, 2009; Krishna-

murthy and He, 2013).
9. Ambiguity aversion, min-max preferences, (Hansen and Sargent, 2011).

10. Behavioral finance; probability mistakes (Shiller, 1981, 2014).

These approaches look different, but in the end the ideas are quite similar. Each of
them boils down to a generalization of marginal utility or discount factor, most of the
same form,

Mt+1 = β
(
Ct+1

Ct

)−γ
Yt+1

The new variable Yt+1 does most of the work.
Even the behavioral and probability distortion views are basically of this form. Ex-

pressing the expectation as a sum over states s, the basic first order condition is

ptu
′(Ct) = β

∑
s

πs(Y )u′(Ct+1,s)xt+1,s

where x denotes a payoff with price p. Probability and marginal utility always enter
together, so distorting marginal utility is the same thing as distorting probabilities. The

2 The following sections cover more examples of each case, but in the interest of space,
and with apologies to authors whose papers are omitted, I do not attempt a comprehensive
literature review. I focus on the ideas through these examples.
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state variables Y driving probability distortions act then just like state variables driving
marginal utility.

The source of additional risk Y and of time-varying risk-bearing ability varies. In the
habit model, endogenous time-varying individual risk aversion is at work – people are less
willing to take risks in bad times. Nonseparable goods models work in a related way –
past decisions such as the size of house you buy affect marginal utility of consumption.
In behavioral or ambiguity aversion models, people’s probability assessments vary over
time. In long-run risks, rare disasters and idiosyncratic risks models, the risk itself is
time-varying. In heterogeneous agent models and institutional finance models, the market
has a time-varying risk-bearing capacity, though neither risks, individual risk aversion, or
individual probability mis-perceptions need vary over time. In heterogeneous agent models,
changes in the wealth distribution that favor more or less risk averse agents induces the
shift in risk-bearing capacity. In institutional finance models, preferences do not change
but the changing fortunes of leveraged intermediaries induce changes in the market’s risk-
bearing capacity.

The models also differ in their tractability, elegance, and the number and fragility of
extra assumptions (or “dark matter” in the colorful analogy of Chen, Dou, and Kogan
2015) needed to get from theory to central facts.

These features matter. In explaining which models become popular throughout eco-
nomics, tractability, elegance, and parsimony matter more than probability values of test
statistics. Economics needs simple tractable models that help to capture the bewilder-
ing number of mechanisms people like to talk about. Elegance matters. Economic models
are quantitative parables. Elegant parables are more convincing than black boxes. Dark
matter is particularly inelegant. Models that need an extra assumption for every fact are
less convincing than are models that tie several facts together with a small number of
assumptions. Financial economics is always in danger of being simply an interpretive or
poetic discipline: Markets went down, sentiment must have fallen. Markets went down,
risk aversion must have risen. Markets went down, there must have been selling pressure.
Markets went down, the Gods must be displeased. Models that rejectably tie their central
explanations to other data, and cannot ”explain” any event are more convincing – even if
they are formally “rejected” as perfect descriptors of the data.

2.1 Habits

Campbell and Cochrane (1999a) address the facts, focusing on predictability and volatility,
by introducing a habit, or subsistence point X into the standard power utility function,

u(C) = (C −X)1−γ/(1− γ).

We furthermore assume that the habit X is external, generated by observing others’
consumption, so the consumer ignores the fact that more current consumption will affect
future habits, and risk aversion becomes

−Cu
′′(C)

u′(C)
= γ

(
C

C −X

)
=
γ

S
.

As consumption C or the “surplus consumption ratio” S decline, risk aversion rises. (Risk
aversion is properly the curvature of the value function, not the curvature of the utility
function. However, true risk aversion behaves much as this local curvature in the habit
model. Also, external habit is a convenience, but not essential.)
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Figure 1 illustrates the idea. The same proportional risk to consumption, indicated by
the horizontal arrows, is a more fearful event when consumption starts closer to habit,
on the left in the graph. In the example, the risk is merely unpleasant at a high level of
consumption on the right. However if consumption is low on the left, the same risk can
send future consumption below habit, a fate worse than death.

Fig. 1. Utility function with habit. The curved line is the utility function. The
vertical dashed line denotes the habit or subsistence level X. Horizontal arrows
represent the same proportional risk to consumption.

We specify a slow-moving habit. Roughly,

Xt ≈ φXt−1 + kCt

This specification allows us to incorporate growth, which a fixed subsistence level would
not do. As consumption rises, people slowly get used to the higher level of consumption.
Then, as consumption declines relative to the level they have gotten used to, it hurts
more than the same level did back when consumption were rising. As I once overheard a
hedge-fund manager’s spouse say at a cocktail party, “I’d sooner die than fly commercial
again.” The one-period habits U =

∑
βt(Ct − θCt−1)1−γ common in macroeconomics give

rise to large quarterly fluctuations in asset prices, not the business-cycle pattern we see in
the data.

Figure 2 graphs the basic idea of the slow-moving habit. As consumption declines toward
habit in bad times, risk aversion rises. Therefore, expected excess returns rise. Higher
expected returns mean lower prices relative to cashflows, consumption or dividends. Thus
a lower price-dividend ratio forecasts a long period of higher returns.

Expected cashflows (consumption or dividend growth) are constant in our model, so if
prices reflected expected dividends discounted at a constant rate, then the price-dividend
ratio would be constant. The large variation in the model’s price-dividend ratio is driven
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entirely by varying risk premiums. Thus, the model accounts for the “excess volatility” of
stock prices relative to expected dividends.

Fig. 2. Stylized sample from the habit model. The upper line represents a sample
path of consumption. The lower line represents a slow-moving habit induced by
movements in consumption.

As Figure 2 illustrates, at the top of an economic boom, prices seem “too high” or to
be in a “bubble,” as prospective returns are low. But the representative investor in this
model knows that expected returns are low going forward. Still, he or she answers, times
are good, he or she can afford to take some risk, and what else is the investor going to do
with the money? He or she “reaches for yield,” as so many investors are alleged to do in
good economic times.

Conversely, in bad times, such as the wake of the financial crisis, prices are indeed
temporarily depressed. It’s a buying opportunity; expected returns are high. But the
average investor looks at this situation and answers “I know it’s a good time to buy. But I
might lose my job. If things get any worse, I could lose the house too. There is a minimum
standard of living I just can’t put at risk.”

In sum, as Figure 2 illustrates, the habit model naturally delivers a time-varying,
recession-driven risk premium. It naturally delivers returns that are forecastable from div-
idend yields, and more so at longer horizons. It naturally delivers the “excess” volatility
of stock prices.

This habit model is proudly reverse-engineered. This graph gives our basic intuition
going into the project. A note to Ph.D. students: All good economic models are reverse-
engineered! If you pour plausible sounding ingredients in the pot and stir, you’ll never get
anywhere.
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We engineer the habit accumulation function to deliver a constant interest rate, or in
an easy generalization, a real interest interest rate that varies slowly and pro-cyclically, as
we observe.

With (C −X)−γ marginal utility and fixed X, the interest rate is

rdt = δdt+ γ
(

C

C −X

)
E

(
dC

C

)
− 1

2
γ(γ + 1)

(
C

C −X

)2

σ2

(
dC

C

)
. (3)

The real interest rate equals the subjective discount factor δ, plus the inverse elasticity
of intertemporal substitution times expected consumption growth, plus “risk aversion”
squared times the variance of consumption growth.

Habit models typically have trouble with risk-free rates. As C −X varies, the second
term leads to strong movement in riskfree rates r or in expected consumption growth
E(dC/C). In a bad time, marginal utility is high, and the consumer expects better (lower
marginal utility) times ahead, if not by a rise in consumption, then by a downward adjust-
ment in habit. He or she would like very much to borrow against that brighter future to
cushion the blow today. If consumers can borrow, that desire leads to persistent movements
in consumption growth. If not, the attempt drives up the interest rate. The data show
neither strongly persistent consumption growth nor large time-variation in real interest
rates.

But in our model, precautionary savings in the third term are large and vary over time.
For example, if γ = 2 but S = (C −X)/X = 0.05 so γ/S = 40 to accommodate the equity
premium puzzle, and with 2% standard deviation of consumption growth, then 1/2× 2×
3/(0.05)2 × 0.022 = 0.48, so precautionary savings subtracts 48 percentage points from
the risk-free rate. This term addresses the riskfree rate puzzle, that high risk aversion in
the first term otherwise implies a large riskfree rate. More importantly here, movement
in precautionary savings in the third term offsets movement in intertemporal substitution
in the second term. In the simplest form of the habit model, the two terms offset exactly
to produce a constant riskfree rate and i.i.d. consumption growth. In bad times, people
want to borrow more against a better future, but they want to save more against a risky
future, and in the end they do neither.

Expressed in terms of a discount factor, the habit model adds a recession indicator
S ≡ (C −X)/C to consumption growth of the power utility model,

Mt+1 = e−δ
(
Ct+1

Ct

)−γ (St+1

St

)−γ
.

Consumers want to avoid stocks that fall when consumption is low, yes. But with γ = 2
this is a small effect. Consumers really want to avoid stocks that fall when S is low – when
the economy is in a recession.

2.1.1 Evaluation

So, what does the habit model accomplish? And, by example, what is the standard first
set of empirical successes that similar macro-finance models aim for?

We compared the habit model to data by comparing interesting statistics of simulated
data from the model to those from the data. We picked picked most parameters directly to
match data, such as the mean and standard deviation of consumption growth. We picked
the curvature parameter γ to match the sample equity premium and the habit persistence
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parameter to match the autocorrelation of dividend yields. Additional moments are then
somewhat like tests of the model.

Equity premium. The model delivers the equity premium E(Re) and market Sharpe
ratio E(Re)/σ(Re), with low consumption volatility σ(∆c), unpredictable consumption
growth Et(∆ct) = constant, and a low and constant (or slowly varying) risk free rate.

But the model does not have low risk aversion. The coefficient γ = 2, but utility curva-
ture γ/S and risk aversion are large. In the latter sense, the habit model does not “solve”
the equity premium-riskfree rate puzzle. The puzzle as now distilled includes the equity
premium E(Re), the market Sharpe ratio E(Re)/σ(Re) and thus market volatility σ(Re),
a low and stable risk-free rate Rf , realistic mean, volatility, and predictability (not much)
of consumption growth, with a positive subjective discount factor δ and low risk aversion.
The habit model has everything but low risk aversion. So far no model has achieved a full
“solution” of the equity premium puzzle as stated.

Predictability and volatility. The model delivers the observed return predictability
from dividend yields, and price-dividend ratio volatility, despite i.i.d. cash flows – high
price/dividend ratios do not forecast cashflow growth at all – and despite a low and
constant risk-free rate. One of its functions has been to point out how predictability,
volatility and time-varying risk aversion and risk premium are really the same.

The model also delivers conditionally heteroskedastic returns – volatility is higher after
a price fall. However, the conditional mean and conditional standard deviation of returns
are different functions of the state variable, so the conditional Sharpe ratio varies over
time, higher in bad times.

Long-run equity premium. The long-run equity premium was to us the most unex-
pected result. Look again at the habit discount factor, this time at a k year horizon,

Mt,t+k = e−kδ
(
Ct+k
Ct

)−γ (St+k
St

)−γ
The equity premium, as distilled by Hansen and Jagannathan (1991), is centrally the need
for a higher volatility σ(Mt,t+k) than aggregate consumption alone, raised to small powers
γ, provides. The S term provides that extra volatility in the habit model, and the similar
terms do so in other models. In the short run, S and C are perfectly correlated – a positive
shock to C raises C −X – so the second S factor just amplifies consumption volatility. But
in the long run, St+k/St – whether we are in a recession – and Ct+k/Ct – long run growth –
become uncorrelated. Risks to the surplus consumption ratio are a separate pricing factor,
and the dominant one for driving asset prices and long-run expected returns.

