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In this note, I show how fiscal theory can survive even in economies with r < g. Normal

representative agent economies don’t allow r < g. Bonds or money in the utility function can

drive the interest rate below zero, or allowing growth, below the economic growth rate r < g.

Nonetheless fiscal theory can determine the price level.

A particularly vivid case is a government financed only by money, which pays no interest.

Here, r = −π which is often negative and less than the growth rate. Nonetheless, fiscal theory

can determine the price level, even though money is never “repaid” with surpluses.

This note is inspired by Kaplan, Nikolakoudis and Violante (2023). They generate lower in-

terest rates via buffer stock savings of heterogenous agents, and via bonds in the utility function

in an appendix. This note is a simplified version of the latter treatment, with my interpretation

of the results.

The basic idea

The issue: The real value of debt is the present value of primary surpluses. In a steady state

the real value of debt b, primary surplus s and interest rate r satisfy

b =
s

r
.

With b > 0, there are steady states with r < 0 and s < 0. Negative interest costs can finance a

perpetual small primary deficit. But this is weird – a positive value of a negative cashflow divided

by a negative interest rate?
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It is weird, because of dynamics. The government budget satisfies

dbt
dt

= rtbt − st.

Debt grows at the real rate, and declines with primary surpluses. Around a conventional s > 0

r > 0 steady state, debt generically explodes. Debt b = s/r equal to the present value of surpluses

is the only non-explosive solution, the only solution that satisfies the transversality condition.

The price level at time 0 jumps so that b0 = B0/P0 = b, and fiscal theory of the price level works.

However, if s and r are both negative, then

dbt
dt

= rbt − s

converges to b = s/r for any b0. We lost the forward looking, explosive eigenvalue of the system.

The transversality condition is always satisfied. The present value of debt no longer determines

the initial price level. Fiscal theory falls apart.

But with a liquidity / insurance / money value of debt, the interest rate rt is not a constant.

When there is more debt (more money), the equilibrium cost to households of holding debt de-

clines, and the interest rate rises closer to the discount rate, i.e. the interest rate of the frictionless

economy. When there is less debt, people are willing to pay a large opportunity cost to hold it,

and the interest rate falls. Now dynamics are

dbt
dt

= rt(bt)bt − s (1)

with dr(b)/db > 0. In this case,
d[r(b)b]

db
= r(b) +

dr(b)

db
b.

If dr(b)/db is large enough, the right side of (1) rises with bt. More debt raises the interest rate

and leads to higher subsequent debt, even if the interest rate itself is negative. Then we restore

explosive local dynamics and the transversality condition selecting equilibria. Debt is, uniquely,

the present value of surpluses, even with negative interest rate and negative surpluses!

More carefully, with bonds in utility

Bonds or money in the utility function are a nice way to generate a liquidity value of gov-

ernment debt. (Uninsured idiosyncratic risk and an absence of other assets also works, though

with more algebra. )
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Households maximize

max

∫
e−ρt [u(ct) + θv (at)] dt

subject to
dat
dt

= rtat − τt − ct.

For examples, I use power utility

∫
e−ρt

[
c1−γt

1− γ
+ θ

(at)
1−η

1− η

]
dt

and usually log utility γ = η = 1.

The consumer first order conditions (algebra below) are

γt
1

ct

dct
dt

= rt − ρ+
θv′(at)

c−γt

where

γt ≡ −
u′′(ct)

ctu′(ct)

and the transversality condition

lim
T→∞

e−ρTu′(ct)at = 0.

The real value of government debt satisfies

dbt
dt

= rtbt − st.

I study a perfect foresight economy after an initial time-0 shock. Nominal debt B0 is out-

standing before and just after the shock. The price level P0 adjusts, so b0 = B0/P0 is determined

by nominal debt B0 and the price level jump.

Debt is actually nominal, and follows

dBt
dt

= itBt − Ptst. (2)

The central bank sets an interest rate target it. (2) describes how the central bank can set an

interest rate target. The bank offers to borrow or lend at rate it, but does not affect surpluses st.

(2) then just describes what the amount of nominal debt will be. This equation thus implements
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in continuous time the story in Fiscal Theory of the Price Level, about how offering to sell debt at

a constant interest rate implements share splits.

The real interest rate is determined by real considerations, and then inflation follows by

πt = rt + it.

