
Bonds and FX

Fama-Bliss, Asset Pricing

1. Preview: The basic picture is still “1/p forecasts excess returns” (If you’re not familiar
with yields etc., read discrete time bonds chapter)

2. Expectations hypothesis:

1) y(N)t = Et

PN−1
j=0 y

(1)
t+j (+rp, constant over time)

2) fN−1→N
t = Et(y

(1)
t+N−1) (+rp, constant over time)

3) y(1)t = Etr
N→N−1
t+1 .(+rp, constant over time)

You can see a rough truth in the data. But you can also see “sluggish adjustment” which is
the core of the predictability result.

1. Facts
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(a) The dominant movement is “level shift” — all yields up and down together.

(b) The yield curve does change shape. Sometimes rising, sometimes falling. This is
the “slope” factor. There is a business cycle pattern: inverted at peaks, rising at
troughs.

(c) The pattern since 1987 has been remarkably stable. Poeple who think in terms
of monetary policy see a new “stable” regime here.

(d) When the yield/forward curve is upward sloping, interest rates subsequently rise;
when yield curve is inverted, interest rates do subsequently fall. The EH looks
fairly reasonable.

(e) In 03-04, EH forecast big increases in rates. In 04 and 05 the 1 year rate did rise!
Actually 1 year rates rose more than forecast. 5 year rate is dead on the forecast.
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Solid = forward curve. Dash = yield curve.

(f) Risk premium on average? Table 20.8 Update

Interest rate data 1964:01-2008:12
Maturity n 1 2 3 4 5
E
£
y(n)

¤
6.16 6.37 6.54 6.68 6.76

E
£
y(n) − y(1)

¤
0 0.21 0.38 0.51 0.59

E
£
r(n) − y(1)

¤
0 0.46 0.80 1.38 1.05

σ
£
r(n) − y(n)

¤
0 1.87 3.42 4.73 5.79

“Sharpe” 0 0.25 0.23 0.22 0.18

There does seem to be a small average risk premium for long term bonds. But
it seems small on average. The expectations hypothesis usually means “plus a
constant risk premium” and this is that constant risk premium.

(g) Compare Sharpe to 0.5 of the market portfolio. Long term bonds are way inside
the mean-variance frontier, and β ≈ 0. This makes it a bit of a puzzle why people
hold them. Actually long-term bonds are the “safe” asset for long term investors,
and this is a warning about one-period mean-variance thinking.

(h) Warning: it’s easy to find huge sharpe ratios and “arbitrage” in the term struc-
ture; very similar securities with slightly different prices. On/off the run spreads,
liquidity spreads, corporate spreads. A bit of a warning, these are a) hard to
trade b) hide earthquake risk. Here we’re looking at the basic term spread in
treasuries. This may be a pretty boring part! I’ll review these aspects at the end.
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2. Expectations failures—Fama Bliss. (Updated 1964-2008), table 20.9 update

rx
(n)
t+1 = y

(1)
t+n−1 − y

(1)
t =

a+ b
³
f
(n)
t − y

(1)
t

´
+ εt+1 a+ b

³
f
(n)
t − y

(1)
t

´
+ εt+1

n b σ(b) R2 a b σ(b) R2

2 0.83 0.27 0.12 0.17 0.27 0.01
3 1.12 0.36 0.13 0.47 0.31 0.04
4 1.34 0.45 0.14 0.75 0.23 0.12
5 1.02 0.52 0.06 0.87 0.16 0.16

forecasting one year returns forecasting one year rates
on n-year bonds n years from now

3. Wake up. This is the central table.

(a) Left hand panel: “Expected returns on all bonds should be the same” → Run a
standard regression to see if anything forecasts the difference in return. Run

r
(n)
t+1 − y

(1)
t = a+ bXt + εt+1

We should see b = 0.

1. Over one year, expected excess returns move one for one with f − s spread!
(Should be zero.) The “fallacy of yield” turns out to be correct (at a one year
horizon).

2. How do we reconcile this with the first table? Long bonds don’t earn much
more on average. But there are times when long bonds expect to earn more,
and other times when they expect to earn less. f − s is sometimes positive,
sometimes negative.

(b) Right hand panel, row 1.

1. If f (1→2) is 1% higher than y(1), we should see y(1)t+1 rise 1% higher. We should
see b = 1. Instead, we see b = 0! A forward rate 1% higher than the spot rate
should mean the spot rate rises. Instead, it means that the 2 year bond earns
1% more over the next year on average.

(c) Right hand panel, higher rows

1. At longer horizons, f − y spread does start to forecast n year changes in
yields. (Correspondingly, it ceases to forecast n year returns — not shown.)

2. Once again, expectations does seem to work “in the long run.”

(d) 0.83 + 0.17 = 1 is not by chance. Mechanically, the two coefficients in the first
row add up. If f − y does not forecast ∆y, it must forecast returns. See the plot
of bonds over time for intuition. If we move the p(1)t+1 up we increase expected
returns r(2)t+1 and decrease the future yield y

(1)
t+1.

(e) Note: higher rows do not add up to 1. Why? There are “complementary” regres-
sions that add up to 1, I just didn’t show them.