Now, consumption is a random walk, so the standard deviation of the consumption-
growth term rises approximately linearly with horizon. But the second term, like the
second term of most other models in this class, is stationary. Therefore, the volatility
of the recession indicator σ(St+k/St) eventually stops growing with horizon k. If you
look far enough out, any model with a stationary extra factor Yt is going to end up
with the consumption model and no extra equity premium at long horizons. Intuitively,
temporary price movements really do melt away, so a patient investor collects long-run
returns and no long-run volatility. In the long run, growth fluctuations drown out business
cycle fluctuations.

In the nonlinear habit model, it turns out that though St+k/St is stationary,
(St+k/St)

−γ is not stationary. Its volatility increases linearly with horizon, so the model
produces a high long-run equity premium. Marginal utility has a fat tail, a rare event, a
min-max or super-salient state of nature that keeps the equity premium high at all hori-
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zons. I deliberately use words to connect to the other literatures here, as one of my points
is the commonality of the different kinds of models, and the fact that habit models do
incorporate many of the intuitions that motivate related models. And vice-versa. However,
most of the other explicit models do not capture the long-run equity premium.

Fitting data In the habit model, the price dividend ratio is a function of the
surplus consumption ratio S = (C −X)/C. Thus, one can construct a model-implied
price/dividend ratio from the history of consumption data and compare that to the actual
price-dividend ratio, which we do.

Figure 3 presents a simpler version of this calculation, to highlight the central intuition
and robust fact of the model in a more transparent way. Figure 3 plots the NYSE price-
dividend ratio log(P/D) together with C −X, log consumption minus a “habit” that is
simply a moving average of past log consumption, Xt = φXt−1 + (1− φ)Ct, with φ chosen
arbitrarily at φ = 0.9.

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

C-X

log(P/D)

Fig. 3. Price-dividend ratio and detrended consumption. P/D is the ratio of price
to dividends of the value-weighted NYSE CRSP index. C −X is the difference
between log total real per capita consumption C and its moving average Xt =
φXt−1 + (1− φ)Ct. The vertical scales are shifted so the lines fit on the same graph,
maximizing the correlation between the two lines 1990-2015.

The figure shows a strong correlation between detrended consumption and cyclical
movements in stock prices. In fact, the correlation is stronger after 1999 than before. The
stock boom of the 1990s corresponds to a consumption boom. Most of all, the stock plunge
in 2008, recovery in 2010 and even the variation in the slowdown of 2013-2014 mirror those
of detrended consumption. The brickbats thrown at modern efficient-market finance for
being unable to accommodate the financial crisis are simply false. This model works better
in the big shock of the financial crisis than at other times.



Macro-Finance 11

Many questions about the habit model remain. It does not fit the data perfectly, and it
can and should be generalized to address these facts better and many more asset pricing
facts. One may question its micro foundations – do people really behave this way in
micro data, and does that matter? I address these questions below after surveying parallel
approaches.

2.2 Recursive Utility and Long-Run Risk

The bulk of other work in macro-finance has adopted seemingly much different fundamen-
tal specifications of preferences, markets, and technology. Though quite different in their
underpinnings, the end result of these models is quite similar. Even the mode of analysis
is similar, as models all capture similar lists of moments.

The recursive utility approach uses a nonlinear aggregator to unite present utility and
future value,

Ut =
[
(1− β)C1−ρ

t + β
[
Et
(
U1−γ
t+1

)] 1−ρ
1−γ
] 1

1−ρ
. (4)

Here γ is the risk aversion coefficient and 1/ρ is the elasticity of intertemporal substitution.
This function reduces to time-separable power utility for ρ = γ.

The discount factor, or growth in marginal utility, is

Mt+1 = β
(
Ct+1

Ct

)−ρ Ut+1[
Et
(
U1−γ
t+1

)] 1
1−γ


ρ−γ

The innovation in the utility index takes the role of the new variable Y in my general
classification. (Cochrane 2007 contains a derivation.)

The utility index Ut itself is not observable, so the trick is to substitute for it in terms
of observable variables. Epstein and Zin (1989) used the market return, as a proxy for the
wealth portfolio return. The most common approach recently, exemplified by Bansal, Kiku,
and Yaron (2012), and Hansen, Heaton, and Li (2008), is to substitute out the utility index
in terms of the stream of consumptions that generate utility. This substitution delivers
the long-run risk model. For ρ ≈ 1,

∆Et+1 (lnMt+1) ≈ −γ∆Et+1 (∆ct+1) + (1− γ)

∞∑
j=1

βj∆Et+1 (∆ct+1+j) ,

where ∆Et+1 ≡ Et+1 −Et.
In this formulation, news about long run future consumption growth is the extra state

variable Yt. As usual this extra state variable does the bulk of the work to explain risk
premiums. In this model, people are afraid of stocks because stocks go down when there
is bad news about long-run future consumption growth, not necessarily when the economy
is currently in a recession, when current consumption is low (power utility), when the
market is low (CAPM), or at a time when consumption is low relative to its recent past
(habits).

The Bansal, Kiku, and Yaron (2012) consumption process is

∆ct+1 = µc + xt + σtηt+1 (5)

xt+1 = ρxt + φeσtet+1 (6)
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σ2
t+1 = σ̄2 + v(σ2

t − σ̄2) + σwwt+1 (7)

∆dt+1 = µd + φxt + πσtηt+1 + φσtud,t+1 (8)

The x process generates positive serial correlation in consumption growth. Thus, a small
change in current consumption is linked to a big change in long-run consumption, and it
is the long-run consumption news that agents fear.

The long-run risk model, like the habit model, produces the equity premium with a low
and stable risk free rate and realistic (low) one-period consumption volatility. It can use
high risk aversion, as in the habit model. It can also produce the equity premium with
relatively low risk aversion, by imagining a lot of positive serial correlation in consump-
tion growth – a lot of long-run news. In this case, though, long-run consumption growth
volatility is high, so it is in the class of theories that abandon the low consumption volatil-
ity ingredient of the equity premium puzzle statement. (E(Re)/σ(Re) = γσ(∆c) can be
achieved with high σ(∆c).) Therefore, the recursive utility model also does not solve the
classic statement of the equity premium puzzle. No model yet does so.

Return predictability and time-varying volatility are the more interesting and chal-
lenging phenomena, and the ones more tied to macroeconomics. The long-run risk model
does not endogenously produce time-varying risk premia. These are added by assuming
an exogenous pattern of consumption volatility. In equation (7) σt gives the time-varying
long-run consumption risk risk which drives time-varying expected returns. This explana-
tion of predictability goes back to Kandel and Stambaugh (1990) with power utility: To
get Et(R

e)/σt(R
e) ≈ γσt(∆ct+1) to vary over time with constant γ, you need to imagine

that σt(∆ct+1) varies over time.
This model is very popular. Still, it carries some longstanding difficulties.
First, the model crucially needs there to be news about long run consumption growth

– variation in ∆Et+1(∆ct+j), j > 1 – to get anywhere. If consumption is a random walk;
if each day consumers’ expectations of consumption growth in 2030 are the same, say
1%, then there is no long-run consumption news and the model reduces to time-separable
power utility.

Current conditions ∆ct are essentially irrelevant to investor’s fear. Investors only seem
to fear stocks that go down when current consumption goes down (fall 2008, say) because,
by coincidence, current consumption declines are correlated with the bad news about
far-off long-run future consumption growth that investors really care about.

So is there a lot of news about long-run consumption growth? And is it at all believable
that this is really what investors care about? The former is hard to find in the data. Apart
from a first-order autocorrelation due to the Working effect (a time-averaged random
walk follows an MA(1) with an 0.25 coefficient) and the effects of seasonal adjustment
(our data is passed through a 7 year, two-sided bandpass filter), nondurable and services
consumption looks awfully close to a random walk. (Beeler and Campbell (2012) elaborate
this point.) The evidence is largely about short-run correlations, and Inferring long-run
predictability from a few short-run correlations is a dubious business in the first place.
Maximum likelihood and related econometric techniques value short-run forecasts, and
are happy to get long-run forecasts wrong, or to miss many high-order autocorrelations,
in order to better fit one-step ahead predictions (Cochrane, 1988).

Similarly, there needs to be substantial variation over time in the uncertainty about
future long-run growth rates for the model to generate a time-varying risk premium. If
consumers’ uncertainty about consumption growth in 2025 is the same, each day, say also
1 percentage, point, then there are no time-varying risk premiums.



Macro-Finance 13

One might retort, well, the standard errors are big, so you can’t prove there isn’t a lot of
long-run positive autocorrelation in consumption growth and its volatility. But demoting
the central ingredient of the model from a robust feature of the data to an assumption
that is hard to falsify clearly weakens the whole business.

I often advise students to write the op-ed or teaching note version of their paper. If you
can’t explain the central idea to a lay audience in 900 words, then maybe it isn’t such a
good idea after all.

In this case, that oped would go something like this: Why were people so unhappy in
fall 2008? What was there about fall 2008 that made the fall in stock prices so much more
painful than a similar fall in good times – and contemplating such events ahead of time
is why people in good times did not buy even more stocks? (That’s the equity premium
question.) It was not, really, because the economy was in a recession, that investors had
lost their jobs and houses and they were cutting back on consumption. Those facts, per
se, were irrelevant. Instead, it was because 2008 came with bad news about the long-run
future. Investors figured out what no professional forecaster did, that we would enter the
current decade or more of low growth. If that bad news about long-run growth happened
to be correlated with a boom rather than bust in 2008, people would have paid dearly ex
ante to avoid stocks that did particularly badly in the boom. People didn’t fundamentally
care at all about what was happening in 2008 – it’s only the long run news that mattered
to them.

Similarly, why were people in 2008 unwilling to take advantage of a buying opportu-
nity, a higher than usual expected returns and buy more stock? (This is the predictability,
volatility and time-varying risk premium question.) Why were university endowments, de-
spite websites declaring themselves to be “long-run” investors who ride out “temporary”
market drops, trying to sell in a panic? It was not because consumption fell towards habit-
ual levels, or a reduced cashflow from endowment might force universities to fire tenured
faculty, or people fear becoming unable to to pay debts. It was because the conditional
variance of such long-run growth expectations rose. They were less sure about conditions
in 2028 than they had been before, and this, and only this, drove them to panic.

This strikes me as a difficult essay to write, and a difficult proposition to explain
honestly to an MBA class on any day but the first of April.

To understand the long-run risk model, ask this (a good exam question): How is the
long-run risk model different from Merton’s ICAPM (Merton, 1973)? After all, the ICAPM
also includes additional pricing factors, that are “state variables for investment opportu-
nities.” News about long-run consumption growth would certainly qualify as an ICAPM
state variable. Yet the ICAPM has power utility. Why did we need recursive utility to
get long-run consumption growth expectations to matter for asset prices?

The answer is that the ICAPM is a subset of the power-utility consumption-based
model. Its multiple factors are the market return and state variables, not consumption
growth and state variables. In response to bad news about future consumption, ICAPM
consumers reduce consumption today. That reduction in today’s consumption reveals all
we need to know about how much the bad news hurts.

By contrast, the long-run risks model weights news about future consumption that is
not reflected in consumption today. Somehow, you get news that you will be poor in the
future. You rue the decision to buy stocks, yet still choose to consume a lot today. This
is the kind of bad news about which you are really afraid. If you did react by lowering
consumption today then today’s consumption would be a sufficient statistic for the bad
long run news, and that news would have no extra explanatory power.
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In the habit model as other models, people really are worried about stocks falling in
2008 – because of events going on in 2008.

