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1 Introduction

These notes describe how to set up and solve real business cycle methods by the King
Plosser Rebelo method of linearizing first order conditions. Much of the discussion
follows Campbell (1992). However, Campbell shows you how to get analytic solutions
with masses of algebra. Here I show you how to get numerical answers as quickly as
possible. Analytic solutions are great, but the formulas are so complicated that you
end up evaluating them numerically anyway in order to figure out what they say.

2 Fixed labor model, and method in detail

Start with an economy with fixed labor supply

maxE
∞X
j=0

βju(Cj) s.t.

Yt = A
α
tK

1−α
t = Ct + It

Kt+1 = (1− δ)Kt + It

lnAt+1 = ρ lnAt + (1− ρ)gt+ ²t.

The technology shock is assumed to be an AR(1) around a trend growth path gt .

Step 1: Write first order conditions.

I substitute the constraints to obtain

maxE
∞X
j=0

βju(Cj) s.t.

Kt+1 − (1− δ)Kt −Aα
tK

1−α
t + Ct = 0.

Denote by βtλt the Lagrange multiplier on the constraint (one for each date t) Then
the first order conditions are

∂/∂Ct : u
0(Ct) = λt

∂/∂Kt+1 : λt = βEt

"
λt+1

Ã
(1− α)

Ã
At+1
Kt+1

!α

+ (1− δ)

!#

∂/∂λt : Kt+1 = (1− δ)Kt +A
α
tK

1−α
t − Ct.

The first just interprets λt as the shadow value of wealth. The second is our old
friend. The term multiplying λt+1 in brackets is the one period return to capital. If
you invest one dollar, you get the depreciated dollar back plus the marginal product
of capital.)
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At this point, it is convenient to eliminate either consumption or λ. KPR eliminate
consumption, Campbell eliminates λ. I’ll follow the latter approach. Furthermore,
it’s a good time to introduce a parametric form for the utility function. I’ll use
u0(C) = C−γ. The algebra will be a little more transparent if we keep R separate for
now. (We’ll substitute back for R in the C equation later.) Thus, our system is

C−γt = βEt
³
C−γt+1Rt+1

´

Rt+1 = (1− α)

Ã
At+1
Kt+1

!α

+ (1− δ)

Kt+1 = (1− δ)Kt +A
α
tK

1−α
t − Ct.

Finally, it is clearer if we express the first order conditions in terms of variables that
do not grow,

1 = βEt

Ãµ
Ct+1
Ct

¶−γ
Rt+1

!
(1)

Rt+1 = (1− α)

Ã
At+1
Kt+1

!α

+ (1− δ) (2)

Kt+1

Kt
= (1− δ) +

µ
At
Kt

¶α

− Ct
Kt
. (3)

We want to solve them for Kt and Ct in terms of the shocks {At}. This is an
unpleasantly nonlinear system of difference equations. KPR suggests we linearize
them near a nonstochastic steady state, and find a solution to the linearized system.

Step 2. Characterize nonstochastic steady state.

Guess that nonstochastic steady state exists in which Y,C, I, A,K all grow at a
common rate G = (1 + g). If so, it must satisfy the first order conditions, so it must
satisfy

1 = β G−γR (4)

R = (1− α)
µ
A

K

¶α

+ (1− δ) (5)

G = (1− δ) +
µ
A

K

¶α

− C
K

(6)

We’ll use these later on to help get numbers for the nonstochastic steady state.

Step 3. Linearize first order conditions

It’s better to end up with predictions for log variables. Denote logs and deviations
from steady states as follows.

x = ln(X); x̃t = ln(Xt); xt = ln(Xt)− ln(X)
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Let’s start with the capital accumulation equation 3. Write it as

ek̃t+1−k̃t = (1− δ) + eαãt−αk̃t − ec̃t−k̃t

Taking a first order Taylor expansion, f(x) ≈ f(x0) + f 0(x0)(x− x0),

G+ G(kt+1 − kt) = (1− δ) +
µ
A

K

¶α

+
µ
A

K

¶α

(αat − αkt)− C
K
− C
K
(ct − kt).

The constant terms cancel, by virtue of 6, leaving

G(kt+1 − kt) =
µ
A

K

¶α

(αat − αkt)− C
K
(ct − kt).