153



Time

Price
Higher 1 year

rate in year 1-2

= lower return of 2 
year bond in 0- 1

Time

=Higher 1 year
rate in 3-4

Lower return of 4 
year bond from 0-3

Time

Lower return of 4 
year bond from 0-1

= Higher 3 year
rate in 1-4

‘safe’ 1 year return

(f) The algebra: As we did before, start with an identity (exact this time)³
r
(2)
t+1 − y

(1)
t

´
+
³
y
(1)
t+1 − y

(1)
t

´
= f

(2)
t − y

(1)
t

Proof: Note that the forward-spot spread equals the change in yield plus the excess
return on the two year bond.

f
(1→2)
t − y

(1)
t = p

(1)
t − p

(2)
t + p

(1)
t

=
³
p
(1)
t+1 − p

(2)
t + p

(1)
t

´
+
³
−p(1)t+1 + p

(1)
t

´
=

³
r
(2)
t+1 − y

(1)
t

´
+
³
y
(1)
t+1 − y

(1)
t

´
Hence, when we project down on to f (2) − y(1), and inventing some notation,

b(2)r + b(1)y = 1

In this precise way, a forward rate higher than the spot rate must imply a high
return on two year bonds or an increase in the on year rate.

(g) Notice how this is all so much like our dividend yield friends, D/P: (If p.d
varies) ∆d should be forecastable so that R not. Fact: ∆d is not forecastable, so
R is. Here, (if the yield curve varies) ∆y should be forecastable so r not. Fact:
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∆y is not forecastable, so r is. We also split variation in the dividend yiled to two
terms by identity and deduced that two regression coefficients must add up,

pt − dt =
∞X
j=1

ρj−1 (∆dt+j − rt+j)

blrr − blrd = 1

Here too we had a “complementary regressions” this is just like the D column of
return forecasts.

4. Q: Why do we run y
(1)
t+1 − y

(1)
t on f

(2)
t − y

(1)
t ? The EH says f

(1→2)
t = Et

h
y
(1)
t+1

i
, so why

not run y
(1)
t+1 on f

(1→2)
t ?

A: That’s valid but not as strong a test. An analogy: Tempt+1 = 0 + 1×Tempt + εt+1
works pretty well, so just reporting Tempt makes you look like a good forecaster!
But this won’t work for (Tempt+1−Tempt). Being able to forecast changes is a more
powerful test than being able to forecast levels of a slow-moving series like temp, or
yield. In short, there’s nothing wrong with doing it with levels, but differences is a
more powerful test.

5. Interpretation.

(a) This is like D/P that forecasts returns, not dividend growth. (f − y forecasts
returns, not yield growth.) Variation in D/P must be due to returns of dividend
growth. (f − y must either forecast yield changes or returns.) Surprise in both
cases: it’s due to returns.

(b) “Sluggish adjustment.” For stocks on D/P; bonds on F-S and exchange rates on
domestic-foreign interest rate, an expected offsetting adjustment doesn’t happen.

1. Stocks: P/D high? D should rise. It doesn’t. “Buy yield” (“value”).
2. Bonds: f − y high? y should rise. It doesn’t (at least for a few years). “Buy
yield”

If the current yield curve is as plotted in the left hand panel, the right hand
panel gives the forecast of future one year interest rates. This is based on the
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right hand panel of the above table. The dashed line in the right hand panel
gives the forecast from the expectations hypothesis, in which case forward
rates today are the forecast of future spot rates.

(c) There are big risk premia and they vary over time. There are times when you
expect much better returns on long term bonds, and other times when you expect
much better returns on short term bonds. (An upward sloping yield curve results
in rising rates, but not soon enough — you earn the yield in the meantime). When
are these times? Look at the plot! High expected returns in recessions (level reces-
sions, not growth rate recessions) Interpretation: Business cycle related variation
in risk, expected returns. (γ varies over time). Who wants to hold long-term
bonds in the bottom of a recession?

6. ADDITIONS/PROBLEM SETS.

(a) Note Fama Bliss with coefficient = 1 is NOT consistent, since if you iterate you
don’t get one year regresisons.

(b) Note the one factor Vasicek does not produce Fama Bliss coefficient.

(c) Result. FB coefficients should be less than one.

Cochrane-Piazzesi 1

Let’s move the question.

Now, let’s ask the question, “what best forecasts returns?” Let’s put all available forwards
on the right hand side, not just the maturity-matched pair.

It was right for FF not to do this. Their question was “does the forward spread forecast∆y?”
“What causes variation in the right hand side?” (Fama regressions are really about this — why
does D/P, f-s move?) Also, we’re not really asking, “is the expectations hypothesis right?”
That was FB’s motivation. We’re asking, “given it’s wrong, what’s the best characterization
of bond expected returns?”

Motivation 2. (More important) Now we have many right and left hand variables. We need
to look for common factors.

r1t+1 = a+ bx1t + ε1t+1
r2t+1 = a+ bx2t + ε2t+1

x = f − s for fama bliss, dp vs. f − s looking across stocks and bonds.

a) Does x1 enter equation 2?

b) Maybe

r1t+1 = a+ bx1t + cx2t + ε1t+1
r2t+1 = a+ 2bx2t + 2cx

2
t + ε2t+1

If so the expected returns are perfectly correlated.
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What is the factor structure in expected returns?