Fear of news about the far off future, unrelated except by coincidence and correlation
to macroeconomic events today, is closely related to the central theoretical advertisement
for recursive utility. It is a feature, not a bug. Recursive utility captures – and requires –
a “preference for early resolution of uncertainty.” Psychology lab experiments seemed to
find such a preference, motivating the development of the theory. This is a tricky concept.
In almost all of your experience you prefer to resolve uncertainty early because you can do
something with that knowledge. If you know what your salary will be next year, you can
start looking for a better house, or a different job. If you learn what the stock market will
do next year, you can buy or sell today. The preference for early resolution of uncertainty
that these preferences capture is a pure pleasure of knowing the future, even when you
can’t do anything in response to the news.

I find lab experiments documenting such preference unpersuasive, because there is es-
sentially no circumstance in daily life in which one gets news that one can do absolutely
nothing about. People respond to surveys and experiments with rules of thumb adapted
to the circumstances of their lives.

Epstein, Farhi, and Strzalecki (2014) address the question this way: How much would
the consumer in the Bansal-Yaron economy pay, by accepting a lower overall level of
consumption, in order to know in advance what that consumption will be, even though
they could not do anything about it; just for the psychic pleasure of knowing what it will
be in advance? The answer is around 20 to 30 percent. That seems like a lot.

So, capturing a strong preference for early resolution of uncertainty starts to me to look
more like a bug than a feature.

The other apparent theoretical advantage is that recursive utility separates risk aversion
from intertemporal substitution, allowing high risk aversion for the equity premium and
a low and steady risk free rate.

But so do habits. The habit model delicately offsets time-varying intertemporal substi-
tution demands with a time-varying precautionary saving and thereby generates the same
result.

Recursive utility may achieve the result more elegantly. Elegance and tractability are
important in economic theories. Elegance is a plausible argument for the popularity of
the recursive-utility approach. But elegance and tractability can also lead us astray. If in
fact time-varying precautionary saving is important – if, say, fall 2008 had a large fall in
consumption because people were scared to death – then the recursive-utility model is
missing the crucial feature of reality. Furthermore, though the square root habit adjust-
ment process in the habit model may seem inelegant, in fact it requires much less algebra
than one must surmount to solve recursive utility models.

There is also little direct evidence for the proposition that the conditional variance of
long-run consumption growth varies significantly over time and is tightly correlated to
price-dividend ratios in the manner of Figure 3. Moreover, the presence of time-varying
conditional long-run consumption growth volatility and its correlation with time-varying
long-run news are additional exogenous assumptions.

To avoid vacuousness, all extra state-variable models must propose some independent
way to measure the extra (Y ) variable. In the habit model, the extra state variable –
surplus consumption ratio – is directly and independently measurable from the history of
consumption.
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The long run risk model ties its extra state variables – volatility and news about long-
run consumption growth – to observables by the assumption of a time-series process in
which short-run consumption growth is correlated with volatility and long-run news. That
assumption makes long-run news (almost) independently measurable. But the crucial link
is driven by the exogenous driving process, not the economic structure of the model. (I
say “almost” because the state variables xt and σt in (6)-(8) , though observed by agents,
cannot be directly recovered from the history of consumption and dividends.)

Finally, substituting the market return as in Epstein and Zin (1989), or long-run con-
sumption growth for the utility index in (4), requires that we use the entire wealth portfolio
(claim to total consumption stream) or total consumption. The usual trick in separable
utility, that the asset pricing implications of u(cnd) + v(cd) are the same as those of u(cnd)
alone, where cnd and cd represent consumption of nondurables and durables respectively,
does not work for nonseparable utility. As with the CAPM, one ignores this fact.

However, the habit and recursive utility models have a lot in common, and that com-
monality is my greater theme. Both models capture a quite similar idea. There is an
extra state variable, which explains why people are afraid of holding stocks in ways not
described by consumption growth alone. That extra state variable has something to do
with recessions, bad macroeconomic times. Both models capture an equity premium and
time-varying predictability, one with time-varying risk, the other with time-varying risk
aversion. No model has gotten significantly ahead of the others in terms of the num-
ber of phenomena it captures. All models have inconvenient truths that we ignore, as
the original CAPM required no investor to hold a job, and predicted that consumption
volatility is the same as market volatility. That didn’t stop it from being a useful model
for many years. The habit model carefully reverse-engineers preferences to deliver the
equity premium and predictability. The long-run risks model carefully reverse-engineers
the exogenous consumption process to deliver the same phenomena. One observer’s “frag-
ile” assumption is another observer’s “well-identified” parameter. Though I have argued
that model-derived assumptions are prettier than driving-process assumptions, that is an
aesthetic judgment.

2.3 Idiosyncratic Risk

Idiosyncratic risk, such as in Constantinides and Duffie (1996), is another fundamentally
different microeconomic story that generates similar results.

The bottom line is again a discount factor that adds a state variable beyond consump-
tion growth,

Mt+1 = β
(
Ct+1

Ct

)−γ
e
γ(γ+1)

2 y2
t+1 .

Here yt+1 denotes the cross-sectional variance of individual consumption growth. The log
of each individual’s consumption follows

∆cit+1 = ∆ct+1 + ηi,t+1yt+1 −
1

2
y2
t+1; σ2 (ηi,t+1) = 1

Therefore, yt+1 plays the role of the second, recession-related state variable in place of the
surplus consumption ratio or long-run risk.

The story: People are afraid of idiosyncratic consumption risk. Some people might get
great consumption gains, some might face great consumption losses. With risk aversion,
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i.e. nonlinear marginal utility, fear of the losses outweighs pleasure at the gains, so overall
people (the representative consumer) fear times of large idiosyncratic consumption risk
and fear assets that do badly at times of great idiosyncratic consumption risk.

The Constantinides and Duffie paper is brilliant because it is so simple, and it provides
directions by which you can reverse-engineer any asset pricing results you want. Just
assume the desired cross-sectional variance yt+1 process. This reverse engineering also
circumvents many problems with the previous idiosyncratic risk literature.

As with the long-run risks model, however, the level and any time-variation and business
cycle correlation of the equity premium all are baked in by the exogenous variation in the
moments of the consumption process, rather than the endogenous response of risk aversion
to bad times. Cross-sectional consumption volatility must be large, must vary a good deal
over time, and at just the right times.

One can check the facts, and so far the empirical work has been a bit disappointing.
What matters for risk premiums is not the level of cross-sectional risks, but unexpected
increases in cross-sectional risks. yt+1 must vary over time to generate volatility in the
discount factor σ(Mt+1)¿ . Cross-sectional risks do rise in recessions, and when asset prices
are low, but that rise does not seem large enough to generate the risk premiums we see, at
least with low levels of risk aversion. Consumption risks are much smaller than transitory
income or employment risks, because people tend to smooth consumption.

However, this is still an active area of empirical research. For example, Schmidt (2015)
investigates whether the non-normality of idiosyncratic risks can help – whether a time-
varying probability of an idiosyncratic rare disaster dominates the cross-sectional risks to
marginal utility. Such events are intuitively plausible.

These models and empirical investigation have not seen much extention to generate
return predictability. The theoretical path is straightforward. To generate σt(Mt+1) that
varies over time, we need σt(yt+1) to vary over time – time variation in the conditional
variance of the conditional variance of cross-sectional risks (a mouthful indeed). Constan-
tinides and Ghosh (2017) is the state of the art, both in theory and in empirical work to
demonstrate the appropriate time-varying moments in micro data.

Again, you can see the essential unity of the ideas. A second state variable, associated
with recessions, drives marginal utility. People are afraid that stocks might fall in reces-
sions, and being in a recession and a time of low price-dividend ratios raises that fear.
Here “recessions” are measured by an increase in idiosyncratic risk, and an increase in the
chance of further shocks to idiosyncratic risk, rather than by a fall of average consump-
tion relative to its recent past or a rise in the conditional variance of long-run aggregate
consumtion. But those events are likely to be highly correlated. The state variable is exoge-
nous and requires an extra set of assumptions or measurements. But that is an aesthetic
difference. The moments of cross-sectional risk are at least more tightly tied to data and
measurable than the inference about long-run risk from its correlation with short run
risks, and more theoretically restricted and measurable than the extra state variables in
psychological models to come.

2.4 Heterogeneous Preferences

Gârleanu and Panageas (2015) offer a related but diametrically opposed model. For Con-
stantinides and Duffie, people have the same preferences, risks are not insured across peo-
ple, and exposure to this time-varying cross-sectional risk drives asset prices. For Gârleanu
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and Panageas, people have different preferences–some are more risk averse, and some are
less risk averse–risks are perfectly insured across people, and time-varying wealth across
more or less risk averse people drives asset prices. Less risk averse people hold more stock.
But when the market goes down, these big stockholders lose more money, and so they
become a smaller part of the overall market. and the market as a whole becomes more
risk averse after a fall in value.

More precisely, in a complete market the unique discount factor Λt and consumer A,
B consumption follow

Λt = λAe
−δtC−γAA,t = λBe

−δtC−γλBB,t . (9)

(Here, λi are time-invariant Pareto weights, the weight of each consumer in the associated
planning problem, or reflecting initial wealth in equilibirum. Mt+1 = e−δΛt+1/Λt.)

In bad times, with high Λt, the less risk averse consumer accepts greater consump-
tion losses, while in good times, that consumer enjoys greater gains. Mechanically, this
sensitivity is implemented via greater investment in the market.

Differentiating these relationships, we can express the discount factor in terms of ag-
gregate consumption Ct = CA,t + CB,t raised to an aggregate risk aversion, which is the
consumption - weighted average of individual’s inverse risk aversion.3

1

γmt
=

1

γB

CB,t
Ct

+
1

γA

CAt
Ct

. (12)

You see here exactly the sort of mechanism of a habit model – the representative agent
becomes more risk averse after a fall in consumption. But here, that rise does not come
because each individual becomes more risk averse. It comes because the mechanism of
aggregation puts more weight on the risk averse people in bad times.

3 Differentiating equation (9),

dΛt
Λt

= −δdt− γA
dCA,t
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+
1
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(10)

and likewise for B. Therefore,
dΛ2

t

Λ2
t

= γ2
A

dC2
A,t
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,

and we can solve
dCA,t
CA,t

= − 1

γA
δdt− 1
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Now,
dCt
Ct

=
CA,t
Ct

dCA,t
CA,t

+
CB,t
Ct

dCB,t
CB,t

Substituting from (11), and with (12), and its corollary

1 + γm
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,

we have
dCt
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.

So we have (11) and (10) with aggregate consumption and market risk aversion.
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This is a beautiful model, which emphasizes just how many micro stories are consistent
with the same macro phenomenon. The representative consumer has time-varying risk
aversion though individuals do not. Markets display less risk bearing capacity in bad
times, though people do not. Time-varying risk bearing capacity of the market can be
driven by market structures – a point the institutional finance and leveraged-intermediary
literature below makes with a different mechanism – as well as by individual preferences.

This model faces challenges and opportunities in the micro data just as the idiosyncratic
risk model does. Do the “high-beta rich” really lose so much in bad times? Can the
model quantitatively account for return predictability? But that investigation hasn’t really
started.

2.5 Debt, Balance Sheets, and Institutional Finance

A different category of model has become much more popular since the 2008 financial crisis:
models involving debt, balance sheets, mortgage overhang; institutional or intermediated
finance.

The basic story works much like habit persistence. Imagine that an investor has taken
on a level of debt X, which he or she must repay. Now, as income declines towards X, the
investor takes on less and less risk, to make sure that even in bad subsequent states of the
world he or she can repay the debt. The intuition of Figure 1 applies exactly.