Rearranging,

Gkt+1 =

"
G− α

µ
A

K

¶α

+
C

K

#
kt +

"
α
µ
A

K

¶α
#
at −

·
C

K

¸
ct

We can make this simpler by substituting from 6 to obtain

G− α
µ
A

K

¶α

+
C

K
= (1− δ) + (1− α)

µ
A

K

¶α

= R

so

Gkt+1 = [R] kt +

"
α
µ
A

K

¶α
#
at −

·
C

K

¸
ct.

However, I won’t spend a lot of time making the formulas look pretty in this way.
Our objective is to get numerical solutions, so I want to get to the computer as fast
as possible.

This equation is exactly what we’re looking for. We now have a linear equation
linking next period’s capital to today’s capital, technology and consumption. We will
have numbers for the quantities in brackets.

The return equation proceeds similarly. Write 2 as

er̃t+1 = (1− α)eαãt+1−αk̃t+1 + (1− δ).

Taking the Taylor expansion (the constant term drops as before)

Rrt+1 = (1− α)
µ
A

K

¶α

(αat+1 − αkt+1).

The consumption first order condition is a little trickier because of the expectation.
We will linearize the term inside the expectation, and then take it. Write 1 as

1 = βEt
³
e−γct+1+γctert+1

´
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Taking the expansion,

1 = βEt
³
G−γR+ G−γR(−γ(ct+1 − ct) + rt+1)

´
1 = βG−γR+ βG−γREt (−γ(ct+1 − ct) + rt+1) .

Again, as a result of the nonstochastic steady state condition 4 we can cancel terms
leaving

0 = Et (γ(ct+1 − ct)− rt+1) .
This equation has a nice interpretation. If expected returns are expected to be high,
so should consumption growth, since today’s consumption level is low as people save
more for the future. However, as risk aversion γ (really intertemporal substitution
aversion in this case) rises, consumption growth is less and less sensitive to returns.

Summarizing, we have produced the following system of linearized first order
conditions,

γEtct+1 = γct +Etrt+1

Rrt+1 = (1− α)
µ
A

K

¶α

(αat+1 − αkt+1).

Gkt+1 = [R] kt +

"
α
µ
A

K

¶α
#
at −

·
C

K

¸
ct

Step 4. Use steady state restrictions to get numbers for linearized first order conditions

We have three steady state conditions, so we can derive three quantities from
assumptions about the others. Which quantities one takes as given, i.e. estimated
from data or imposed by the researcher’s curiosity about a parameter’s effect, and
which parameters one infers from the steady state are a matter of choice.

Campbell advocates one nice calibration scheme. Assume or estimate

R = 1 + r = 10.6/4; G = 1 + g = 1.02/4; α = 0.67; δ = 0.1/4

and a range of assumed values for γ and ρ. (The 1.4 terms adjust annual values to
quarterly data.) Given these quantities, the steady state conditions imply

β = Gγ/Rµ
A

K

¶α

=
r + δ

1− α

C

K
=
µ
A

K

¶α

− (g + δ) =
r + δ

1− α
− (g + δ).

Now we have numbers for all the terms in square brackets in the linearized first order
conditions.

4



Other values for nonstochastic steady state quantities follow. For example,

Y

K
=
µ
A

K

¶α

;
I

K
=
Y

K
− C
K
.

Then, it’s easy to find C/Y, I/Y or any other quantity you might want.

There are lots of other such schemes one can use. All that matters is that you
respect the nonstochastic steady state conditions in picking numbers for the quantities
in brackets.

This procedure is sometimes called “calibration”. However, it’s really estimation.
We have a set of moments, things like E(Ct/Yt), E(Rt). We want the model’s predic-
tions for these things to be reasonably close to values found in the data. That’s what
this calibration procedure achieves. But there is no excuse for not making this a real
estimation exercise and attaching standard errors to the results, to reflect sampling
uncertainty about the values of the parameters so recovered. Burnside, Eichenbaum
and Rebelo (1991) and Eichenbaum (1991) show how to do this.

Step 5. Substitute everything else into the c and k equations, put it in standard form.