In this flex price economy with short-term debt and no uncertainty past the initial shock, the

interest rate simply sets inflation (equal to expected inflation) and fiscal policy determines the

time-0 price level jump.

The “bonds” can thus also represent money. Money is just a form of government debt that

happens to pay zero interest, the same thing as a bond with a zero interest rate peg. In this

model, the only effect of relabeling bonds vs. money is that money constrains the interest rate

target to be zero. In the following, we just find the initial price level jump and the path of real

interest rates. Inflation then follows the interest rate target but has no other effect.

In equilibrium, at = bt; τt = st. I specify constant consumption ct = 1 and surplus st = s.

Thus the units of debt bt are the debt to consumption ratio, with a number on the order of b = 1;

the units of surplus s are surplus to consumption ratio. Below I generalize to growth, ct = egt;

st = s0e
gt and r < g issues. For now, it’s a little simpler to look at the non-growing economy and

the r < 0 case.

Thus equilibria satisfy two conditions

rt = ρ− θv′(bt) (3)

dbt
dt

= rtbt − s. (4)

In the first condition we see how lower debt levels raise the marginal utility of debt and thus

lower the equilibrium interest rate, potentially below zero.

One can substitute out the interest rate, and analyze the system with a single state variable,

dbt
dt

=
[
ρ− θv′(bt)

]
bt − s

However, it’s insightful to keep track of the interest rate and solve the system in a phase diagram,

as we often do for systems of coupled differential equations.
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Steady states

The steady states of (3)-(4) are

r = ρ− θv′(b)

r =
s

b
.

Following Kaplan, Nikolakoudis and Violante (2023), I’ll call the former the steady state “de-

mand” for debt, and the latter the steady-state “supply.” Demand is a rising function of debt b,

with asymptote r = ρ. With s > 0, supply is a declining function of b. We can also write it as

b = s/r, the value of debt is the present value of primary surpluses. The interest rate is negative

if and only if the surplus is negative.

Stationary equilibria are where supply and demand intersect, the b that solve

s

b
= ρ− θv′(b). (5)

With log utility v′(b) = 1/(b),
s

b
= ρ− θ

b
. (6)

The solution is

b =
s+ θ

ρ
; r =

sρ

s+ θ
. (7)

Since we must have positive debt, b > 0, there is a limit to how much negative surplus can be

financed: We must have s > −θ for an equilibrium.

Figure 1 illustrates. In the top equilibrium, I intersect supply with a positive surplus s =

0.02 with demand absent a liquidity effect, θ = 0. The interest rate equals the discount rate,

and debt is the present value of surpluses at that rate, b = s/r = 0.02/0.05 = 0.4. The middle

(vertically) equilibrium raises the liquidity value of debt to θ = 0.03. The equilibrium features a

lower interest rate, and consequently greater value of debt.

The lower equilibrium maintains the same liquidity value, θ = 0.03, but contemplates a

negative surplus, s = −0.01. Here too, there is a unique steady state, with debt b = (−0.01 +

0.03)/0.05 = 0.4. The interest rate is negative, r = s/b = −0.01/0.4 = −0.025 or−2.5%.

But does this equilibrium make sense? A present value interpretation of b = s/r with two

negative numbers on the right hand side looks weird. To understand that issue, turn to the
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dynamics.
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Figure 1: Debt and interest rates with debt in the utility function and log utility. Parameters
ρ = 0.05, s and θ as indicated.

Dynamics

Repeating for convenience, the dynamic equilibrium conditions (3)-(4) are

rt = ρ− θv′(bt)
dbt
dt

= rtbt − s

With no utility of debt, θ = 0, r = ρ > 0, and

dbt
dt

= rbt − s.

Solutions generically explode. Debt b = s/ρ = s/r is the present value of surpluses, is the only

non-explosive solution. The price level at time 0 jumps so that b0 = B0/P0 = b, and fiscal theory

of the price level works.
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However, if s and r are both negative and r is constant, then

dbt
dt

= rbt − s

converges to b = s/r for any b0. We lost the forward looking, explosive eigenvalue of the system.

The transversality condition is always satisfied. The present value of debt no longer determines

the initial price level. Fiscal theory falls apart. Explicitly, solutions are

bt =
(
b0 −

s

r

)
ert +

s

r

which with r < 0 converge for any b0.

