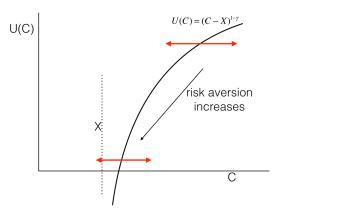
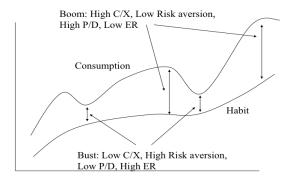
The Habit Habit

John H. Cochrane


Hoover Institution, Stanford University and NBER

March 2016

Habits


$$u(C) = (C - X)^{1 - \gamma} \rightarrow -\frac{u''(C)}{Cu'(C)} = \gamma\left(\frac{C}{C - X}\right) = \frac{\gamma}{S}$$

As C (or S) declines, risk aversion rises.

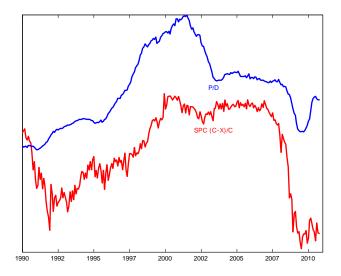
Habits

Slow-moving habit. Roughly, $X_t \approx \sum \phi^j C_{t-j}$; $X_t \approx \phi X_{t-1} + C_t$

 \rightarrow Time-varying, recession-driven, risk premium drives return predictability from p/d; "excess" volatility, much else (correlation, CAPM vs CCAPM, volatility, etc.). "Bubble" story.

Habits

 $u'(C) = (C - X)^{-\gamma}$


- Precautionary savings offset intertemporal substitution.
- Expected returns and fear/hunger. Habits add S = fear that stocks fall in recession

$$1 = E_t \left(M_{t+1} R_{t+1} \right); \ E(R_{t+1}^e) = -cov(R_{t+1}^e, M_{t+1})$$

$$M_{t+1} = \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} \left(\frac{S_{t+1}}{S_t}\right)^{-\gamma}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Habits – latest data

Here,
$$X_t = k \sum_{j=0}^{\infty} \phi^j C_{t-j}$$

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Habits - successes and ... directions for improvement

- Yes: Equity premium, low σ(Δc), unpredictable Δc, low and constant (or slow varying) risk free rate.
- No: ... and low risk aversion.
- ► Yes: return predictability, p/d volatility, $\sigma(R)$ volatility, long run equity premium.

$$M_{t+1} = \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} \left(\frac{S_{t+1}}{S_t}\right)^{-\gamma}$$

Needed:

The Standard VAR

$$egin{aligned} r_{t+1} &pprox 0.1 imes dp_t + arepsilon_{t+1}^r \ \Delta d_{t+1} &pprox 0 imes dp_t + arepsilon_{t+1}^d \ dp_{t+1} &pprox 0.94 imes dp_t + arepsilon_{t+1}^{dp} \end{aligned}$$

$$cov(\varepsilon\varepsilon') = \frac{\begin{array}{c|c} r & \Delta d & dp \\ \hline r & \sigma = 20\% & +\text{big} & -\text{big} \\ \Delta d & \sigma = 14\% & \textbf{0 not -1} \\ dp & \sigma = 15\% \end{array}$$

- Needed: Two shocks! Data ε^d, ε^{dp} uncorrelated. Δc is both a cashflow and a discount rate shock.
- ► ∆d shock in model has less correlation. Match VAR? d, c need to be cointegrated.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(Identities)

• Note: Δd , dp carry all information

$$r_{t+1} \approx dp_t - \rho dp_{t+1} + \Delta d_{t+1}$$
$$b_r = 1 - b_{dp} + b_d$$
$$\varepsilon_{t+1}^r = -\varepsilon_{t+1}^{dp} + \varepsilon_{t+1}^d$$

Habits - successes and ... directions for improvement

- Needed: More state variables (?)
 - 1. Empirical

$$R_{t+1}^{i} = a_{i} + b_{i}x_{t} + c_{i}y_{t} + ..c_{t+1}^{i}; E_{t}(R_{t+1}^{i}) = a_{i} + b_{i}x_{t} + c_{i}y_{t}$$

How many state variables – independent linear combinations of x, y, z are there? Factor analysis of $cov(E_t(R_{t+1}^i))$? Across stocks, bonds, fx, etc? (For example, one factor for all bonds.) For mean and variance (separate?)