In this case, all we have to get rid of is r leading to

Etct+1 = ct +
1

γ
Et

α(1− α)
³
A
K

´α
R

 (at+1 − kt+1)



Gkt+1 = [R] kt +

"
α
µ
A

K

¶α
#
at −

·
C

K

¸
ct.

We have numbers for all the things in square brackets, so this is a system of the
form

Etct+1 = bcaEtat+1 + bckkt+1 + bccct

kt+1 = bkkkt + bkaat + bkcct

at+1 = ρat + ²t+1

where I added back the equation for the technology shock.

Finally, it is convenient to express the system in standard form, in which each
variable at t+1 is expressed in terms of time t values of the other variables. Here all
we have to do is substitute from the k and a equations into the c equation, to get

Etct+1 = bcaρat + bck(bkkkt + bkaat + bkcct) + bccct

Etct+1 = bckbkkkt + (bckbka + bcaρ)at + at + (bckbkc + bcc)ct.
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Using new letters to denote these combinations of b0s ,we have reduced the problem
to solving the following linear system of difference equations

Etct+1 = dckkt + dcaat + dccct (7)

kt+1 = bkkkt + bkaat + bkcct (8)

at+1 = ρat + ²t+1. (9)

Step 6. Solve the system

A. Campbell’s method

There are several ways to solve this system for {ct, kt} as a function of the {at} sequence.
Campbell suggests the method of undetermined coefficients. This solution method is
conceptually easy, and in the hands of an algebra master like Campbell, can be used
to delay going to the computer until you want to evaluate the answer.

The linear system of equations that we are staring at must be the first order
conditions of some linear quadratic problem. Thus, it is a pretty good guess that the
policy function will express consumption as a linear function of the state variables kt
and at,

ct = ηckkt + ηcaat.

We see if we can find numbers ηck and ηca to make this work. Substitute the guess in
our system of linear equations,

Et(ηckkt+1 + ηcaat+1) = dckkt + dcaat + dcc(ηckkt + ηcaat)

kt+1 = bkkkt + bkaat + bkc(ηckkt + ηcaat)

at+1 = ρat + ²t+1.

Simplifying, and eliminating Etat+1 by the third equation,

ηckkt+1 = (dck + dccηck)kt + (dca + (dcc − ρ)ηca)at

kt+1 = (bkk + bkcηck)kt + (bka + bkcηca)at

Using the second equation to eliminate k from the first equation,

ηck((bkk + bkcηck)kt + (bka + bkcηca)at) = (dck + dccηck)kt + (dca + (dcc − ρ)ηca)at.

Simplifying,

[ηck(bkk + bkcηck)− (dck + dccηck)]kt+ [ηck(bka+ bkcηca)− (dca+ (dcc− ρ)ηca)]at = 0.

This must hold for every value of k and a, so each term must be separately zero.
The first term is

bkcη
2
ck + (bkk − dcc)ηck − dck = 0
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This gives a quadratic for ηck. Hence,

ηck =
−(bkk − dcc)±

q
(bkk − dcc)2 + 4bkcdck
2bkc

.

Pick the positive root, or the one that does not lead to an explosive solution.

Given ηck we can find ηca from the second term,

[bkcηck + (ρ− dcc)]ηca + (ηckbka − dca) = 0

Hence,

ηca =
dca − ηckbka

bkcηck + (ρ− dcc)
.

We’re done! We can simulate the system

at+1 = ρat + ²t+1

kt+1 = (bkk + bkcηck)kt + (bka + bkcηca)at

and then find values for c,
ct = ηckkt + ηcaat.

If we want other variables, we can find them as well. For example, the production
function implies

yt = αat + (1− α)kt

We can find a linear rule for investment from

It = Yt − Ct ⇒ it =
Y

I
yt − C

I
ct

B. KPR/Hansen Sargent method.

Option 1: eigenvector tricks.

Write (7)-9) in matrix form as Etct+1kt+1
Etat+1

 =
 dcc dck dca
bkc bkk bka
0 0 ρ


 ctkt
at

 =W
 ctkt
at

 .
One of the eigenvalues ofW is greater than 1, so this generically leads to an explosive
path. We expect this. Consumption should end up being the present value of future
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income, not of past income, so we expect to find a root that must be solved forward.
If you don’t set consumption equal to the right present value of future income, capital
will explode up or down. However, if we pick ct just right–equal to the present value
of future income, the system is not explosive. Here’s a neat way to do this.