But the interest rate rt is not a constant. With θ > 0, we have

dbt
dt

=
[
ρ− θv′(bt)

]
bt − s (8)

Higher bt means lower v′(bt) and thus higher db/dt. Higher bt lowers the liquidity value of debt,

increasing an off-steady-state explosion. And if −θv′(bt) rises fast enough with bt, the local dy-

namics can be explosive even if r = ρ− θv′(b) < 0.

We can see these local dynamics with a first order approximation of (8) around the steady

state,
dbt
dt
≈
[
r − θv′′(b)b

]
(bt − b) . (9)

(Here I use ρ− θv′(b) = r.) Negative v′′, declining marginal utility of bonds, raises the coefficient

on (bt − b). If v′′(b) is a large enough negative number, the local dynamics are explosive, r −

θv′′(b)b > 0, even if r < 0. Then we have a unique solution and fiscal theory works, even with a

negative interest rate.

In our log utility example, the dynamics (8) are

dbt
dt

=
[
ρ− θb−1t

]
bt − s

dbt
dt

= ρbt − θ − s (10)

and the linear approximation (9) is exact,

dbt
dt

= ρ (bt − b)
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The steady state is explosive for any θ, s. (Recall, though, that we must have s > θ for a steady

state to exist.) The arrows in Figure 1 indicate the local instability of the equilibria. Therefore

fiscal theory still works, and the initial price level jumps so that b0 = b even with s < 0 and r < 0.

The graph suggests that the steady state equilibrium is locally unstable and hence unique if

demand cuts supply downward from left to right. This hunch is correct. The slope of the supply

curve r = s/b is
dr

db
= − s

b2
.

The slope of the demand curve r = ρ− θv′(b) is

dr

db
= −θv′′(b) = θ

b2
,

the latter in the log utility case. Supply cuts downward at the steady state if

− s

b2
< −θv′′(b)

or with log utility

− s

b2
<

θ

b2
.

Equivalently,
s

b2
> θv′′(b); r > θv′′(b)b

or with log utility

s > −θ.

The former is exactly the condition for locally explosive or unique equilibria in (9); the latter the

condition for existence of the steady state.

Flows and present values

Equation (10) shows that, with log utility, debt explodes at rate ρ, not at rate r. We should sitll

discount with the positive discount rate, not the negative interest rate. Integrating (10) forward,

b0 =

∫ ∞
t=0

e−ρt(θ + s)dt =
θ + s

ρ

which is our steady state. In this epression, we can think of debt as providing a stream of liquidity

services, θ. The liquidity services can be so large that they fund a negative stream of deficits. We

have a well defined present value and fiscal theory applies.
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We can also try to discount at the interest rate,

b0 =

∫ ∞
t=0

e−(ρ−θ/bt)tsdt.

This gives the same answer when the interest rate is positive, but does not work when the interest

rate is negative. Thinking about liquidity as a distortion to the cash flow rather than to the rate

of return allows us to use present value thinking.

This is an instance of a general and underappreciated theoretical point: In many situations,

you can discount with marginal utility e−ρtu′(ct)/u′(c0) to produce a sensible present value for-

mula, but alternative discount factors that account for one period returns such as e−rt do not

produce a convergent present value. Discount factor tricks that work in finite-horizon models

do not work for infinite horizon models.

More generally, consider (8) with a varying surplus as well,

dbt
dt

=
[
ρ− θv′(bt)

]
bt − st.

One way to express the solution is

b0 =

∫ ∞
t=0

e−ρt
[
θv′(bt)bt + st

]
dt

Again, we discount the surplus and the liquidity services of debt at rate ρ, resulting in a well

defined present value.

Equation (7) expresses this idea as well for the log utility case:

b =
s+ θ

ρ
.

The value of the debt is the value of surpluses that repay debt, plus the value of liquidity services.

We can fund a slightly negative surplus when debt has adequate liquidity services.

Multiple or no equilibria.

The conditions for steady state

r = ρ− θv′(b)

r =
s

b
.
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may have no solution, or may have multiple equilibria.

In the log utility case v′(b) = 1/b,

r = ρ− θ

b

r =
s

b
.

With s > 0 and θ > 0 there is one and only one solution. Supply slopes down and demand slopes

up, both ranging from r = 0 to r =∞.