We want to ask this question across all asset classes. Asking across bond maturities is the
start.

Cochrane-Piazzesi update

Bottom line

1. Forecast 1 year treasury bond returns, over 1 year rate, using all forwards:

rx
(n)
t+1 = an + β0nft + ε

(n)
t+1

2. R2 up to 44%, up from Fama-Bliss / Campbell Shiller 15%

3. A single “factor” γ0f forecasts bonds of all maturities. High expected returns in “bad
times.”

4. A tent-shaped factor is correlated with slope but is not slope. Improvement comes
because it tells you when to bail out — when rates will rise in an upward-slope envi-
ronment

Basic regression
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rx
(n)
t+1 = an + b1y

(1)
t + b2f

(2)
t + ...+ b5f

(5)
t + ε

(n)
t+1
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•Regressions of bond excess returns on all forward rates, not just matched f − y as in
Fama-Bliss

•The same linear combination of forward rates forecasts all maturities’ returns. Just stretch
the pattern more to get longer term bonds!

• To see the point, what would Fama-Bliss coefficients look like?

A single factor for expected bond returns

rx
(n)
t+1 = bn

³
γ0 + γ1y

(1)
t + γ2f

(1→2)
t + ...+ γ5f

(4→5)
t

´
+ ε

(n)
t+1;

1

4

5X
n=2

bn = 1.

One common combination of forward rates γ0f tells you where all expected returns are going
at any date. Then stretch it up more for long term bonds with bn

•Two step estimation; first γ then b.

rxt+1 =
1

4

5X
n=2

rx
(n)
t+1 = γ0 + γ1y

(1)
t + γ2f

(1→2)
t + ...+ γ5f

(4→5)
t + εt+1 = γ0ft + εt+1

Then
rx

(n)
t+1 = bn

¡
γ>ft

¢
+ ε

(n)
t+1

Results:

Table 1 Estimates of the single-factor model

A. Estimates of the return-forecasting factor, rxt+1 = γ>ft + ε̄t+1
γ0 γ1 γ2 γ3 γ4 γ5 R2 χ2(5)

OLS estimates −3.24 −2.14 0.81 3.00 0.80 −2.08 0.35 105.5

B. Individual-bond regressions
Restricted Unrestricted

rx
(n)
t+1 = bn

¡
γ>ft

¢
+ ε

(n)
t+1 rx

(n)
t+1 = βnft + ε

(n)
t+1

n bn R2 R2 χ2(5)
2 0.47 0.31 0.32 121.8
3 0.87 0.34 0.34 113.8
4 1.24 0.37 0.37 115.7
5 1.43 0.34 0.35 88.2

•γ capture tent shape.

•bn increase steadily with maturity, stretch the tent shape out.

•Restricted model bnγ almost perfectly matches unrestricted coefficients. (well below 1σ)
(This is the point of the graph)

•R2 = 0.34 − 0.37 up from 0.15 − 0.17. And we’ll get to 0.44! There is a very significant
rejection of γ = 0
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•R2 almost unaffected by the single-factor restriction. The restriction looks good in the
graph.

•See paper version of table 1 for standard errors, joint tests including small sample, unit
roots, etc. Bottom line: highly significant; EH is rejected, improvement on FB/3 factor
models is significant.

More lags
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i=0
i=1
i=2
i=3

rx
(n)
t+1 = an + b0nft−i + ε

(n)
t+1

•More lags are significant, with the same pattern.

•Checking individual lags reassures us it’s not just measurement error, i.e.

pt+1 − pt = a+ bpt + εt+1

if pt is measured with error, you’ll see something. But

pt+1 − pt = a+ bpt−1/12 + εt+1

fixes this problem.

•The pattern suggests moving averages

rxt+1 = a+ γ0 (ft + ft−1 + ft−2 + ...) εt+1

k 1 2 3 4 6
R2 0.35 0.41 0.43 0.44 0.43
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•Interpretation: Yields at t should should carry all information about the future. If the lags
enter, there must be a little measurement error. f change slowly over time, so ft−1/12 is
informative about the true ft. Moving averages are a good way to enhance a slow-moving
“signal” buried in high-frequency “noise”.

Stock Return Forecasts

Table 3. Forecasts of excess stock returns (VWNYSE)

rxt+1 = a+ bxt + εt+1

γ>f (t) D/P (t) y(5) − y(1) (t) R2

1.73 (2.20) 0.07
3.56 (1.80) 3.29 (1.48) 0.08

1.87 (2.38) −0.58 (−0.20) 0.07
1.49 (2.17) 2.64 (1.39) 0.10

MA γ>f 2.11 (3.39) 0.12
MA γ>f 2.23 (3.86) 1.95 (1.02) −1.41 (−0.63) 0.15

• The 5 year bond had b = 1.43. Thus, 1.73− 2.11 is what you expect for a perpetuity.