First, find the eigenvalue decompositionW = PΛP−1where P has the eigenvectors
of W as its columns, and Λ has eigenvalues of W down its diagonal1. To keep things
straight, call the explosive eigenvalue λ1,and put it in the top left corner of Λ. Now
can write  Etct+1kt+1

Etat+1

 = PΛP−1
 ctkt
at


and hence,  Etct+jkt+j

Etat+j

 = P
 λj1

λj2
λj3

P−1
 ctkt
at

 .
The only way to keep this from being explosive is if the term to the right of the
Λmatrix has a zero multiplying λ1, i.e. if

P−1

 ctkt
at

 =
 0b
d

 .
Multiplying by P and eliminating the column of P corresponding to the zero, it must
be true that  ctkt

at

 = P [., 2 : 3]

"
b
d

#

Inverting the last two rows,"
b
d

#
= P [2 : 3, 2 : 3]−1

"
kt
at

#

Hence, we obtain the decision rule for consumption in terms of capital and the shock.

ct = P [1, 2 : 3]P [2 : 3, 2 : 3]
−1
"
kt
at

#
. (10)

As above, once we have this decision rule, we are done. We simulate a from its
AR(1),

at = ρat−1 + ²t.

1If you haven’t seen this before, start with the definition of eigenvalue and eigenvector: a number
λ and a vector x such that Wx = λx. There are typically as many such eigenvalues and vectors
as there are columns of W . Stacking the x0snext to each other and calling the result P , we obtain
WP = PΛ. Inverting, we obtain the diagonalization W = PΛP−1.
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Then we find k from
kt+1 = bkkkt + bkaat + bkcct

kt+1 =
³h
bkk bka

i
+ P [1, 2 : 3]P [2 : 3, 2 : 3]−1

´ " kt
at

#
.

We find ct from10, and so forth.

Option 2: decouple dynamics, solve unstable root forward.

This method is particularly useful if you don’t want to use an AR(1) or other
Markovian shock–if you want to specify an arbitrary series for expected future
shocks, such as a war, rather than specify how expected future shocks are functions
of state variables. Write the first two equations of 7-9 in matrix form as"

ct+1
kt+1

#
=W

"
ct
kt

#
+Qat.

It’s tempting to invert this AR(1) in standard form to get"
ct
kt

#
=

∞X
j=0

W jQat−j.

However, this isn’t the answer. Again, W contains an unstable eigenvalue which has
to be solved forward. This time, let’s explicitly solve the unstable root forward.

The matrix W has the eigenvalue decomposition W = PΛP−1 Then, write our
equations as "

Etct+1
kt+1

#
= PΛP−1

"
ct
kt

#
+Qat.

Multiply through by P−1, we obtain

P−1
"
Etct+1
kt+1

#
= ΛP−1

"
ct
kt

#
+ P−1Qat.

Now, define new variables zt and wt by"
zt
wt

#
= P−1

"
ct
kt

#
.

These new variables follow"
Etzt+1
Etwt+1

#
=

"
λ1 0
0 λ2

# "
zt
wt

#
+ P−1Qat

where λ1 > 1, and λ2 < 1. These variables are uncoupled, so we can find each
separately. z follows

Etzt+1 = λ1zt + (P
−1Q)1at.
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Since λ1 > 1, we solve this one forward2,

zt = −
∞X
j=0

1

λj1
(P−1Q)1Etat+j

We can use this for any process for at. (That’s an advantage of this solution method.)
Plugging in for our AR(1) process,

zt = −
∞X
j=0

1

λj1
(P−1Q)1ρjat = − λ1

λ1 − ρ
(P−1Q)1at

Since λ2 < 1, we solve wt backwards. The moving average representation isn’t
particularly useful, so it’s easier to express our solution for wt in recursive form.