Moreover, as consumption rises in good times, such people slowly take on more debt.
As consumption falls in bad times, people “delever,” “repair balance sheets” and so forth.
Debt moves slowly, following consumption, much like slow-moving habit.

Though the mechanism is broadly similar, however, debt-based finance models are
deeply different from all the others in this survey. In all the other models, even psycholog-
ical ones, markets equate margins between borrowers and lenders. Asset price variations
result from preferences or perceptions of each individual, and each individual is “marginal”
at all times. Aggregate risks are shared. (Behavioral models have some frictions on occa-
sion to keep arbitrageurs from removing pricing errors, but the source of pricing errors
remains misperceptions by individual final investors, who are able to buy and sell.) In
intermediated-finance models, by contrast, the absence of most investors from the market,
is central to the story. In this story, for example, the vast bulk of people did not change risk
preferences or probability mis-perceptions in 2008. They would have loved to have bought
at fire-sale prices. But they were not “marginal,” unable or unwilling to buy cheaply priced
stocks directly. Only the leveraged intermediaries were active in markets, and they, and
only they, were suddenly more risk averse because of recent losses. Similarly, households
and businesses would have loved to borrow more to finance purchases or investment, but
leverage and capital constraints at banks stopped money from flowing from willing lenders
to these willing borrowers.

These models also face theoretical and empirical difficulties.
First, why do people get more risk averse as they approach bankruptcy, not less?

Bankruptcy is the point at which you don’t have to pay your debts any more. It is usually
modeled as a call option. Failure to pay debt in our economy does not result in debtors’
prison, destitution, or worse. The usual concern is therefore that people and businesses
near bankruptcy have incentives to take too much risk, not too little.

The costs, benefits, reputational concerns, and so forth surrounding bankruptcy are
subtle, of course, and I don’t mean to argue that we know exactly one way or another
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in all circumstances. I do point out that it’s not at all obvious that debt should induce
more risk aversion rather than less, and it takes modeling effort and special assumptions
to produce the “more” answer.

Second, not everyone is in debt. My debt is your asset – net debt is zero. For this reason,
most institutional finance models center on segmented markets, so that the problems of
borrowers weigh more heavily on markets than the problems of their creditors.

The typical institutional finance story told of the financial crisis goes like this: Funda-
mental investors – you and me – give our money to intermediaries. The intermediaries take
on leverage, so we split our funding of the intermediaries into debt and equity tranches.
When the intermediaries start losing money, they get more risk averse, and start selling
assets. Assumptions are layered on to keep them from raising more equity, giving us secu-
rities directly, betting the farm on riskier trades, or borrowing more. You and I don’t trade
in the underlying assets, so there is nobody around to sell to. Only other highly levered
intermediaries are “marginal.” Hence, when they try to sell, prices go down. That puts
them closer to bankruptcy, so they sell more, with colorful names like “liquidity spiral,”
or “fire sale.”

The objections to this sort of model are straightforward. OK, for obscure collateralized
debt obligations, credit default swaps, or other hard to trade instruments, and this may
explain why small arbitrages opened up between more obscure derivatives and more com-
monly traded fundamentals. But how does this story explain widespread, coordinated,
long-lasting movements in stock and bond markets around the world? After all, these
assets are part of everybody’s opportunity set via Vanguard and E-Trade, and most peo-
ple have them in 401(k) accounts. We’re all “marginal,” at least at the month to years
horizons over which business cycles evolve.

Moreover, large, sophisticated, unconstrained, debt-free wealthy investors and institu-
tions such as university endowments, family offices, sovereign wealth funds, and pension
funds all trade stock indices and corporate bonds every day. If leveraged intermediaries
push such prices down nothing stops these investors from buying. Where were they in
the crisis? Answer: they were selling in a panic like everyone else. That surely smacks
of time-varying risk aversion, induced by recent losses, not a segmented market in which
every investor, fundamental and intermediary alike, wants to buy but leverage and agency
problems cause the only active agents – leveraged intermediaries – to sell.

Furthermore, if there is such an extreme agency problem, that delegated managers were
selling during the buying opportunity of a generation, why do fundamental investors put
up with it? Why not invest directly, or find a better contract?

To be clear, I think the evidence is compelling that “small” arbitrage opportunities
in hard-to-trade markets during the fall of 2008 were linked to intermediary problems. I
put “small” in quotes, because an economically small arbitrage opportunity – say, a 1%
deviation from covered interest parity – while not enough to attract long-only interest
on one side or the other, represents a potentially enormous profit for a highly leveraged
arbitrageur. Still, a 1% price deviation is still small from the perspective of the overall
economy.

But the presence of those frictions and arbitrages does not mean that leveraged inter-
mediaries are responsible for the bulk of the large movements in stocks, corporate and
government bonds, and foreign exchange that we saw during the crisis. Their presence
means even less that perpetually constrained, leveraged intermediaries and absent funda-
mental investors are always the story for financial market movements, continuing to this
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day. Inequality constraints don’t bind when they’re slack, and people who run in to them
take care not to have them bind forever.

Business and consumer debt, “leveraging” and “deleveraging” or “balance sheets” are
an attractive related mechanism for inducing time-varying risk aversion. The models also
can look a lot like a habit model. But I have similar doubts about the view that busi-
ness and consumer debt is the major driver of asset prices and macroeconomics, rather
than contributing relatively minor, if important, epicycles. If bad times mean that some
consumers will be close to the default limit, then why borrow so much in the first place?
Buffer stock models require very high discount rates to eliminate this natural tendency
to save up enough assets to avoid the bankruptcy constraint Though the average person
may be constrained, the average dollar driving the risk-bearing capacity of the market is
held by an unconstrained consumer. Bill Gates and the Harvard endowment have a lot
more money than you and I do.

The institutional finance view also does not easily explain why asset prices are so related
to macroeconomic events. Losing money on intermediated and obscure securities does not
always lead to a recession.

One might imagine reverse causality, a new model of macroeconomics by which financial
events spread to the real economy not vice versa. That’s an exciting possibility, actually,
and the core of the bustling frictions-based macro-finance research agenda. (Mian and Sufi
2014 is a prominent example.) But at this stage it’s really no more than a vision – models
adduce frictions far beyond reality, such as that no agent can buy stocks directly, and data
analysis is still limited to one event.

Also, institutional frictions are fleeting, but the sense that economic downturns corre-
sponds to less risk bearing capacity in markets goes back centuries. If our financial crisis
occurred because only leveraged hedge funds and dealer banks could buy and sell collat-
eralized debt obligations, and therefore a great buying opportunity opened up, well, next
time mortgage backed securities will be held in long-only exchange-traded funds, and the
entire phenomenon disappears.

So, in my view, institutional finance and small arbitrages are surely important frosting
on the macro-finance cake, needed to get a complete description of financial markets
in times of crisis. When a recession happens, they are likely amplifying mechanisms for
financial markets and potentially real activity. But are they also the cake? And are they
the meat and vegetables of normal times, and the bulk of movements in broad market
indices, and the full explanation for macroeconomic events? Or can we understand the big
picture of macro-finance without widespread frictions, and leave the frictions to understand
the smaller puzzles, much as we conventionally leave the last 10 basis points to market
microstructure, but do not feel that microstructure issues drive the large business cycle
movements in broad indices?

Again, though, my main point is to point out the many commonalities, and only slightly
to highlight differences. Theories based on debt deliver the same central idea, that the
market fears recessions and fears assets whose values fall in recessions, and that the risk
bearing capacity of the market declines in bad times.

The theories outlined so far differ mainly in the exact state variable for expected returns
– consumption relative to recent values, news about long-run future consumption, cross-
sectional risk, or leverage, i. e., balance sheets of individual consumers or those of leveraged
intermediaries. But all of these state variables are highly correlated, and all capture a
similar idea.
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2.6 Rare Disasters

Barro (2006) has recently taken up an idea of Reitz (1988), that the equity premium
and other asset pricing phenomena can be understood by the fear of rare disasters. With
Barro’s inspiration, this idea has expanded substantially.

Look back at the basic asset pricing equation,

Et(R
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t+1) = covt
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If people worry about rare events with very low consumption growth, then the variance
of marginal utility in investors’ heads will be larger than the variance we measure in a
sample that doesn’t include any rare events.

The basic idea is reasonable, that people worry about rare and severe events when
buying securities. People in California still worry about large earthquakes, though we
haven’t seen one since 1906, and rare events are priced in to earthquake insurance.

One objection to this view is that we should have seen more disasters if they are large or
frequent enough to account quantitatively for the equity premium with low risk aversion
(Constantinides, 2008). This observation has led much work quantifying just how many
disasters we have seen, in the US and abroad, over long spans of time, how to define a
disaster, and what it constitutes. (Events in which both stocks and bonds become worthless
don’t justify an equity premium.) Calibration of time-varying rare disaster models to
account for predictability and volatility is still in its infancy. (Welch 2016 also finds that
the probabilities of rare disasters implied by put option prices are too low to account for
much of the equity premium.)

To get rare disasters to account for the more interesting business-cycle related return
predictability and stock price volatility, one could specify that the risk of a rare consump-
tion or return disaster changes over time – that σt[(ct+1/ct)

−γ ] or σt(Rt+1) vary over time,
due to changing tail probabilities. Wachter (2013) and Gabaix (2012) follow this approach

Alternatively, a rare-disasters perspective could posit that expected returns really do
not change over time. People see time-varying probabilities of a rare disaster in dividend
payouts. Prices really are lower because expected dividends are lower, not because expected
returns are higher. But in a sample that has no rare disasters we suffer Peso-problem
regressions that falsely indicate return predictability rather than dividend predictability,
and consequently falsely indicate “excess” volatility.

Dark matter is a deeper objection. Rare events, unobserved in the postwar sample,
are already to some extent a dark matter assumption. Time-varying probabilities of rare
disasters seems like dark energy (i.e. even more obscure) – unless one proposes some way
of independently tying the time-varying probability of rare disasters to some data.

One might surmount the dark-matter criticism if one assumption about time-varying
disaster probability could reconcile multiple asset prices, but as Gabaix (2012) finds, to
make sense of the different asset classes, one needs to assume an asset-specific time-varying
loading on the disaster risk.

Finally, the correlation of asset prices with business cycles relies on a correlation of
business cycles with a time-varying disaster probability. A correlation between business
cycles and time varying disasters is not implausible, as a correlation between a recession
and lower long-run growth is not implausible. Each recession could turn in to a great de-
pression or worse, they just haven’t done so yet. But it is one more exogenous assumption,
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and one that is one step harder to measure directly than the unconditional frequency of
rare disasters.

I admit a final aesthetic prejudice – but these aesthetic considerations are important in
which theories survive. Though it is possible that time-varying fears of rare events drive
all asset price movements, if this is so our discipline will never really be able to measure
anything. Day to day betas don’t matter. All that matters is time-varying subjective cor-
relation of asset prices with each other and with macroeconomic events in once per century
armageddons. It could be true. But if that is true, we will never really be able to move
past interpretive, ex-post storytelling. We will never be able to distinguish rare disaster
probability from “sentiment,” we will never tie our state variables to some independent
measurement, and workaday applied finance that relates average returns to measurable
betas is doomed. I prefer to go back and look for the car keys under the light.

2.7 Probability Assessments

Another class of models generalizes rational expectations. Suppose people’s probability
assessments are wrong. I include behavioral finance here, which uses survey, psychology,
and lab experiments to motivate wrong probability assessments, as well as modifications of
preferences under the labels “Knightian uncertainty,” “ambiguity aversion,” and “robust
control.”