• It does better than D/P and term spread: Drives out spread; It survives with D/P

• A common term risk premium in stocks, bonds! Reassurance on fads & measurement
errors

• Need to follow up — do impulse responses like I did for cay
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• Is it real or just a few data points? What is the story?

•Consistent in many episodes

•γ0f and slope are correlated. Many episodes are interpreted the same way.

•γ0f improvement in many episodes. γ0f says get out in 1984, 1987, 1994, 2004. What’s the
signal?
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•Green: CP say buy. Red: FB say buy, CP say don’t.

•Tent-shaped coefficients interact with tent-shaped forward curve to produce the signal.

•CP: in the past, tent-shape often came with upward slope. Others saw upward slope,
thought that was the signal. But an upward slope without a tent does not work. The tent
is the real signal.

Real time
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Real time

Regression forecasts γ̂>ft. “Real-time” re-estimates the regression at each t from 1965 to t.
(Note: Just because we don’t have data before 1964 doesn’t mean people don’t know what’s
going on. Out of sample is not crucial, but it is interesting.)

Macro

1965 1970 1975 1980 1985 1990 1995 2000

Return forecast
Unemployment

•Is it real, a time-varying risk premium? Or is it some new psychological “effect,” an unex-
ploited profit opportunity?

162



• Here, γ0f is correlated with business cycles, and lower frequency. (Level, not growth.)
Suggests a “business cycle related risk premium.”

• Also significant that the same signal predicts all bonds, and predicts stocks. If “overlooked”
it is common to a lot of markets!

Yield curve factor models.
The usual approach: By eigevalue decomposition/factor analysis reduce the yield curve to
“level” “slope” and “curvature” factors which explain 99.9% of yield curve variance.

lt = q0lyt; st = q0syt; ct = q0cyt

yt = qllt + qsst + qcct (+εt)

Theorem,
QΛQ0 = cov(yty

0
t)

the columns of Q provide these numbers.

In this approach, we usually find that st forecasts returns (Fama-Bliss slopes) but with about
15% R2

Similar structures come from affine models, which we’ll look at in a bit.

How does the CP γ0ft = γ∗0yt compare to this approach?
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• Top left: γ expressed as an operator for yields not forwards. (Not so pretty, eh?)
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• Top right: q expressed as a function of yields — how to form factors from yields, and
how yield load on factors.

• Bottom left: what function of level, slope and curve best forecasts returns?

rxt+1 = a+ b(lt) + c(st) + d(ct) + εt+1

Then unwind the factors to find the overall function of yields that best forecasts returns.

Lesson.

1. First smooth, then forecast can throw out the baby with the bathwater. This con-
tradicts the usual practice (Stock and Watson) to first find principal components then
forecast. But there was no theory that usual practice was right; maybe the parts that
forecast do not explain much contemporaneous variance.

2. “Maximize variance of yields, returns, etc.” is not “maximize variance of expected
returns”

3. Expected returns are (nearly) “unspanned state variables” a big new issue in term
structure models.

Failures and spread trades

•What this is about (so far): when, overall is there a risk premium (high expected returns)
in long term vs. short term bonds. “Trade” is just betting on long vs. short maturity,
“betting on interest rate movements.”

•What this is not about (so far). Much fixed income “arbitrage” involves relative pricing,
small deviations from the yield curve. “Trade” might be short 30 year, long 29.5 year.

A hint of spread trades

If the one-factor model is exactly right, then deviations from the single-factor model should
not be predictable.

rx
(2)
t+1 − b2rxt+1 = a(2) + 00ft + εt+1 = a(2) + 00yt + εt+1

(Why?

rx
(2)
t+1 = α(2) + b2 (γ

0ft) + ε
(2)
t+1

rxt+1 = α+ γ0ft + ε
(2)
t+1

multiply the second by b2 and subtract.)

164



Table 7. Forecasting the failures of the single-factor model
A. Coefficients and t-statistics

Right hand variable
Left hand var. const. y

(1)
t y

(2)
t y

(3)
t y

(4)
t y

(5)
t

rx
(2)
t+1 − b2rxt+1 −0.11 −0.20 0.80 −0.30 −0.66 0.40

(t-stat) (−0.75) (−1.43) (2.19) (−0.90) (−1.94) (1.68)
rx

(3)
t+1 − b3rxt+1 0.14 0.23 −1.28 2.36 −1.01 −0.30

(t-stat) (1.62) (2.22) (−5.29) (11.24) (−4.97) (−2.26)
rx

(4)
t+1 − b4rxt+1 0.21 0.20 −0.06 −1.18 1.84 −0.82

(t-stat) (2.33) (2.39) (−0.33) (−8.45) (9.13) (−5.48)
rx

(5)
t+1 − b5rxt+1 −0.24 −0.23 0.55 −0.88 −0.17 0.72

(t-stat) (−1.14) (−1.06) (1.14) (−2.01) (−0.42) (2.61)

B. Regression statistics
Left hand var. R2 χ2(5) σ(γ̃>y) σ(lhs) σ(b(n)γ>y) σ(rx

(n)
t+1)

rx
(2)
t+1 − b2rxt+1 0.15 41 0.17 0.43 1.12 1.93

rx
(3)
t+1 − b3rxt+1 0.37 151 0.21 0.34 2.09 3.53

rx
(4)
t+1 − b4rxt+1 0.33 193 0.18 0.30 2.98 4.90

rx
(5)
t+1 − b5rxt+1 0.12 32 0.21 0.61 3.45 6.00

•This is statistically significant, and this is why GMM rejects the single factor model.