- 2. Theoretical: If more than 1, need more state variables (*S*) in the model!
- Test; Other assets, 1 = E(mR^{ei})? Cross section (treating time aggregation right)?
- But, warning, all explicit models fail $R^2 = 1$ tests.
- Still low hanging fruit for all similar models.

Other directions

- A sampling
 - 1. Recursive utility (Epstein-Zin)
 - 2. Long run risks (e.g. Bansal Yaron)
 - 3. Idiosyncratic risk (e.g. Constantinides and Duffie)
 - 4. Rare Disasters (e.g. Reitz; Barro)
 - 5. Nonseparable across goods (e.g. Piazzesi Schneider, housing)
 - 6. Leverage; balance-sheet; "institutional" (e.g. Brunnermerier, ..)
 - 7. Ambiguity aversion, min-max, (Hansen and Scheinkman)
 - 8. Behavioral finance; probability mistakes. (e.g. Shiller, Thaler)
 - 9. Many others
- Great unity of theoretical ideas.

$$M_{t+1} = \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} \left(\frac{Y_{t+1}}{Y_t}\right)^{\theta}$$
$$P_t U'(C) = \beta \sum_s \pi_s(Y?) U'(C_s) X_s$$

Y varies with business cycle. "Fear of Y" drives asset prices. (Probability = marginal utility)

► Habits can still capture most of these ideas. Convenience?

Recursive utility / Long run risk

Function

$$U_{t} = \left((1-\beta)c_{t}^{1-\rho} + \beta \left[E_{t} \left(U_{t+1}^{1-\gamma} \right) \right]^{\frac{1-\rho}{1-\gamma}} \right)^{\frac{1}{1-\rho}}$$

 $\gamma={\rm risk}$ aversion $\rho=1/{\rm eis.}$ Power utility for $\rho=\gamma.$

Fear = utility index

$$\begin{split} M_{t+1} &= \beta \left(\frac{c_{t+1}}{c_t}\right)^{-\rho} \left(\frac{U_{t+1}}{\left[E_t \left(U_{t+1}^{1-\gamma}\right)\right]^{\frac{1}{1-\gamma}}}\right)^{\rho-\gamma} \\ &= \beta \left(\frac{c_{t+1}}{c_t}\right)^{-\rho} \left(Y_{t+1}\right)^{\rho-\gamma}. \end{split}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Recursive utility / Long run risk

Fear: news of future long-horizon consumption. ($\rho \approx 1$).

$$\Delta E_{t+1} \left(\ln m_{t+1} \right) \approx -\gamma \Delta E_{t+1} \left(\Delta c_{t+1} \right) + (1-\gamma) \left[\sum_{j=1}^{\infty} \beta^j \Delta E_{t+1} \left(\Delta c_{t+1+j} \right) \right]$$

- Features/thoughts
 - 1. iid Δc , reduces to power utility. Needs predictable Δc .
 - Current conditions Δc_t are essentially irrelevant to fear. Only from coincidence / assumption that current Δc_t is correlated with long run E_tΔc_{t+i}. (Not strong in data)
 - 3. Is there really a lot of news about long run future Δc ? Is that really the fear in 2008? Or "Dark Matter?" (Chen, Dou, Kogan)
 - 4. Time-varying risk premium, return predictability volatility, etc. must come from exogenously changing $\sigma_t(\Delta c_{t+1})$
 - 5. →Interesting phenomena all from hard-to-see features of exogenous consumption process. Habits: endogenous rise in RA.
 - "Separates IES / RA." "Solves risk free rate puzzle (high risk aversion, steady low R^f)." (Still needs high RA). But so do habits!
 - 7. "Preference for early resolution of uncertainty." "Separate time vs. state separability" Feature or bug?