We’re done! We find zt and wt recursively by

at = ρat−1 + ²t

zt = − λ1
λ1 − ρ

(P−1Q)1at

wt = λ2wt−1 + (P−1Q)2at

Then, we find c and k by "
ct
kt

#
= P

"
zt
wt

#
and other variables as above.

3 Basic variable labor model

Now we add variable labor supply. This is a very important modification. Business
cycle variations are all about variations in hours and employment.

maxE
∞X
j=0

βj
"
ln(Cj) + θ

(1−Nt)1−γ
1− γ

#
s.t.

Yt = (AtNt)
αK1−α

t = Ct + It

2In case you forgot, you can do this one by lag operators, or recursively,

zt =
1

λ1
Etzt+1 − (P−1Q)1at

zt =
1

λ21
Etzt+2 − 1

λ1
(P−1Q)1Etat+1 − (P−1Q)1at

and so forth.
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Kt+1 = (1− δ)Kt + It

lnAt+1 = ρ lnAt + (1− ρ)gt+ ²t

We go through the same steps.

Step 1. Find first order conditions

Again, we get rid of some of the constraints, and obtain a Lagrangian

maxE
∞X
t=0

βt
Ã
ln(Ct) + θ

(1−Nt)1−γ
1− γ

!
−βtλt

³
Kt+1 − (1− δ)Kt − (AtNt)αK1−α

t + Ct
´
.

The first order conditions are as before, with an additional condition for labor.

∂/∂Ct :
1

Ct
= λt

I’ll go ahead and eliminate λ right away from the remaining conditions,

∂/∂Kt+1 :
1

Ct
= βEt

"
1

Ct+1

Ã
(1− α)

Ã
At+1Nt+1
Kt+1

!α

+ (1− δ)

!#

∂/∂Nt : θ(1−Nt)−γ = 1

Ct
α Nα−1

t Aα
tK

1−α
t

∂/∂λt : Kt+1 = (1− δ)Kt + (AtNt)
αK1−α

t − Ct
The labor first order condition has a natural interpretation. Write it as

v0(Nt) = u0(Ct)/FN

and it says that the wage or marginal product of labor equals the marginal rate of
substitution between consumption and leisure.

Again, it’s convenient to express the first order conditions in terms of variables
that are stationary, and to separate out the definition of return

1 = βEt

"
Ct
Ct+1

Rt+1

#

Rt+1 = (1− α)

Ã
At+1Nt+1
Kt+1

!α

+ (1− δ)

θ(1−Nt)−γ = α
Aα
t

Ct

µ
Kt

Nt

¶1−α
= α

µ
AtNt
Kt

¶α Kt

Ct

1

Nt

Kt+1

Kt
= (1− δ) +

µ
AtNt
Kt

¶α

− Ct
Kt
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Characterize nonstochastic steady state

1 = βG−1R

R = (1− α)
µ
AN

K

¶α

+ (1− δ)

θ(1−N)−γ = α
Aα

C

µ
K

N

¶1−α
G = (1− δ) +

µ
AN

K

¶α

− C
K

Not much news. One more condition, but another free parameter θ. In addition we
need a value for N . 1/4-1/3 are typical values, since about that fraction of time is
spent working.

Linearize around the steady state

Write each variable X as ex, and take derivatives with respect to x, remembering
that the constant terms will cancel.

1 = βEt

"
Ct
Ct+1

Rt+1

#
⇒ Et(ct+1 − ct) = rt+1).

Next,

Rt+1 = (1− α)

Ã
At+1Nt+1
Kt+1

!α

+ (1− δ)⇒

Rrt+1 = (1− α)
µ
AN

K

¶α

(αat + αnt − αkt)

and using the steady state conditions to simplify

Rrt+1 = (r + δ)(αat + αnt − αkt)

Next,

θ(1−Nt)−γ = α
Aα
t

Ct

µ
Kt

Nt

¶1−α
⇒

θ(1−N)−γ−1γNnt = α
Aα

C

µ
K

N

¶1−α
(αat + (1− α)kt − ct − (1− α)nt)

Using the steady state conditions to simplify,

γN

1−N nt = αat + (1− α)kt − ct − (1− α)nt

µ
1 + γ

N

1−N − α
¶
nt = αat + (1− α)kt − ct.
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Next,
Kt+1

Kt
= (1− δ) +

µ
AtNt
Kt

¶α

− Ct
Kt
⇒

G(kt+1 − kt) =
µ
AN

K

¶α

(αat + αnt − αkt)− C
K
(ct − kt)

Gkt+1 =
µ
AN

K

¶α

(αat + αnt)− C
K
ct +

Ã
C

K
+G− α

µ
AN

K

¶α
!
kt

Using the steady state conditions to simplify,Ã
C

K
+G− α

µ
AN

K

¶α
!
= (1− δ) + (1− α)α

µ
AN

K

¶α

= R

so

Gkt+1 =
µ
AN

K

¶α

(αat + αnt)− C
K
ct + Rkt

Substitute everything into k, c equations, write in standard form with t+1 on left, t
on right.