The basic asset pricing equation, with the expectation written as a sum over states s,
is

ptu
′(Ct) = β

∑
s

πsu
′(Ct+1,s)xt+1,s

where pt is price at time t, s indexes states of nature at time t+ 1, and xt+1,s is a payoff.
(Typically xt+1,s = dt+1,s + pt+1,s includes a dividend and tomorrow’s price.)

As this equation emphasizes, probability and marginal utility always enter together.
There is no way to tell risk aversion – marginal utility – from a probability distortion,
using price p and payoff x data alone. That is, there is no way to do it without some
restriction – some model that ties either probability distortions or marginal utility to
observables. This statement is just the modern form of Fama’s “joint hypothesis theorem”
that you can’t test efficiency (π) without specifying a “model of market equilibrium”
(u′(C)). Likewise, absent arbitrage opportunities, there is always a “rational” model, a
specification of u′(C) that can rationalize any data.

Given these facts, one would have thought that arguments over “rational” vs. “irra-
tional” pricing, using only price and payoff data, would have ended the minute Fama
(1970) and its joint hypothesis theorem were published. That financial economists have
spent so much effort fighting over theories all sides know were proved observationally
equivalent a half century ago will hopefully be a useful observation for future historians
and sociologists of science.

The solution, of course, is to tie either probabilities or marginal utility to observable
data, in some rejectable way. In our general formula, if subjective (wrong) probability
assessments are πs(Y ), where Y is measurable, then it becomes a testable theory, just
as we have so far added potentially measurable state variables Y to investor’s marginal
utilities or objective probability assessments. A “model of sentiment” can be a “model of
market equilibrium” for Fama’s theorem.



Macro-Finance 23

Barberis, Greenwood, Jin, and Shleifer (2015) is a good example of a paper that takes
on these problems. They build a model based on extrapolative expectations (a probability
distortion), in which people believe good growth will keep going more than it really does.
As a result prices are “too high” in good times, and forecast lower returns, but proba-
bility distortion takes the place of marginal utility. “Sentiment” is tied to the history of
consumption so becomes observable and testable. And the model generates the standard
suite of predictability results.

But without such a specification, “sentiment” is all too often just a dark-matter, ex-
post, interpretive explanation. Time-varying rare-disaster probabilities, not separately
measured, or time-varying news about far-future incomes, not separately measured, or
time-varying risk aversion, not separately measured, are equally dark-matter, interpretive
stories.

Behavioral economists point to surveys, in which people report amazing possibilities
as their “expectation.” (Greenwood and Shleifer 2014 is a good recent example.) But it
is a big leap from “What do you expect?” in a survey to ““What is your true-measure
conditional mean?” in a model. Surveys never ask “By the way, did you report your risk-
neutral or true-measure mean?” They don’t ask that question for the obvious reason that
people would have no idea what the question means. But the question is crucial. The
risk-neutral probability is the actual probability times marginal utility,

π∗s = πsβ
u′(Cs)

u′(C0)
Rf .

With risk-neutral probabilities, price is the expected payoff, discounted at the risk free
rate.

p0 =
1

Rf

∑
s

π∗sxs =
1

Rf
E∗(x)

Now, imagine that prices are absurdly high, true expected returns are extremely low,
you ask in a survey what investors “expect,” and they answer that they “expect” good
returns (good expected x), justifying the price. Irrationality confirmed! But without the
followup question, if respondents reported the risk-neutral probabilities, they are not being
irrational at all. The price is the risk-neutral expectation of payoff! So the question “are
those true-measure or risk neutral probabilities?” is not a technicality, it’s the whole
question.

And it would be entirely sensible for people to think about and report risk-neutral
probabilities, not true probabilities. Since probability and marginal utility always enter
together, risk-neutral probabilities are a good sufficient statistic to make decisions. Risk
neutral probabilities mix “How likely is the event?” with “How much will it hurt if it
happens?” That combination is really what matters. Avoid stubbing your toe on the door
jamb, yes. But put more effort into avoiding getting run over by a truck – though it’s
much less probable, it hurts a lot more.

More generally, the colloquial word “expect” is centuries older than the mathematical
concept of true-measure conditional mean. Statisticians borrowed a colloquial word to
describe their new concept, as they borrowed the colloquial words “efficient,” “unbiased,”
“consistent” and so forth, and endowed them with new technical meanings. But unless
trained in statistics or economics (and, as teachers will ruefully note, actually remembering
anything from that training) there is no reason to believe that a surveyed person has the
statistical definition in mind rather than the colloquial definition.
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The online Oxford English Dictionary4 defines “expect” as to “regard (something) as
likely to happen.” Its five definitions do not even mention means, let alone true vs. risk
neutral measure, or the distinction between mean, mode, and median and conditional vs.
unconditional. So even a literate lay-person cannot know that the survey questioner is
asking for the true-measure conditional mean. The OED says the word comes from the
mid 16th century (in the sense “defer action, wait”), and derives from Latin exspectare,
to look out for. The word goes back a long before anyone dreamed up the concept of
conditional mean. The distinction between risk-neutral and real probabilities was only
formalized in Harrison and Kreps (1979).

So why do we expect non trained survey respondents to use “expect” word as we re
defined it about 30 years ago, and not in the sense reflected in centuries of common usage,
and the dictionary definition?

More deeply, of course, economics has long argued whether it matters what people
think and say, rather than how they act. If they act “as if” rational, if rational maximizing
describes their behavior, who cares how they fill out surveys? Much animal behavior is
well described by optimization – how bees search flowers for pollen, for example – yet they
don’t answer surveys coherently either.

I do not mean to disparage survey information. This is a fascinating and very useful
source of data. Even with “as if” skepticism, it is comforting when people report something
like the mechanisms of our models and troubling when they don’t. People do report an
unwillingness to take on risk in recessions, or when facing a lot of debt. People don’t, as far
as I know, report any concern about stocks falling at a time of poor long-run consumption
growth expectations independent of such events. These are important observations. That
people report what seem to us as incredible “expectations” is a nut to be swallowed, if
only as a report on the subjective perception of low risk aversion.

My complaint is only with interpreting what people say they “expect” directly and
unquestioningly as true-measure full-information conditional means, and looking at people
somewhat condescendingly as “irrational” if those answers don’t make sense. Other uses
and interpretations of the data – for example, running regressions Rt+1 = a+ b(surveyt) +
cyt + εt+1 on survey expectations, and looking at everything but whether b = 1 and c = 0
– are potentially very revealing.

The ambiguity-aversion and robust-control literature also distorts probabilities. (For an
excellent overview see Hansen 2014.) A heuristic equation describes this approach,

p0u
′(C0) = β

∑
s

πsu
′(Cs)xs

{πs} = arg min
{π∈Θ}

max
{c}

∑
s

πsu(Cs)

(I call this a heuristic because the real equations are much harder, but this conveys the
idea.) The probabilities π are chosen, in a restricted set Θ, as those that minimize the
maximum attainable utility. The investor focuses on the worst-case scenario in a set, and
devotes all his or her attention to that case.

Obviously, hard questions remain. Most of all, just what is the restricted set Θ? If you
worry about meteorites falling from the sky, maybe you should worry about anvils and

4 https://en.oxforddictionaries.com/definition/expect

https://en.oxforddictionaries.com/definition/expect
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pianos too? Again, also, tying the distorted probabilities to measurable data remains the
key to understanding variation in prices over time.

3. Research Agenda

A rich smorgasbord of research possibilities appears before us: Distinguish the models,
by their microeconomic or macroeconomic foundations, and by their ability to fit current
or new asset pricing facts. Extend the range of asset pricing phenomena the models can
address. Unite the models where the answer appears to be that two or more mechanisms
coexist and interact in an important way. Unite the models with macroeconomics – place
endowments in a general equilibrium context, think about where cashflows come from,
and change macroeconomics in turn.

3.1 Additional Facts

The habit model has been extended to capture additional macro-finance facts. Verdelhan
(2010) shows how two habit economies with varying interest rates produce the forecasta-
bility of currency returns. Roughly, the low interest rate country has higher risk premiums,
so the high interest-rate country’s bonds, with exchange rate risk, must deliver higher ex-
pected returns. Lopez, Lopez-Salido, and Vazquez-Grande (2015) use slow-moving habits,
extended to the utility of leisure, production using capital and labor, investment with
adjustment costs, and Calvo-style price rigidities, to address the term structure of risk
premiums. Wachter (2006) produces a time-varying term premium that is not perfectly
correlated with the time-varying equity premium. She adds a new state variable to fit that
fact. The currency risk premium and term premium at least should now also be part of
the standard set of facts we ask models to replicate.

There are also straightforward and valuable opportunities to bring up some of the
other macro-finance models to describe the standard set of predictability facts, as I have
indicated above. The plausibility of the extensions needed to do so may be an important
distinguishing lesson.

3.2 New Facts

One of the most active areas of macro-finance research addresses a new “fact,” the term
structure of risk premiums. This literature is notable because it has been used as an
explicit testing ground to see how macro-finance models work on new facts, how different
models compare on new facts, and it pursues sensible extensions and generalizations of
the models towards that goal.

Roughly speaking, this work distinguishes conditional and unconditional expected re-
turns EtR

e
t+k across different horizons k, generalizing the above “long run” equity premium

discussion. It also studies the expected one-period returns EtR
e,k
t+1of dividend strips, claims

to one dividend Dt+k, as a function of k. The concept of a risk premium that varies by
horizon as well as time is familiar in fixed income, (for example, Cochrane and Piazzesi
2008), but this rapidly-expanding literature brings the same concepts to the much harder
world of equities with risky payoffs. Notable examples include Hansen (2013), Borovička,
Hansen, Hendricks, and Scheinkman (2011), and Croce, Lettau, and Ludvigson (2015), the
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latter notable for a bounded rationality model of long run risk to generate a downward
sloping equity term structure. van Binsbergen and Koijen (2017) summarize the facts and
evaluate the ability or failure of several different classes of model to explain them, includ-
ing habits, long run risks, and variable rare disasters, finding all current models wanting,
even including some sensible generalizations.

However, the curse of σ/
√
T means that all asset pricing “facts” are somewhat con-

tentious, especially those based on short samples. There is an especially large contention
whether the term structure of equity risk premium “facts” are facts.

For example, van Binsbergen, Brandt, and Koijen (2012), one of the first and most
celebrated papers documenting facts around which models are built, claims that average
returns to short-dated dividend strips (a claim to the first year of dividends only, say) are
higher than average returns on the market and the average returns on long-dated strips.
However, while point estimates of mean returns are in their Table 1, the standard errors
for the key difference E(R1,t −RS&P500,t) do not show up until row 5 and 6 of their Table
6, where the authors acknowledge that this central fact of the paper is not statistically
significant:

“We also formally test whether the risk premium on the dividend strategies is higher
than the risk premium on the index. We cannot reject this null hypothesis at conven-
tional significance levels.” (p. 1609)

The paper does not even present a similar statistic for the difference between dividend
strips of different maturity E(R1,t −R2,t). In our era of rampant t-statistic fishing, the
AER and the authors are perhaps to be congratulated for publishing interesting results
with t-statistics of 0.75 and 0.97. But it remains a tenuous fact for decisive model discrim-
ination.

Also, their Table 2 also shows negative serial correlation of -0.27 and -0.37, classic signs
of measurement error in prices. Their Figure 4 makes it clear that any return comes from
one data point in 2001. Additional critiques are in Boguth, Carlson, Fisher, and Simutin
(2012) and Schulz (2016), with a response in van Binsbergen and Koijen (2016), focusing
on the data construction and tax treatment.