(Note: Bansal Yaron Kiku consumption process)

$$\Delta c_{t+1} = \mu_c + x_t + \sigma_t \eta_{t+1}$$

$$x_{t+1} = \rho x_t + \phi_e \sigma_t e_{t+1}$$

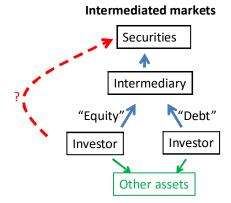
$$\sigma_{t+1}^2 = \bar{\sigma}^2 + v(\sigma_t^2 - \bar{\sigma}^2) + \sigma_w w_{t+1}$$

$$\Delta d_{t+1} = \mu_d + \phi x_t + \pi \sigma_t \eta_{t+1} + \phi \sigma_t u_{d,t+1}$$

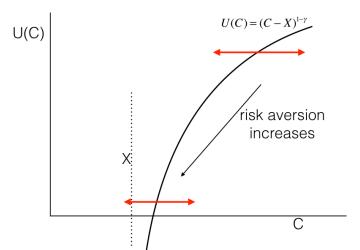
◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Constantinides and Duffie - idiosyncratic risk

Bottom line:

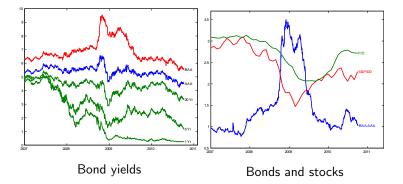

$$M_{t+1} = \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} \left(e^{\frac{\gamma(\gamma+1)}{2}y_{t+1}^2}\right)$$

 $y_{t+1} = cross-sectional variance$ of consumption growth.


$$\Delta c_{t+1}^{i} = \Delta c_{t+1} + \eta_{i,t+1} y_{t+1} - \frac{1}{2} y_{t+1}^{2}; \ \sigma^{2} \left(\eta_{i,t+1} \right) = 1$$

- Needs y = σ(cross-sectional variance) large, varies with business cycles, conditional distribution varies over time. Exogenous, or needs new theory
- New work in data (Schmidt). Maybe individual rare "disasters" in recessions drives σ(Δc)?

Balance sheets – debt – institutional / intermediated finance


As people / intermediaries lose money, closer to default, they get more risk averse Debt can look just like habit

Debt/intermediated objections

- Why do agents get more risk averse as they approach bankruptcy, not less?
- OK for obscure CDS. But why not buy S&P500 directly?
- Why get in so much debt in the first place? Why use agents?
- Where are unconstrained, debt-free rich people, Warren Buffet, endowments, sovereign wealth funds etc.? (Answer: selling in a panic just like everyone else.)
- Why the strong correlation to macroeconomics? (Will the true state variable please stand up?)
- Why are individual mean returns strongly associated with comovement (factors)?
- Data (2008): Widespread coordinated rise in all risk premiums, including easy-to-trade, held in your and my 401(k) and Vanguard's website.

A common risk premium

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ(?)

Rare disasters

$$E_t(R_{t+1}) - R_t^f = cov_t \left[\left(rac{C_{t+1}}{C_t}
ight)^{-\gamma}, R_{t+1}
ight]$$

- A small chance of a very low C_{t+1}/C_t can drive the whole covariance, raise E_tR_{t+1} despite reasonable γ, and despite samples with small σ(Δc_{t+1}).
- Objections:
 - 1. Shouldn't we see them more often? (Data controversy)
 - 2. Beyond equity premium? To get return predictability, p/d volatility, varying volatility, we need time-varying probabilities of rare disasters. External measurement or dark matter?
 - 3. We seem to need different time-varying probabilities for different assets (Gabaix).
 - 4. Correlation with business cycles? Probability of rare disasters exogenously correlated with business cycles? Or causality from stocks to recessions?

Probability assessments

$$P_t U'(C) = \beta \sum_s \pi_s U'(C_s) X_s$$

- ▶ π , U' always enter together. There is no way to tell them apart without a priori restriction U'(C) or $\pi(Y)$
- ▶ Do surveys "what do you expect" reveal $E = \sum \pi$ or $E^* = \sum \pi U'$?
- Some model restricting π to other data, $\pi(Y)$, or dark matter?
- Why the business cycle correlation?
- Min max; robust control

$$P_t U'(C) = \beta \min_{\{\pi \in \Theta\}} \sum_s \pi_s(Y_s) U'(C_s) X_s$$

But what's θ ? Why time-varying and business cycle related?

Summary:

 Many ideas give about the same result. An extra, recession-related state variable,

$$M_{t+1} = \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} Y_{t+1}$$

- No model yet decisively improves on habit in describing time-varying, business-cycle related risk premia; return predictability; "excess" volatility; "bubbles" associated with business cycles, long-run equity premium.
- No other model does so without relying on exogenous variation in the consumption process, just-so correlations (Δc_t with long run news) "dark matter" (time varying rare probabilities, business cycle correlated "sentiment," long run news), rather than endogenous variation in risk premiums
- Habit, despite neglect, is at least still a convenient formalism for capturing the common ideas.