• Pattern: if y(n) is a little out of line with the others (low price), then r(n) is good relative
to all the others.

• No common factor. Bond-specific mean-reversion.

•This is tiny. 17-21 bp, compare to 200-600 bp returns.

•The single-factor γ0f accounts for all the economically important variation in expected
returns

• But the left hand side is tiny too, so tiny/tiny = good R2

• Tiny isn’t so tiny if you leverage up like crazy!

• But... measurement error looks the same.

Measurement error, φ12 problems, etc.

(See paper.)

Latest data, and treasury curves during the crash

See overheads. This is a real problem. The Fama Bliss data extraction method no longer
works. We need to go back to basic treasury data and do it right.
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Affine models, background for CP II

Statistical factor model approach

Produces "factor model."

The yield curve is crying for factor structure
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Yields of 1−5 year zeros and fed funds
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1
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Yield spreads y(n)−y(1)

• Technique: eigenvalue decomposition

Σ = cov(y)

QΛQ0 = Σ;Λ diagonal, Q0Q = QQ0 = I

yt = Qxt; cov(xx
0) = Λ→ cov(yy0) = QΛQ0 = Σ

Thus, we get a factor model. The underlying factors x are uncorrelated, ordered by
variance.

1. Λ give us the variances of the "factors"

2. Columns of Q tell us how y loads on x movements, if “factor ‘1 moves” how much do
y move. x = Q0yt (cov(x, x0) = Q0ΣQ = Q0QΛQ0Q = Λ)

3. Colums of Q tell us how x is formed from each y, how to construct each factor.

4. (Note “Rotation, identification” There are many different ways to write y = Ax; E(xx0) =
D. For example, changing to z1t = x1t/σ1 + x2t/σ2; z2t = x1t/σ1 − x2t/σ2 preserves
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cov(z1, z2) = 0. The eigenvalue decomposition solves

max var(q0y) s.t. q0q = 1

max var(q20y) s.t. q02q2 = 1, q02q1 = 0

...

Note: identification will be poor if the variance is about the same; small differences in
the sample will produce q that jump between one and the other factor. Often you want
to identify in other ways than by variance ordering, i.e. to get interpretable shapes of
the loadings. For example, if you do this to the FF 25 portfolios, you get two factors,
each of which is a mixture of smb and hml, and nearly the same variance. Rotating to
smb and hml gives a more pleasing structure.)

5. (Note: Unit variance factors

yt = QΛ1/2xt; cov(xtx
0
t) = I

xt = Λ−
1
2Q0y

Loadings QΛ1/2 are smaller for smaller factors. This is a nice way to show the relative
importance as well as the shapes of the factors, and not have your readers spend too
much time interpreting the 5th factor.)

6. λi/
P

λi = “fraction of variance explained by ith factor”

• Result, applied to FB yield data

Sigma = cov(100*yields);
[Q,L] = eig(Sigma);
disp(diag(L)’.^0.5);
%(my names)2-5 zigzag curve slope level

0.06 0.07 0.10 0.58 5.80
disp(Q)

0.06 0.15 -0.47 -0.74 0.46
-0.35 -0.55 0.56 -0.21 0.46
0.70 0.32 0.44 0.12 0.45
-0.59 0.57 -0.03 0.36 0.44
0.19 -0.49 -0.52 0.51 0.43

loads = Q*L^0.5;
plot(loads)
plot(Q)
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• “Factor models” come from dropping the small eigenvalues. Then a larger number of
series are, exactly, driven by a smaller number of factors.

• For example, what if we drop 4 and 5?⎡⎢⎢⎢⎢⎢⎣
y
(1)
t

y
(2)
t

y
(3)
t

y
(4)
t

y
(5)
t

⎤⎥⎥⎥⎥⎥⎦ ≈ q1 × levelt + q2 × slopet + q3 × curvet
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2000 2001 2002 2003 2004 2005 2006 2007
0.01

0.02

0.03

0.04

0.05

0.06

0.07
level and slope

2000 2001 2002 2003 2004 2005 2006 2007
0.01

0.02

0.03

0.04

0.05

0.06

0.07
level slope and curve

Movements in yields can be captured very well by movements in the first two - three
factors alone. But not exactly!

• Dropping factors II. Note that the factors are uncorrelated with each other. cov(xx0) =
Λ. Thus, the left out factors are uncorrelated with the factors you keep in.

y
(n)
t ≈ q

(n)
1 × levelt + q

(n)
2 × slopet + q

(n)
3 × curvet + (left outt)
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Therefore, this is a regression equation! This is a way of finding a regression model
like FF3F when you don’t know what to use on the right hand side.

• Notice the analogy to FF3F: three factors (market, hml, smb) account for almost all
return variation (R2 above 90%). The factors are constructed as weighted combinations
of the same securities.