Our system is
Etct+1 = ct +Etrt+1

Rrt+1 = (r + δ)(αat+1 + αnt+1 − αkt+1)µ
1− α+ γ

N

1−N
¶
nt = αat + (1− α)kt − ct

Gkt+1 =
µ
AN

K

¶α

(αat + αnt)− C
K
ct + Rkt

Plugging the R equation in the C equation

Etct+1 = ct +
(r + δ)

R
(αEtat+1 + αEtnt+1 − αkt+1)

Give the constants new names,

Etct+1 = bccct + bckkt+1 + bcaEtat+1 + bcnEtnt+1

nt = bncct + bnkkt + bnaat

kt+1 = bkcct + bkkkt + bkaat + bknnt

At this point, you can substitute the n equation into the c and k equation, and
get a system in c, k, a, in the standard form in which t + 1variables are functions
of the t variables. Then use either Campbell’s solution or the eigenvalue trick given
above to find c as a function of k and a, and finally n and other variables.
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To organize this algebra (especially in larger systems) it is useful to use matrix
notation. Our system of equations is tct+1

kt+1
tat+1

 =
 0 bck bca
0 0 0
0 0 0


 tct+1
kt+1
tat+1

+
 bcc 0 0
bkc bkk bka
0 0 ρ


 ctkt
at

+

+

 bcn0
0

 [tnt+1] +
 0
bkn
0

 [nt]
and

[nt] =
h
bnc bnk bna

i ctkt
at


Substituting the n equation in the first equation,I −

 0 bck bca
0 0 0
0 0 0

−
 bcn0
0

 h bnc bnk bna
i

 tct+1
kt+1
tat+1

 =

=


 bcc 0 0
bkc bkk bka
0 0 ρ

+
 0
bkn
0

 h bnc bnk bna
i

 ctkt
at



A

 tct+1
kt+1
tat+1

 = B
 ctkt
at


 tct+1
kt+1
tat+1

 = A−1B
 ctkt
at


Now we’ve got it in standard form, and we can solve it just as before.

4 A general approach to solving KPR models.

The point here is to mechanize the steps of substituting for variables such as n, i,
etc. and to allow you to go straight from first order conditions to numerical solution.
Stacking up first order conditions, constraints, definitions, etc. we have a system of
the form "

A B
C D

# xt+1xt
z

 = 0.
Here, x denotes the state and control variables (usually c, k, a, or sometimes λ, k, a).
z contains definitions and other first order conditions, for example, it will usually
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contain the definition of rt+1, first order conditions for nt+1 and nt that allow you to
substitute out n from the other equations, and possibly equations for it, it+1, ct, ct+1, ...

Step 1: substitute out other variables, find transition equation for state.

The first step is to derive a transition equation for the state and control with all
the other variables substituted out.

C

"
xt+1
xt

#
+Dz = 0 ⇒ z = −D−1C

"
xt+1
xt

#

This is also used at the end to find values for other variables of interest.

Then,

A

"
xt+1
xt

#
+Bzt = 0⇒ (A−BD−1C)

"
xt+1
xt

#
= 0

or h
E F

i " xt+1
xt

#
= 0

Then, finally,
xt+1 = −E−1Fxt =Wxt

Step 2: Find value of control for stable solution.

I assume that w has one explosive eigenvalue and the rest stable. I also assume
that one element, the first is the control (usually c or λ).

First, find the eigenvalue decompositionW = PΛP−1where P has the eigenvectors
of W as its columns, and Λ has eigenvalues of W down its diagonal. To keep things
straight, call the explosive eigenvalue λ1,and put it in the top left corner of Λ. Now
can write

xt+1 = PΛP
−1xt.