Risk averse recessions

- Time to unite with production, general equilibrium! Integrate finance and macro (alternative to frictions)
- ▶ Keynesian: Recessions are driven by static flows: C = a + mpcY; I = Ī - br; etc.
- New-Keynesian: Recessions are intertemporal substitution

$$c_{t} = E_{t}c_{t+1} - \sigma r_{t} = E_{t}c_{t+1} - \sigma (i_{t} - E_{t}\pi_{t+1})$$

- Habit vision: Recessions are driven by endogenous time-varying risk aversion, not intertemporal substitution.
- Vision: Small shock. Risk aversion rises. Precautionary savings rise.

$$r = \delta + \gamma \left(\frac{c}{c-x}\right) E\left(\frac{dc}{c}\right) - \frac{1}{2}\gamma(\gamma+1) \left(\frac{c}{c-x}\right)^2 \sigma^2$$

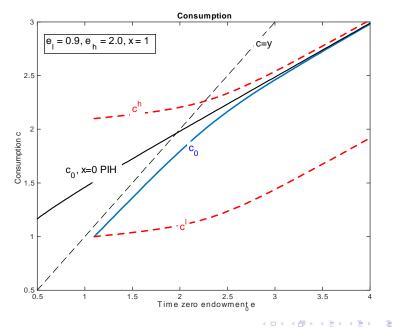
(Looks like "discount rate shock" of NK models.) Consumption declines. (Edc/c rise.) Risk aversion rises some more. .. Asset prices decline. Investment declines. C+I.. Output declines. Almost multiplier-accelerator.

Does it work?

Simple GE model 1: PIH with habit

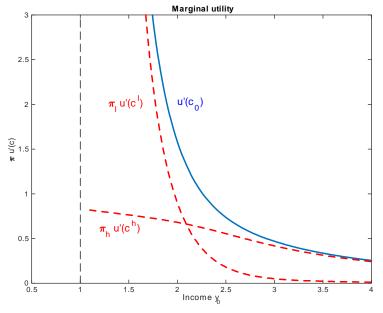
$$\max \frac{(c_0 - x)^{1 - \gamma}}{1 - \gamma} + E\left[\frac{(c_1 - x)^{1 - \gamma}}{1 - \gamma}\right]$$

$$c_1 = (e_0 - c_0) + e_1$$

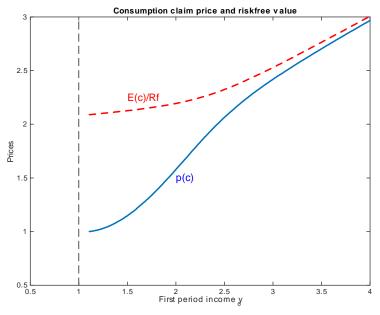

$$e_1 = \{e_h, e_l\} \ pr(e_l) = \pi_l.$$

$$(c_0 - x)^{-\gamma} = E(c_1 - x)^{-\gamma} (c_0 - x)^{-\gamma} = \pi_l(c_l - x)^{-\gamma} + \pi_h(c_h - x)^{-\gamma}$$

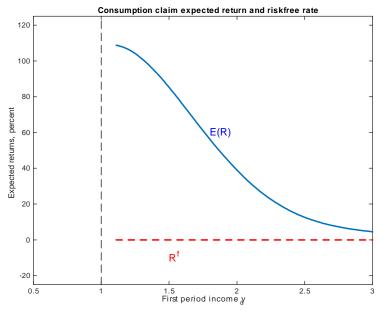
▶ x = 1, $\gamma = 2$, $e_h = 2$, $e_l = 0.9$ (< x!), $\pi = 0.01$ (endpoint)


- c_0 falls drastically in bad times, to make sure $c_l > x$
- \triangleright c₀ acts like buffer stock, leverage, debt models: high mpc for low c.
- u'(c₀) = π_hu'(c_h) for high e₀, but u'(c₀) = π_lu'(c_l) for low e₀. Like min-max, ambiguity aversion, rare disaster, salience models.
- Stock prices fall, expected returns rise. Investment to fall?