Motivation for term structure models

1. Let’s simplify for a bit to an exact factor model,

y
(n)
t ≈ q

(n)
1 × levelt + q

(n)
2 × slopet + q

(n)
3 × curvet

It suggests a simple description of the yield curve, boil it all down to

Xt =
£
lt st ct

¤0
Xt+1 = μ+ ΦXt + εt+1

yt(N × 1) = q(N × 3)Xt(3× 1)

2. But

(a) Can you extend this to other maturities, not included? Since there are 3 factors,
spanned, there is only one arbitrage-free extension. Can you extend to options —
which must also be a function of X?

(b) The point of most affine models: Like Black and Scholes, find an arbitrage-free
interpolation and extension. For B-S, it was (stock, bond -> option) For us, it
is from a few bonds to all maturities, and then to term structure options, whose
value only depends on the current yield curve and can be replicated by dynamic
trading of bonds.

(c) Note: if all you care about is running an arbitrage-free curve through today’s bonds
(and options) you don’t care about risk premia. You don’t care about the real
measure; do everything under risk neutral measure. But then ignore forecasting.
Real vs. risk neutral measure only matters if you care about forecasting.

Term structure models

Note to self: Needs a consistent notation once and for all with my model with piazzesi. Use
risk neutral notation for expectations model.

Macro approach

P
(N)
t = Et

µ
βN

u0(ct+N ,mt+N)

u0(ct)

¶
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1. Just test

2. Model

Xt =

⎡⎣ ct
x2t
x3t

⎤⎦ ;Xt+1 = ΦXt + εt+1;

compute P (N)
t ?

(a) Won’t be equal to exact P (N)
t

(b) Agents see more than we do, maybe P (N)
t should be in X?

3. Useful for “deep explanation,” but there are other uses...This is more than we need for
the “arbitrage-free extension” project.

Expectations hypothesis model

This is the simplest “model” to illustrate the logic. The ingredients are a) short rate process
b) expectations to get other prices

y
(1)
t+1 − δ = φ(y

(1)
t − δ) + εt+1

f
(2)
t = Et(y

(1)
t+1) = δ + φ(y

(1)
t − δ)

f
(3)
t = Et(y

(1)
t+2) = δ + φ2(y

(1)
t − δ)

f
(N)
t = Et(y

(1)
t+N−1) = δ + φN−1(y

(1)
t − δ)

(And yields,...)

y
(2)
t =

1

2

h
Et(y

(1)
t+1) + y

(1)
t

i
=

1

2

h
δ + φ(y

(1)
t − δ) + y

(1)
t

i
y
(2)
t − δ =

1 + φ

2

³
y
(1)
t − δ

´
...

y
(N)
t − δ =

1 + φ+ φ2 + ..

N

³
y
(1)
t − δ

´
=

1− φN

N(1− φ)

³
y
(1)
t − δ

´
Result:

1. Different shapes of the term structure, upward and downward sloping. Up when short
rates expected to rise.

2. More complex shapes? Move past AR(1)!
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3. A “one factor model” of the yield curve. We obviously could generalize to “multifactor”
with a more complex time-series process.∙

x1t
x2t

¸
= Xt

Xt = ΦXt−1 + εt

y
(1)
t = δ0 + δ01Xt

4. No average slope — E(y(i)) all the same. Well, we imposed expectations!

5. “Arbitrage?” We’re almost there. If the expectations model were the risk neutral
limit, then we could appeal to the risk neutral density theorem and claim these are
arbitrage-free prices under the risk neutral density. Alas, they’re not..

Discrete-time single-factor Vasicek

Here: A standard “single factor model” — “discrete-time Vasicek.” The end result:³
y
(1)
t+1 − δ

´
= φ

³
y
(1)
t − δ

´
+ vt+1.

f
(2)
t = δ + φ

³
y
(1)
t − δ

´
−
∙
1

2
+ λ

¸
σ2ε

f
(3)
t = δ + φ2

³
y
(1)
t − δ

´
−
∙
1

2
(1 + φ)2 + λ(1 + φ)

¸
σ2ε

....

y
(2)
t = δ +

(1 + φ)

2

³
y
(1)
t − δ

´
− 1
2

µ
1

2
+ λ

¶
σ2ε

y
(3)
t = δ +

(1 + φ+ φ2)

3

³
y
(1)
t − δ

´
− 1
3

½
1

2

£
1 + (1 + φ)2

¤
+ λ [1 + (1 + φ)]

¾
σ2ε

....

Intuition for now: the first equation tells you where interest rates are going over time. The
second and third sets of equations tell you where each forward rate is at any date, depending
only on where the short rate is on that date; a single factor model.

Derivation:

• Suppose m follows the time series model.

xt+1 − δ = φ (xt − δ) + εt+1

mt+1 = lnMt+1 = −
1

2
λ2σ2ε − xt − λεt+1

This is just a model for m, with a convenient “state variable” xt. Intuition: xt shifts
the mean of lnmt+1 around. If you remember that Rf = 1/E(m), you can see that
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specifying a model for the mean of m is the key to thinking about interest rates. The
1/2σ2 term just shifts the mean of lnmt down, and offsets a 1/2σ2 term which will
pop up later. To be specific, ε and v are iid Normal with σ2ε, σ

2
v, σεv. δ, ρ, λ are free

parameters; we’ll pick these to make the model fit as well as possible.