This is not the place to exhaustively summarize a data controversy. The point here:
this is just the kind of new fact one should use to evaluate and contrast macro-finance
models; This literature includes just the kind of sensible generalizations one must pursue
to thoughtfully match models to data. That in this particular case, the fact itself is more
disputed than, say, the equity premium, volatility, predictability and so forth – themselves
still disputed – just echoes what should be a constant warning: Theorists, beware. Read
empirical papers carefully before jumping to “explain” new “facts.”

3.3 More Facts

There are substantial additional discrepancies in macro-finance models that seem to have
gone unnoticed, and inviting directions for improvement. I illustrate with habits, but the
same points hold more generally.

More Shocks; Match VARs. The consumption-claim version of the habit model has
one shock, the shock to consumption growth. This shock is simultaneously a cashflow shock
and a discount rate shock, so the cashflow and discount rate shocks are perfectly negatively
correlated. When consumption declines (cashflow shock), the discount rate rises.
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The standard VAR representation of returns and dividend yields has at least two distinct
and economically important shocks. In the simplest VAR, cashflow shocks and discount
rate shocks are uncorrelated.

In round numbers, the standard VAR representation for log returns r, log dividend
growth ∆d, and log dividend yield dp is

rt+1 ≈ 0.1× dpt + εrt+1

∆dt+1 ≈ 0× dpt + εdt+1

dpt+1 ≈ 0.94× dpt + εdpt+1

and the covariance matrix of the shocks is

cov(εε′) =

r ∆d dp

r σ ≈ 20% +big -big
∆d σ ≈ 14% 0 not -1
dp σ ≈ 15%

The definition of return means that only two of the three equations are needed, and the
other one follows. If prices rise or dividends rise, returns must rise. In equations, the
Campbell and Shiller (1987) log return approximation is

rt+1 ≈ dpt − ρdpt+1 + ∆dt+1 (13)

where dp is log dividend yield, ∆d is long dividend growth, and ρ ≈ 0.96 is a constant
of approximation. This equation is just a loglinearization of the definition of a return,
Rt+1 = (Pt+1 +Dt+1)/Pt. As a result of this identity, the VAR regression coefficients b
and shocks ε are linked by identities

br = 1− ρbdp + bd (14)

εrt+1 = −ρεdpt+1 + εdt+1. (15)

With any two coefficients (14), shocks (15), or data series (13), you can find the third.
It is common to write the VAR with dividend yields and returns, {dpt, rt} and let

dividend growth be the implied variable. I like to think of it instead in terms of dividend
growth and dividend yields {dpt,∆dt} with returns the implied variable. (Think of it, yes,
but don’t run it that way. Never run a return forecasting regression with less than a pure
return. Small approximation errors can make returns look much more forecastable than
they really are.) The reason for this preference is that, while dp and r shocks are negatively
correlated – when prices go up, dividend yields go down and returns go up – dp and ∆d
shocks are essentially uncorrelated.

Thus, the easy-to-remember summary of the canonical three-variable VAR is this: There
are two shocks in the data: a cashflow shock εd, and a discount rate shock εdp, and these
two shocks are uncorrelated. The negative correlation of return and dividend yield shocks
εr, εdp, and the positive correlation of return and dividend growth shocks εd, εr then just
follows from the last identity.

Clearly, this little VAR paints a different picture than the consumption-claim habit
model in which the cashflow and discount rate shocks are perfectly correlated. We need
to think of and model a world with separate cash-flow and discount-rate shocks.

Campbell and Cochrane (1999a) includes a model with a claim to dividends poorly
correlated with consumption, which makes progress towards a two-shock model. However,
that model does not replicate the VAR. It suffers a worse problem too:
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Cointegration. Consumption, stock market value, and dividends are cointegrated.
Consumption, dividends, and wealth are steady fractions of GDP in the long run. Campbell
and Cochrane (1999a) just specify imperfectly correlated growth rates of consumption and
dividends ∆c and ∆d. But the levels of consumption and dividends wander away from each
other.

Many models have imperfectly correlated ∆c and ∆d. I have not seen one yet that
properly delivers the long run stability of the ratios of stock market value, consumption,
and dividends.

Cointegration is tricky, however. Total dividends and total consumption in the economy
are cointegrated, because if dividend payments go up, people start to spend them. The
“dividend growth” one calculates in the usual CRSP data, and uses in identities such as
(13), are dividends accruing to an initial dollar investment. These are not the same as
total dividends in the economy, and they are not cointegrated with consumption, because
they do not (and should not, for their purpose) account for the effect of new issues or
repurchases on total dividends paid in the economy.

But cointegrating relations are powerful long-run forecasters. Cointegration tells us that
the ratio of prices to dividends must forecast long-run price changes or long-run dividend
changes. So it’s a good guess that a model that imposes the correct long-run cointegration
between total consumption, total dividends, and stock market wealth will enlighten at least
the long-run equity premium and long-run consumption risk. The cay variable inaugurated
by Lettau and Ludvigson (2001) and studied more in their following work is an important
start, integrating consumption-wealth and price-dividend cointegration. But the larger
program, to fully specify macro-finance models in a way that incorporates the single
common trend that we seem to see in the data, remains for the future.

More state variables? The habit model has one state variable, the surplus consump-
tion ratio St = (Ct −Xt)/Ct. The dividend yield perfectly reveals this state variable, so
no other variable should help to forecast stock returns, bond returns, volatility, or any-
thing else. And all variables that are a function of this state variable should be perfectly
correlated, as the surplus consumption ratio and price-dividend ratio should be perfectly
correlated. Conditional variances move over time, and the conditional Sharpe ratio moves
over time as well, because E(Ret+1|St) and σ(Ret+1|St) are different functions of the state
variable St. The version the habit model that allows for time-varying interest rates, Camp-
bell and Cochrane (1999b), also has time-varying bond risk premiums forecast by yield
spreads. But all of these variables are are functions of the same state variable, so perfectly
correlated with dividend yields and with each other. (Note, the number of state variables
and the number of shocks, discussed above, are different issues.)

In the empirical literature, many variables beyond the dividend yield seem to forecast
both stock returns and dividend growth. The Lettau and Ludvigson (2001) consumption
to wealth ratio cay is a good example. Bond returns are forecastable by bond forward-spot
spreads, and foreign exchange returns by international interest spreads. In the cross-section
of returns, size, book-market, momentum, earnings quality and now literally hundreds of
other variables are said to forecast returns.

Now, a big empirical question remains: Just how many of these state variables do we
really need, in a multiple regression sense? The forecasting variables are correlated with
each other. Are they all proxies for a single underlying state variable? Or maybe two or
three state variables, not hundreds?



Macro-Finance 29

The question is, what is the factor structure of expected returns? If we run regressions

Reit+1 = ai + bixt + ciyt + ..εit+1; Et(R
ei
t+1) = ai + bixt + ciyt,

how many state variables – orthogonal linear combinations of x, y, z – do we really need?
What is the factor structure of cov

[
Et(R

ei
t+1)

]
? Look at that question closely – this is not

the factor structure of returns, cov
(
Reit+1

)
, time t+ 1 random variables. It is the factor

structure of expected returns, time t random variables. This covariance and its factor
structure may have nothing to do with the factor structure of ex-post returns. But what
is that factor structure? Across stocks, bonds, foreign exchange etc.? As a small first step,
Cochrane and Piazzesi (2005) and Cochrane and Piazzesi (2008) find that the covariance
of bond expected returns across maturities has one dominant factor, though the covariance
of yields or returns has three factors. Does that observation extend to bonds and stocks
together? Probably not. But the bond-forecasting factor forecasts stocks, and dividend
yields forecast bonds, so there is some commonality. How much of a second factor do we
really need?

Conditional variances σt(Rt+1) vary over time as well. The habit model has such varia-
tion, but like everything else conditional variance is a function of the surplus consumption
ratio and thus of the divided yield only. The empirical literature seems to focus on realized
volatility – lagged squared returns – and volatilities implied by options prices as the state
variables for conditional variance. These variables decay much more quickly than typical
expected return forecasters like dividend yield. Realized volatility also forecasts mean re-
turns, though, and dividend yields forecast volatility. How many state variables are there
really driving means and variances?

If we then add state variables for returns at different horizons, Et(Rt+k), we see a huge
project – and the huge simplification and integration if a small factor structure emerges.

The answer is unlikely to be one factor, as specified in the habit model. Hence, the
natural generalization of theory must be to include more state variables, to match the
more state variables in the data. Since fishing around among highly correlated factors is
tricky, and since time-varying mean returns are hard to measure, theory and empirical
work may have an important interaction to sorting out the factor structure of expected
returns. Wachter (2006) has taken a step in this direction, but there is a long way to go.

3.4 Finance Facts

Meanwhile, empirical finance has moved on, and now presents us with a zoo of factors in
the cross-section of equity returns, including the market, size, value, momentum, earnings,
accounting factors, carry trade and others.

(Newcomers beware: Finance uses the same word “factor” to describe a portfolio or
other variable at time t+ 1 that helps to capture return t+ 1 variance across securities,
in the classic statistical sense of the word; to describe a portfolio or other variable at
time t+ 1 against which one runs regressions to obtain betas that then explain cross-
sectional variation in average Et returns; and to describe a time t variable that helps to
forecast returns at time t+ 1, and equivalently a variable on which one can sort assets
into portfolios. I use “characteristic” for the latter to avoid some confusion. These are all
different concepts. Here I mean “factors” such as the the market return and value-growth
portfolio HML that fulfill primarily the second function.)
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Empirical asset pricing summarizes the cross section of returns in terms of a few factor
portfolios, following Fama and French (1993). This summary provides a great simplification
for macro-finance. Our job is to explain the premiums of the factor portfolios. We do not
have to test macro-finance models in the full cross-section of returns.

Indeed, though it is tempting to do such tests, and to see if a macro-finance model
drives out ad hoc factors such as Fama and French’s in a cross-section of test assets, that
kind of horse-race is a mistake. Even if one’s macro model is perfect, ad-hoc factors will
always do better in any sample.

Conversely it is the sole job of macro-finance to understand why the asset-pricing factors
earn a premium. Finance alone can never explain the premiums of the factor portfolios.
The CAPM explains stock average returns given the average return on the market, but
leaves the equity premium or average return on the market as a free parameter, whose
explanation requires macro-finance. The same point holds for multifactor models.

Macro-finance has had some limited success with the value premium. Jagannathan and
Wang (2007), found that even the simple linearized consumption-based model can explain
the value premium at an annual horizon. Lettau and Wachter (2007) and Santos and
Veronesi (2010) also present models of the value premium with habit preferences. But
even this success is limited, compared to the stirring prose of Fama and French’s papers
suggesting a premium for firms prone to financial distress in recessions, just when broad
categories of investors suffer losses to their non-marketed businesses and human capital.
(Fama and French 1996 section VI. A. is a personal favorite.) That prose needs a model.
And the rest of the factor zoo is wide open.

Again, though, theorists beware empiricists bearing facts. Finance has yet to settle down
on just how many new factors there are. Harvey, Liu, and Zhu (2016) list 316 variables in
the published literature, and an exponential growth rate. Linnainmaa and Roberts (2016),
Harvey (2017), and Mclean and Pontiff (2016) offer sobering caution that many factors
may be spurious. My above call for a factor structure of expected returns may reveal that
even among those that are not spurious, many return forecasters are be highly correlated,
so we only need models with a few factors. Many factors that explain common variation,
such as industry portfolios, are not needed for average returns.

In addition, theory and empirical work interplay. We no longer live in the stifling world
before about 1990, in which every empirical paper must pose as a “test” of a “theory”
made in advance of looking at the data. But the current world in which every fact, no
matter how crazy, is established on its own may go too far in the other directions. Sensible
theories may help us to fish through the claims of factors.