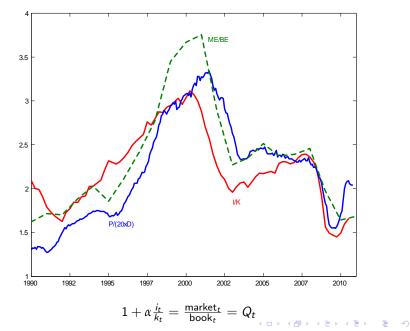
Rising mpc in bad times


Sac

Minimax, rare disaster behavior


æ

Stock prices fall

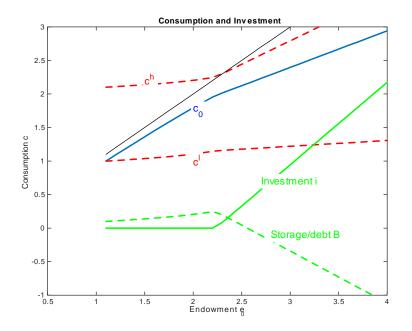

◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

Risk Premia Rise

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

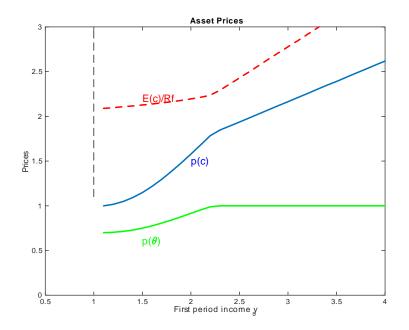
Investment and Q

A risky investment opportunity


$$\max \frac{(c_0 - x)^{1 - \gamma}}{1 - \gamma} + E\left[\frac{(c_1 - x)^{1 - \gamma}}{1 - \gamma}\right]$$

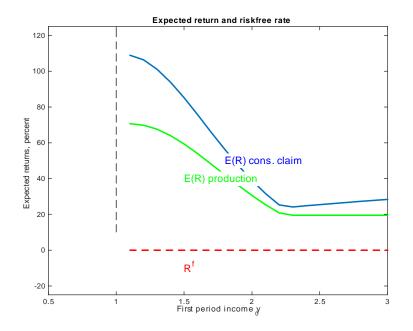
$$c_1 = e_1 + \theta_1 i_0 + B_0$$

 $c_0 = e_0 - i_0 - B_0 / R^f$
 $i_0 \ge 0$


$$(c_0 - x)^{-\gamma} = E(c_1 - x)^{-\gamma}$$

 $(c_0 - x)^{-\gamma} = E[(c_1 - x)^{-\gamma}\theta_1] \text{ if } i_0 > 0.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <


- ► x = 1, $\gamma = 2$, $e_h = 2$, $e_l = 0.9$ (< x!), $\pi = 0.01$,
- $\blacktriangleright \rightarrow \theta_{I} = 0.9, \ \theta_{h} = 1.2 \leftarrow$
- Risky investment collapses

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

◆□▶ ◆圖▶ ◆≧▶ ◆≧▶ ≧ ∽��?

(4日) (個) (目) (目) (目) (の)

On to recessions

- The main issue of all macro:
 - 1. "Demand" falls, but Y = F(K, L). Why does output fall?
 - 2. If u' rises, hungry, why not work more?

$$\max (c-x)^{1-\gamma} + (h-n)^{1-\gamma} \text{ s.t.} c = wn$$
$$(c-x) = w(h-n)$$

3. Desire to save rises. Why does investment fall?

Answers:

- 1. Traditional: sticky prices, wages.
- Shift of investment from risky private opportunity to storage/ government debt. ("R^f") Only *i* counts as *y*.
- 3. h habit?
- 4. Private work contributes to risky project which is being scaled back.

$$c_1 = e_1 + \theta_1 \min(i_0, n_0) + B_0$$

$$c_0 = e_0 - i_0 - B_0$$

$$i_0 \ge 0; h > n > 0$$

$$\rightarrow i_0 = n_0 \text{ collapses}$$

- Summary: Private economy is a risky project. Everyone wants to put in less money and less labor effort.
- Real dynamic model...

Summary

- Empirical: Asset prices are driven by a large, time-varying, business-cycle correlated risk premium.
- Theory: Habit captures it, endogenously.
- Lots of other models capture many of the same ideas. (Elegant? Exogenous? Dark Matter?)
- Habits capture many of the same ideas of those models. (Convenient?)
- Business cycle correlation; merge asset pricing and finance!
- Recessions are phenomena of risk aversion. Precautionary saving; scale back risky production / investment projects; all try to hold government debt.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

See you in 20 years?