• An interpretation:

xt+1 − δ = φ (xt − δ) + εt+1

∆ct+1 =
1

γ

µ
−δ + xt +

1

2
λ2σ2ε + λεt+1

¶
→ −δ − γ∆ct+1 = −xt −

1

2
λ2σ2ε − λεt+1

“suppose consumption growth followed this ARMA (1,1) process, but we didn’t observe
consumption growth. Like all finance (CAPM etc) ultimately we’re abstracting away
the connection to macro. Obviously, if we want to “explain” asset prices, we need to
put back in tne connection to macro!

• Bond prices.
P
(n)
t = Et (Mt+1Mt+2....Mt+n)

This is easier to do recursively,

P
(0)
t = 1

P
(n)
t = Et

³
mt+1P

(n−1)
t+1

´
.

• Here we go.
P
(1)
t = Et (Mt+1) = Ete

mt+1

P
(1)
t = e−

1
2
λ2σ2ε−xt+ 1

2
λ2σ2ε = e−xt

p
(1)
t = lnEt (mt+1) = −xt
y
(1)
t = xt

Now you see why I set up the problem with the 1/2λ2σ2ε to begin with! The one year
interest rate “reveals the latent state variable x t”

• I could have written the model as

y
(1)
t+1 − δ = φ

³
y
(1)
t − δ

´
+ εt+1

mt+1 = −y(1)t −
1

2
λ2σ2ε − λεt+1

“a short rate process plus a market price of risk.” Then, by taking − lnEt (Mt+1) I
would have checked that the y(1)t the model produces is the same y(1)t I started with.
Take your pick. Which is more confusing: a) starting with an xt you “can’t see” and
then showing that it turns out to be y(1)t ? b) starting with an assumed y

(1)
t process and

then showing that it’s in fact the one period rate, that the model is “self-consistent”
(in the language of CP appendix.)
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• On to the next price.

P
(2)
t = Et

³
mt+1P

(1)
t+1

´
= Et

³
emt+1+p

(1)
t+1

´
= Et

³
e−

1
2
λ2σ2ε−xt−λεt+1−xt+1

´
P
(2)
t = Et

³
e−

1
2
λ2σ2ε−xt−λεt+1−δ−φ(xt−δ)−εt+1

´
P
(2)
t = Et

³
e−2δ−(1+φ)(xt−δ)−

1
2
λ2σ2ε−(1+λ)εt+1

´
p
(2)
t = −2δ − (1 + φ) (xt − δ)− 1

2
λ2σ2ε +

1

2
(1 + λ)2σ2ε

p
(2)
t = −2δ − (1 + φ) (xt − δ) + (

1

2
+ λ)σ2ε

• From prices, we find yields and forwards,

y
(2)
t = δ +

(1 + φ)

2
(xt − δ)− 1

2

µ
1

2
+ λ

¶
σ2ε

f
(2)
t = p

(1)
t − p

(2)
t

= −δ − (xt − δ) + 2δ + (1 + φ) (xt − δ)− (1
2
+ λ)σ2ε

= δ + φ (xt − δ)− (1
2
+ λ)σ2ε

• Now the rest of the maturities. You can “solve the discount rate forward and integrate”
p
(3)
t = logEt (Mt+1Mt+2Mt+3)

p
(3)
t = logEte

− 1
2
λ2σ2ε−xt−λεt+1− 1

2
λ2σ2ε−xt+1−λεt+2− 1

2
λ2σ2ε−xt+2−λεt+3

= logEte
−3δ− 3

2
λ2σ2ε−(1+φ+φ2)(xt−δ)−λεt+1−λεt+2−λεt+3−(1+φ)εt+1−εt+2

This will work after much algebra

• Instead, let’s do it recursively “derive a differential equation for price as a function of
state variables.” Guess

P
(n)
t = An −Bn (xt − δ)

then
P
(n)
t = Et

³
Mt+1P

(n−1)
t+1

´
(Not in lecture:

An −Bn (xt − δ) = logEt

µ
exp

µ
−1
2
λ2σ2ε − xt − λεt+1

¶
exp (An−1 −Bn−1 (xt+1 − δ))

¶
= logEt

µ
exp

µ
−1
2
λ2σ2ε − xt − λεt+1 +An−1 −Bn−1φ (xt − δ)−Bn−1εt+1

¶¶
= logEt

µ
exp

µ
−δ +An−1 − (1 +Bn−1φ) (xt − δ)− 1

2
λ2σ2ε − λεt+1 −Bn−1εt+1

¶
An −Bn (xt − δ) = −δ +An−1 − (1 +Bn−1φ) (xt − δ) +

µ
Bn−1λ+

1

2
B2
n−1

¶
σ2ε
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The constant and the term multiplying xt must separately be equal. Thus,

Bn = 1 +Bn−1φ

An = −δ +An−1 +

µ
Bn−1λ+

1

2
B2
n−1

¶
σ2ε

We have “transformed the solution of a stochastic differential equation plus integral to
the solution of an ordinary differential equqation.