Still, the basic value, momentum, earnings premiums are well established, and macro-
finance can get going.

It is curious that macro-finance has spent quite so much effort on a tenuous new fact, the
term structure of equity premiums, and so little on the much more extensively documented
finance factors. That may be a selection bias that nobody has gotten a positive result so
far. Great research consists of solid answers to little questions, not tenuous answers to big
questions.

But it is also possible that most of the above macro-finance approaches will not be
useful to understand the zoo of cross-sectional premiums, and they will be the province
of institutional or frictions finance.

The central assumption of most of the macro-finance models is that all risks are perfectly
shared. Most investors – or at least most dollars – are “marginal” at all times, meaning that
even if they choose not to trade, they could, and prices are not far from those investors’
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marginal rates of substitution. This is true even of the behavioral finance and probability
distortion models.

Cross-sectional factors such as momentum require frequent trading, and low-
transactions trading expertise. Even large hedge funds struggle to trade it profitably.
Premiums available in more obscure securities require expertise. When risks are narrowly
held, markets are segmented, and premiums unrelated to aggregate conditions can emerge
– at least until large mutual funds or hedge funds make those premiums available to the
average investor.

The small arbitrages that appeared during the financial crisis, and some like covered
interest parity that persist to this day are a particularly clear example of this phenomenon.
There is obviously no reason at all to expect a macro-finance model like habits to explain
the premiums of such strategies.

So we are likely to end up with an economic picture of asset markets that, in the
end, unites two or more of these fundamental approaches. A representative-consumer
model such as habits may well describe large movements in widely-available securities and
funds, leaving near-arbitrages and premiums of high-frequency trading strategies to the
economics of institutional finance and mechanics of information trading.

But where the boundary will be is not so obvious and an area ripe for research oppor-
tunity. “Institutional finance” is not happy being just the frosting on the cake. It would
like to be the paradigm even for broad movements of the level of, say, stocks, not just for
small price differences among similar specialized securities.

Conversely, limits to arbitrage and institutional finance must get past showing that
price anomalies can occur, to describing with elegance and parsimony why, when, and
in which direction they occur. There are also indications of the pervasiveness and hence
macro foundations of many anomalies. Why do momentum stocks all comove ex-post?
Why is there a momentum “factor”? As emphasized by Asness, Moskowitz, and Pedersen
(2013) and Koijen, Pedersen, Moskowitz, and Vrugt (2015), why are momentum and value
so pervasive and so correlated with each other? Why do anomalies appear in the depth
of recessions? (At a minimum, there is a macro-finance reason for shifts in the supply of
capital to intermediaries.) Why is the volume of trading so suggestively correlated with
the level of asset prices?

If we do end up merging models, though, that will be more interesting if the models in-
teract: if habit persistence kicks off a price decline that hurts the leveraged intermediaries,
for example.

3.5 Foundations

There is an obvious opportunity to examine more the economic foundations of various
models, either to refine and extend the models or to compare them. Does the conditional
distribution of aggregate consumption vary as much and in the way that long-run risk or
rare disaster models specify? Do cross-sectional income and wealth distributions change as
idiosyncratic risk and heterogeneous agent models specify? Do individuals display behavior
in recessions – other than sitting on the market portfolio despite higher expected returns –
indicative of higher aversion to aggregate risks? My comments on each model asked many
such questions.

To be fair, similar questions and doubts remain for the habit model too. To generate
the size of the observed risk premium, it requires habit quite close to consumption. Is
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habit persistence really that strong? Do these microfoundations make sense, and do they
hold up in micro data? Is habit persistence really habit persistence, or does it pick up
something else, such as irreversible debt-financed expenditures on durable goods? These
are subtle questions. In particular, we provided only a very simple aggregation theory,
while aggregation in a realistic market setting is much harder.

A small sampling of this extensive literature: Ravinia (2011) finds evidence for external
habit, but notes the difficulties of aggregation. Brunnermeier and Nagel (2008) find that
people do not rebalance their portfolios when they suffer wealth shocks, and behave in-
ertially instead. But the representative investor must seem to behave inertially, and hold
the market portfolio, raising the interesting aggregation question of aggregate vs. idiosyn-
cratic wealth shocks, as well as the distinction between wealth and consumption measures.
Carroll, Overland, and Weil (2000) find a habit specification is important to understand
cross-country correlations between savings and growth rates.

We can and should ask these questions – but we should also beware of the limitations of
this inquiry. Macroeconomics has spent half a century looking for “micro foundations” for
aggregate relationships. The impact of such microeconomic observation on macroeconomic
modeling has been limited at best. In part, microeconomic evidence often does not aggre-
gate up as obviously as it seems. Stimulus payments to one state may raise its GDP, but
if it does so by transferring resources from another state, the aggregate multiplier is zero.
In part, the complexity and detailed modeling one needs to understand micro data does
not give rise to tractable or elegant macro relationships. Most recently, for example, huge
literatures on micro price formation have limited impact on aggregate Phillips curves, and
the huge literature on irreversible firm-level investment has seemed to have little effect on
aggregate representations.

Perhaps to understand economic fluctuations and their link to asset prices, it is enough
to study representative consumer preferences, without worrying too much about aggrega-
tion theory and microfoundations, or at least studying the latter separately.

In part, that caution follows from the central theme of this essay: Many micro stories
can produce the same or quite similar representative-agent representations. For example,
the representative agent becomes more risk averse in recessions. Is that because individuals
become more averse to aggregate risk, as their consumption approaches habit levels? Or is
it because idiosyncratic risk becomes larger? Constantinides and Duffie (1996) provide a
formula by which one can reverse-engineer a cross-sectional risk assumption that exactly
mimics the habit model! These two forms of the model are then observationally equivalent,
using macro and asset price data.

Different microeconomic stories for the same aggregate outcomes have different policy
implications, and different implications for how structural changes to the economy will
affect macro-finance. Better insurance for cross-sectional risks will, in one case, and will
not, in the other, dampen asset-price fluctuations. Internal vs. external habits (habits
formed from one’s own experience vs. a neighbor’s experience) have virtually the same
asset pricing implications. but quite different welfare implications, since external habits
have an externality. Balance sheets and consumer debt models look like habits, but with
obviously different implications for the effect of structural improvements to debt markets.
Behavioral misperceptions lead to policy implications that changing risk aversion does
not – at least on the questionable technocratic assumption that federal bureaucracies are
less prone to probability misperceptions than investors are, and a deeper paternalistic
assumption that benevolent governments should respect agents’ crazy preferences but not
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their crazy probability assessments. So microfoundations matter much more seriously for
welfare and policy analysis.

One might take a pure reduced-form attitude, and distinguish models by which data
for Y turn out to work best to price assets. But the same similarity among the models
makes this approach difficult as well. Most of the candidates are highly correlated with
each other – most models end up adding a recession state variable, and it is practically a
defining feature of recessions that many variables move together – so telling models apart
will be hard this way.

3.6 Tests?

One natural avenue of research strikes me as unproductive: formal testing. All of the models
are extreme and simplified. Any non-vacuous (more predictions than free parameters)
macro-finance model can easily be formally rejected.

Figure 3 illustrates this statement for the habit model. The correlation is, I hope,
impressive. But the model predicts that a nearly linear function of surplus consuption
ratio should match the log price-dividend ratio, perfectly, down to the last decimal point.
So the model can be formally rejected with infinite probability value.

This kind of failure is a general feature of many economic models. Any general equilib-
rium model with one shock will predict that, up to nonlinearities, all its outcome variables
– shocks to asset returns, consumption growth, etc. – are perfectly correlated. Any general
equilibrium model with one state variable will predict that all its forward-looking variables
such as prices are perfectly correlated.

Clearly in some sense the failure of perfect correlation or R2 = 1 predictions isn’t “in-
teresting,” it isn’t a robust test of the model’s basic intuition. But maximum likelihood
does not know which moments are “interesting” or not.

“Testing” a model asks the question, does this mathematical structure produce data
that are literally and exactly identical to real-world data? Our models are not candidates
for such a test. They are consciously simplified to illustrate specific mechanisms and to
roughly reproduce specific phenomena.

Adding measurement error, multiple shocks and state variables, or other inessential
features so that models do not fail in such obvious ways would only complicate the models
to no real end. And then the test is a test of the additional ingredients. Arbitrarily removing
“uninteresting” moments and testing the others is a bit better, but since it’s not testing,
why pretend that it is?

Since Kydland and Prescott (1982), we take simple models directly to data, acknowledg-
ing they can be formally rejected, but that they produce moments that are economically
“close” to similar “interesting” moments in the data. In finance, the Fama and French
(1993) three-factor model is the most important and practically useful asset pricing model
of the last quarter century. And it is blown away by formal Gibbons, Ross, and Shanken
(1989) test statistics. Both models have great successes, they explain many features of the
data. If a glass is 95% full, that’s an interesting fact even if you can prove it’s not 100%
full. (I do not defend the practice of not reporting standard errors for moments in the data,
however. Understanding which moments are close by statistical measures is interesting, if
not definitive.)

For this reason, formal testing of economic models has pretty much disappeared, and
rightly so.
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However, when we rightly abandon the starchy formalism of “testing” and the pretense
that our models are potentially perfect replicators of the data-generating mechanism, we
must recognize that model evaluation and comparison is more of an art.

When taking a model critically to data, one must be ready to adapt the model. To
“reject” the habit model, for example, exactly as written and parameterized, because
consumption is not exactly iid, because the real interest varies, is just as silly as “reject-
ing” it because simulated and actual dividend yields do not exactly match. It’s easy to
see how one could quickly generalize those simplifications, explicitly made for rhetorical
convenience to show that those ingredients are inessential to the basic point. Similarly,
if the habit model, exactly as written, fails on some other dimension, or in confronting
some new asset price, then similarly it makes little sense to “reject” it before seeing if
reasonable extensions of the basic idea will work. The same point, of course, holds for all
of the models.

Furthermore, fitting any of these models to data requires all sorts of data-handling
assumptions. In the habit context, both the original Campbell and Cochrane (1999b) and
Campbell and Cochrane (2000) show that time-aggregation, usually ignored, is important.
Jagannathan and Wang (2007), by just using fourth quarter to fourth quarter data, find
unexpected success for the consumption based model, long the subject of rejections. Seeing
just how well the models can do by treating carefully durability, seasonality, time aggre-
gation, price indices, regional variation, non-traded assets, and so forth remains basically
unexplored territory.

As a concrete example, consider again the fit of Figure 3. The model seems to cap-
ture business cycle movements in the dividend yield reasonably well. But it misses lower-
frequency movements. Is there something different about cycles and long run? Or does
our consumption data under-report the size of long run booms and busts? Would better
measures of risk premiums, considering the fact that other variables forecast both divi-
dend growth and returns, isolate something more like the predicted line? The actual model
does worse than Figure 3, largely because it does not adapt to the post 2008 growth slow-
down. But would including time-varying real rates, or a time-varying mean consumption
growth alter that fact? Do habits adjust other than the simple AR(1) form of the model,
so that habits have adjusted to the lower growth path? There is a long list of reasonable
generalizations – or, to a critic, a long list of potential excuses for failure.

In sum, getting the models to fit better by looking hard at model simplifications and
data-handling assumptions is a great research opportunity. “Rejections” need to consider
“reasonable” extensions, and can only show that some range of data-handling assump-
tions fails. For this reason, I highlighted that each of the above model extensions and
comparisons did explore a set of extensions and variations along the way.