However, with s < 0 there is no positive (b > 0) solution if s < −θ. Intuitively, writing the

steady state as

b =
θ + s

ρ
,

liquidity benefits θ must pay for negative surpluses−s leaving something positive for bondhold-

ers. Figure 1 displays this case as well. The supply curve is shifted over to the right and down,

and the demand curve never catches up. If there is a solution it is unique. Thus, for log utility

and s < 0 there is 0 or 1 solution, and if there is a solution it is unstable and determines the price

level.

Kaplan, Nikolakoudis and Violante (2023) find multiple equilibria. Since both supply and

demand slope upward with s < 0, there can be more equilibria if the demand curve is more

concave than the supply curve. Power utility does not generate an example, but other utility

functions may.

Following Kaplan, Nikolakoudis and Violante (2023), multiple equilibria occur if the marginal

utility of debt is bounded. Then the demand curve in Figure 1 intersects the vertical axis. This

occurs if the utility function for debt is modified to θv(a+a). Then marginal utility of debt b be-

comes

θv′(b+ a) =
θ

b+ a
,

With the latter holding for v(a) = log(a), which I use in what follows. Even at b = 0, the vertical

axis of Figure 1, marginal utility is finite.

The steady state supply and demand curves are

r = ρ− θ

b+ a
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r =
s

b
.

The condition for a steady state is then

s

b
= ρ− θ

b+ a

s(b+ a) = (b+ a)ρb− θb

x

0 = ρb2 − [(s+ θ)− aρ]b− as

There are now potentially two solutions,

b =
[(s+ θ)− ρa]±

√
[(s+ θ)− ρa]2 + 4ρsa

2ρ
.

Figure 2 plots this example. The blue demand curve shifts to the left by a, and now intersects

the vertical axis. Even with zero debt, the marginal utility of debt is bounded. Now there are two

equilibria.

As you might expect, the low-debt equilibrium is stable, and multiple paths of debt ap-

proach it. The fiscal theory now implies only a lower bound on the price level, with that bound

approaching the high debt steady state. Any larger price level P0 leads to lower quantities of

debt, that approach the low debt steady state.

Kaplan, Nikolakoudis and Violante (2023) suggest a variety of policies to remove the lower

steady state and restore a unique price level. For example, they show that a surplus policy

st = s∗ + φ(bt − b∗)

restores determinacy. With this modification, the red supply curve of steady states becomes

rt =
s∗ + φ(b− b∗)

b
= φ+

s∗ − φb∗

b
.

For sufficient φ, the red supply curve now slopes down and intersects the blue demand curve

once.

The trouble with this and related solutions is that they turn off equilibrium behavior on its

head. Here the government commits to reducing surpluses as debt gets larger, and increasing
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Figure 2: Debt and interest rates with debt in the utility function and log utility. Parameters
ρ = 0.05, a = 0.20, and s and θ as indicated.

surpluses as debt gets smaller, the opposite of usual policies to stabilize the price level. Well, the

point is to induce instability. This has the flavor of new-Keynesian Taylor rules which likewise

imagine the government deliberately destabilizes policy to attain determinacy.

For now, I leave this issue. Are these multiple equilibria important? They are not generic.

They occur only when there is a liquidity value of government debt, a perpetual r < g, and for

specific functional forms, with a limited liquidity value of debt.

This issue has a long tradition in monetary economics. What is money demand as the

quantity of money goes to zero? One can make the argument for finite liquidity services, or

unbounded. Or that the issue involves angels on heads of pins.

First order condition derivation

The first order conditions are

H = u(ct) + θv(at) + µt(rtat − τt − ct)
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∂H

∂c
: u′(ct) = µt

∂H

∂a
: θv′(at) + µtrt = −

dµt
dt

+ ρµt

∂H

∂c
: u′(ct) = µt

∂H

∂a
: θv′(at) + rtµt = −u′′(ct)

dct
dt

+ ρu′(ct)

θv′(at)

u′(ct)
+ rt = −

ctu
′′(ct)

u′(ct)

1

ct

dct
dt

+ ρ

γ
1

ct

dct
dt

= rt − ρ+
θv′(at)

c−γt

and the transversality condition

lim
T→∞

e−ρTu′(ct)at = 0.
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