For example,  Etct+jkt+j
Etat+j

 = P
 λj1

λj2
λj3

P−1
 ctkt
at

 .
The only way to keep this from being explosive is if the term to the right of the
Λmatrix has a zero multiplying λ1, i.e. if

P−1

 ctkt
at

 =
 0b
d

 .
Multiplying by P and eliminating the column of P corresponding to the zero, it must
be true that  ctkt

at

 = P [., 2 : 3]

"
b
d

#

15



Inverting the last two rows,"
b
d

#
= P [2 : 3, 2 : 3]−1

"
kt
at

#

Hence, we obtain the decision rule for consumption in terms of capital and the shock.

ct = P [1, 2 : 3]P [2 : 3, 2 : 3]
−1
"
kt
at

#
= ηc,ka

"
kt
at

#
.

Then, the state transition matrix is"
kt+1
at+1

#
=W [2 : 3, 1]ct+W [2 : 3, 2 : 3]

"
kt
at

#
=
³
W [2 : 3, 1]ηc,ka +W [2 : 3, 2 : 3]

´ " kt
at

#
"
kt+1
at+1

#
= T

"
kt
at

#

5 Balanced growth restrictions

max
X

βtu(Ct, Nt) s.t.

Yt = A
α
t N

α
t K

1−α
t

Kt+1 = (1− δ)Kt + It

First order conditions
uc(t) = βuc(t+ 1)Rt+1

Rt+1 = (1− α)

Ã
At+1Nt+1
Kt+1

!α

+ (1− δ)

un(t)/FN = uc(t)

un(t) = uc(t)αA
a
t

µ
Kt

Nt

¶1−α
un(t) = uc(t)α

µ
At
Kt

¶α

KtN
α−1
t

We’re looking for a balanced growth path in which “great ratios”A/K, Y/K,C/Y, I/Y, ...
are constant, i.e. K,A,C, I, Y all grow at the same rate. andN does not grow. Hence,
we need preferences such that

uc(t+ 1)

uc(t)
= const.

uc(t)Kt

un(t)
= const.
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along the growth path.

Example 1:
u(C,N) = ln(C) + v(N).

uc(t+ 1)

uc(t)
=

Ct
Ct+1

= const.

uc(t)Kt

un(t)
=
Kt

Ct

1

vn(Nt)
= const.

Example 2:

u(C,N) =
C1−γ

1− γ
+ v(N).

uc(t+ 1)

uc(t)
=

Ã
Ct
Ct+1

!γ

= const.

uc(t)Kt

un(t)
=
Kt

Cγ
t

1

vn(Nt)
.

This is not constant unless γ = 1. Balanced growth and separable utility (working
more doesn’t change your marginal utility of consumption) requires log utility over
consumption. To get higher curvature, we need to add nonseparability.

Example 3:

U(C,N) =
(Cρ(1−N)1−ρ)1−γ

1− γ

uc(t+ 1)

uc(t)
=
(Cρ

t+1(1−Nt+1)1−ρ)−γ(1−Nt+1)1−ρρCρ−1
t+1

(Cρ
t (1−Nt)1−ρ)−γ(1−Nt)1−ρρCρ−1

t

=

Ã
Ct+1
Ct

!−ργ+ρ−1
= const.

uc(t)Kt

un(t)
= − (C

ρ
t (1−Nt)1−ρ)−γ(1−Nt)1−ρρCρ−1

t Kt

(Cρ
t (1−Nt)1−ρ)−γCρ

t (1− ρ)(1−Nt)−ρ = const.×
Kt

Ct
= const.

In this case, getting more consumption makes you work less.

un = (1− ρ)(Cρ
t (1−Nt)1−ρ)−γCρ

t (1−Nt)−ρ = (1− ρ)C
ρ(1−γ)
t (1−Nt)−γ(1−ρ)−ρ

unc = (1− ρ)(ρ(1− γ))C
ρ(1−γ)−1
t (1−Nt)−γ(1−ρ)−ρ

If γ > 1 (more curved than log) unc < 0: raising consumption lowers the marginal
utility of work and hence work. If γ < 1, unc > 0 and raising consumption raises the
marginal utility of work.

Example 4:
u(C,N) = (Cρ + θ(1−N)ρ) 1ρ (1−γ)/(1− γ)

uc = (C
ρ + θ(1−N)ρ)
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