So extending and comparing models remains an art. Recognizing that fact and doing
it well is no sin. But what are “interesting” successes and failures is a bit subjective.
The ratio of ad-hoc assumptions to successful predictions is a bit subjective. How much
is “reasonable” extension and how much is ex-post fishing is a bit subjective. Elegance
matters. Economics lives in the world of McCloskey (1983), not Thomas Bayes or R. A.
Fisher.
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4. A Macroeconomic Agenda: Risk-Averse Recessions

Though called “macro-finance” this literature still stands quite apart from macroeco-
nomics. Macroeconomics by and large does not use, for understanding recession-related
quantity and goods-price dynamics, the preferences or market structures that macro-
finance uses to understand recession-related asset pricing dynamics. Macroeconomics by
and large ignores first-order effects of uncertainty, focusing on “the” short term interest
rate and the consequent allocation of consumption over time.

The central lesson of macro-finance denies this approximation: Business-cycle related
asset-price fluctuations are all about variation in risk premiums. It follows, I think, that
recessions are driven by varying risk premiums and risk aversion, by precautionary saving
and by allocation of investment funds to riskier vs. less risky projects, and not about
varying riskfree (government overnight) interest rates and intertemporal substitution of
present for future consumption.

In recessions, both consumption and investment fall, and so output and the labor to
produce it fall. Most theories of business cycles therefore start with two questions: First,
why does consumption fall? Second, why does a rise in desired saving not produce a rise
in investment? These questions have been the heart of macroeconomics since Keynes.

In the equilibrium models that dominate current macroeconomics, intertemporal sub-
stitution provides the answer to the first question. The key equation is

ct = Etct+1 − σrt + εdt ,

or, expressed as an interest rate equation in asset pricing form,

rt = γEt(ct+1 − ct) + vdt , (16)

which is a loglinearization of our standard first order condition. High real interest rates
or preference shocks (εdt and vdt are shocks to β in E

∑
βtu(ct)) drive people to consume

less today and more in the future.
But macro-finance suggests that recessions, such as fall 2008, are not times at which

people became thrifty, saving more to provide a better tomorrow, and they are certainly
not times of high real interest rates. Macro-finance suggests that people consumed and
invested less because they were scared to death – because of risk, risk aversion, high risk
premiums, precautionary savings, not because of sudden thriftyness and a wrong level of
the overnight federal funds rate.

The continuous-time interest-rate equation is a good place to see this difference. With
a habit X, we have equation (3),

rdt = δdt+ γ
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C

)
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(
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)
(17)

in place of (16). As consumption C starts to fall, risk aversion starts to rise, and the
last precautionary savings term rises. For given level of the the interest rate, expected
consumption growth E(dC/C) has to rise. For expected consumption growth to rise, the
level of consumption has to fall. This is the standard new-Keynesian aggregate demand
mechanism. But falling consumption raises risk aversion even more. In this way a small
shock can propagate through endogenous risk aversion and precautionary savings to deliver
a large decline in consumption.

In standard macroeconomic models, the habit term is small or absent, and γ is small.
Since σ is of the same order as E(dC/C), about 0.02, σ2 is much smaller, about 0.022,
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so the last precautionary savings term on the right is unimportant. But with habits or
high risk aversion, the last term is all important. Squaring large risk aversion overcomes
squaring small standard deviation.

Many macro modelers have approached the 2008 period following the financial crisis by
supposing a preference shock, a sudden increase in patience, a shock to vdt in (16) or δ in
(17). They acknowledge this is a short hand for some other feature of a more fully-fleshed
out model. A rise in precautionary savings, in the last term of (17), is exactly such a
feature, and gives a useful foundation for the apparent preference shock.

Given that people want to save more, why does investment fall? Already, the macro-
finance models predict that when consumption falls, risk aversion rises, and stock prices
fall. On the investment side, corporate investment follows stock prices (Q) well as Figure
4 emphasizes. As with consumption and stock prices in Figure 3, the Q theory captures
well cyclical movements while missing the long-run trends before 1992, but then captures
the internet boom and bust, the financial crisis, and recovery much better than it is
commonly given credit for. (Q theory also predicts an R2 of one, so is easy to formally
reject.) Corporate investment has very little relationship with real interest rates, despite
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Fig. 4. Investment to capital ratio, Market-to-book ratio, and price-dividend ra-
tio. Investment is Real Private Nonresidential Fixed Investment. The invest-
ment/capital ratio is formed by IKt = It/It−1 ∗ IKt−1/[(1− δ) + IKt−1], starting
at IK0 = E(It/It−1)− 1 + δ, with δ = 0.1/4. P/D is the log CRSP value weighted
NYSE price-dividend ratio. ME/BE is the log market to book ratio, from Ken
French’s website. IK is scaled to fit on the graph, by maximizing its correlation
with logP/D in the last 25 years of the sample.

the prevalence of this channel in macroeconomic models.
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So you can sniff a macroeconomic model emerging out of habits and Q theory. But still,
general equilibrium poses the central puzzle of macroeconomics since Keynes: If people
want to save more, why do prices not adjust somehow so that investment is larger?

The answer, I think is that investment falls because when risk aversion and precau-
tionary saving rise, because people want not just to save more, they also want to shift
their savings into relatively risk-free investments such as government bonds, and away
from risky investments funded by stocks and corporate bonds. That’s why we see cor-
porate interest rates rise while government rates decline, why we see stock prices fall –
expected returns rise – while people are trying to save more, and why investment falls
though demand for saving rises. Additional demand for government bonds, at the expense
of real assets or goods and services, also accounts for disinflation during recessions. The
working paper version of this article, Cochrane (2016), explores this mechanism through
a sequence of simple examples.

The key to falling investment, then, is a mismatch between the riskiness of real corporate
investment projects, and the higher risk aversion of savers.

This is not the only path to greater unity between macroeconomics and macro-finance,
of course. It allows us to merge the relatively frictionless preference- or market-structure
based models (habits, recursive utility, idiosyncratic risk, rare disasters) that generate
time-varying risk aversion with the standard general-equilibrium aggregative models that
pervade macroeconomics. But the behavioral view, as outlined above, might suggest in-
stead a reverse causality by which behavioral misperceptions in stock markets spill over
to macroeconomics, or it might suggest a pervasive behavioral misperception behind both
macro and finance. And merging macroeconomics with asset pricing is the rallying cry of
the institutional finance / frictions research agenda, which aims to put pervasive credit con-
straints, balance sheet imbalances, agency frictions, and so forth at the heart of macroeco-
nomics as well as of asset pricing. (Brunnermeier and Sannikov 2017 is a recent, ambitious
and comprehensive example.)

In this context, my suggestion is actually quite conservative. The integration of macroe-
conomics and finance does not have to introduce pervasive financial frictions or irra-
tionality into macroeconomics. It is likely that the relatively frictionless approaches such
as habits can be merged with standard representations of technology, pricing frictions
and market structure to produce a relatively conventional macroeconomic model with
time-varying risk aversion or risk-bearing capacity at its heart. Given the introductions
of financial-frictions papers and books, this mere possibility seems to be news. Indeed,
“macro-finance” has been appropriated as the label for the view that pervasive frictions
are necessary to understand both asset pricing and macroeconomics. I use the term in the
title of this essay to try to reclaim it.

The beginnings of this program are evident, though there is further to go than may
be easily recognized. Habits are in fact common in macroeconomics. However, they are
usually in a one-period form, (Ct − θCt−1) with a small value of θ such as 0.4. These
preferences help to give hump-shaped impulse-response functions. But the low value of θ
and loglinearization of the model mean that time-varying risk aversion and precautionary
savings channels are largely absent. Similarly, recursive utility is used in macroeconomics,
but typically not with large risk aversion, or specifications that lead to long-run risk or
the time-varying volatility needed to generate time-varying risk premiums. Heterogeneous-
agent macroeconomics is on the rise – for example see the Kaplan, Moll, and Violante
(2016) “heterogenous agent new-Keynesian model.” But it does not feature the large and
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time-varying cross-sectional risk that generates a large and time-varying risk premium.
Macro has arrived at the banquet, but only sampled the appetizer.

Not to appear imperialistic, finance needs to import macroeconomics as well. All the
macro-finance models I reviewed specify endowment processes for consumption. This is
a fine shortcut to get going, but eventually we need to know where consumption comes
from. Similarly, finance takes the properties of cashflows as given, but we need to specify
where they come from as well – betas are not exogneous. General equilibrium holds many
surprises. It’s easy to specify an endowment economy in which state prices vary enor-
mously, but supply also responds to prices and can quash that variation. For example, a
linear production technology gives us a constant interest rate; consumption adjusts, even
if we start from an endowment process that would produce a highly varying risk free rate
on its own.

Here too, the surface has been scratched, with efforts such as Jermann (1988), who
united one-period habits with Q theory, and Gomes, Kogan, and Zhang (2003), Gala
(2007), and Gourio (2011). The latter are revealing, as to generate a value premium they
have to innovate deeply on the technolgy, i.e. beyond y = θf(K,L) to deliver that pre-
mium. Tallarini (2000) points to the tendency of macroeconomics and finance to separate
with y = θf(K,L) plus adjustment cost technology, as investment responds to interest
rates not risk premia. This thought also drives my view that the choice between multiple
risky and less risky technologies is crucial to integrating macroeconomics and finance.

5. Summary

We have learned that asset prices correspond to a large, time-varying, business-cycle cor-
related risk premium. This risk premium means that price ratios forecast returns, and
thus risk premiums – “rational” or not – account entirely for the volatility of price ratios.

Many of the apparently diverse ideas of macro-finance that account for these facts have
about the same form. There is an extra, recession-related state variable, Y , so the discount
factor is modified to

Mt+1 = β
(
Ct+1

Ct

)−γ
Yt+1.

The tendency for assets to fall when Yt falls drives risk premiums, and changes in the
conditional density of Y drive time-varying risk premiums. In other models, an additional
recession-related state variable drives variation in conditional moments of consumption,
again driving a time-varying risk premium.

Many of the models also capture the same intuitions. I have emphasized that habit
models behave much like rare-disaster, probability-distorted, or ambiguity averse models
that focus on bad states; the converse interpretations work as well.

No model stands decisively above the others in its ability to describe equity pre-
mium/risk free rate puzzles, and more importantly time-varying, business-cycle related
risk premia; return predictability; “excess” volatility; and the long-run equity premium.
Many of the models including rare disasters and idiosyncratic risks, have not been explic-
itly extended to handle predictability and volatility. My favorite, habits, is at least not
yet superseded.

Each of the models suggests different candidates for the state variable Yt. But these
candidates are are highly correlated with each other, and each sensibly indicative of fear
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or bad economic times. Telling them apart empirically is not easy, and possibly not that
productive.

The models differ a bit more on aesthetic grounds including the number of assumptions
relative to predictions and analytical tractability. The time-varying risk aversion at the
center of the habit model is endogenous, and a simple measurable function of consumption
relative to its recent past. Many other models require carefully calibrated and complex
exogenous driving processes, which in some cases (long run risks, rare disasters) are nearly
invisible in the data, or to date approach ex-post storytelling, such as labeling a market
rise a rise in “sentiment” or “selling pressure,” without independent measurement. But
these are challenges which the other approaches are actively working to surmount. All
the models, including habits, have dubious but difficult to verify micro foundations. The
more subjective analytical convenience each has in capturing the common ideas may be
the most important feature for modeling developments.

As I look to the future, it also seems time for this body of empirical and theoretical
knowledge to invade macroeconomics, and for the general equilibrium insights of macroeco-
nomics to invade macro-finance. Recessions are phenomena of risk premiums, risk aversion,
risk bearing capacity, desires to shift the composition of a portfolio from risky to risk free
assets, a “flight to quality,” not a phenomenon of riskfree interest rates, intertemporal
substitution, a desire to consume more tomorrow vs. today.
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