• That’s easy to solve

B0 = 0

B1 = 1

B2 = 1 + φ

B3 = 1 + φ+ φ2

Bn =
n−1X
j=0

φj =
1− φn

1− φ

A0 = 0

A1 = −δ

A2 = −2δ +
µ
λ+

1

2

¶
σ2ε

A3 = −3δ +
∙
(1 + φ)λ+

1

2
(1 + φ)2

¸
σ2ε

A4 = −4δ +
∙¡
1 + φ+ φ2

¢
λ+

1

2

¡
1 + φ+ φ2

¢2¸
σ2ε

You see the pattern from here

• Yields, forwards, returns, etc. follow. y(n)t = −1/n× p
(n)
t . Forwards are even simpler,

f
(n)
t = p

(n−1)
t − p

(n)
t

= (An−1 −An)− (Bn−1 −Bn) (xt − δ)

= −δ +
µ
Bn−1λ+

1

2
B2
n−1

¶
σ2ε + φn−1 (xt − δ)

• Result: ³
y
(1)
t+1 − δ

´
= φ

³
y
(1)
t − δ

´
+ εt+1.

f
(2)
t = δ + φ

³
y
(1)
t − δ

´
− (1
2
+ λ)σ2ε

f
(3)
t = δ + φ2

³
y
(1)
t − δ

´
−
∙
1

2
(1 + φ)2 + λ(1 + φ)

¸
σ2ε

f
(4)
t = δ + φ3

³
y
(1)
t − δ

´
−
∙
1

2

¡
1 + φ+ φ2

¢2
+ λ(1 + φ+ φ2)

¸
σ2ε

...
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y
(2)
t = δ +

(1 + φ)

2

³
y
(1)
t − δ

´
− 1
2

µ
1

2
+ λ

¶
σ2ε

y
(3)
t = δ +

(1 + φ+ φ2)

3

³
y
(1)
t − δ

´
− 1
3

½
1

2

£
1 + (1 + φ)2

¤
+ λ [1 + (1 + φ)]

¾
σ2ε

...

1. Just like EH but we now see a now a risk premium emerge!

2. Shapes: A steady decline from σ2 terms, (risk premim) + exponential decay from
y(1) −E(y(1)). (expectations hypothesis)

3. “Short rate process” plus “one factor model.” All yields move in lockstep indexed
by y(1)t (or any other yield). The shape is tied to the level. It looks like “you can
price other bonds by arbitrage” but that is only because we restrict our model
to have one factor. “Arbitrage free” pricing in the term structure always comes
down to the assumption that there is a perfect factor structure

4. y(1) is also sufficient to forecast all yields.

5. The risk premium comes from cov(m, y(1)) = λσ2ε “market price of interest rate
risk”. If there were a security whose payoff were εt+1 its price would be driven by
cov(m, εt+1).

6. The premium can go either way depending on the sign of λ. My guess: lower
y
(1)
t+1means higher m (bad state) means + (m = ..−ε) sign and negative premium.
This is a typical result. The real term structure ought to slope down, as long term
bonds are safer for long-term investors. However, as long as we separate market
prices of risk from consumption and interest data (as we did with the CAPM!)
we can incorporate an upward sloping yield curve with λ < 0

7. The risk premium is constant over time though — as we’ll see not in data.

8. “Risk neutrality” λ = 0 does not mean “expectations” since there is another term.
This is Another force for typical downward slope. However, it’s quantitatively very
small, since σε ≈ 0.01

9. Another way to see risk premia is to look at returns,

r
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t = (An−1 −An)−Bn−1 (xt+1 − δ) +Bn (xt − δ)

= δ −
µ
Bn−1λ+

1

2
B2
n−1

¶
σ2ε −Bn−1 (xt+1 − δ) +Bn (xt − δ)

Expected returns

Etr
(n)
t+1 = δ −

µ
Bn−1λ+

1

2
B2
n−1

¶
σ2ε + (Bn −Bn−1φ) (xt − δ)

Etr
(n)
t+1 = δ −

µ
Bn−1λ+

1

2
B2
n−1

¶
σ2ε + (xt − δ)

Etrx
(n)
t+1 = −

µ
Bn−1λ+

1

2
B2
n−1

¶
σ2ε

You see the expected returns differ by maturity, but the risk premium is constant
over time — not what Fama-Bliss find.
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10. The limiting yield and forward rate are constants. There is no true “level” shift.
We’ll see this is quite general — “level shifts” imply an arbitrage opportunity at
the long end of the yield curve.

11. Yields can be negative — they are normally distributed here. M > 0 means P > 0
not P < 1. The CIR model fixes this up.

12. As a reminder, ³
y
(1)
t+1 − δ

´
= φ

³
y
(1)
t − δ

´
+ εt+1.

f
(2)
t = δ + φ

³
y
(1)
t − δ

´
− (1
2
+ λ)σ2ε

Now, suppose you write a new model with³
y
(1)
t+1 − δ∗

´
= φ

³
y
(1)
t − δ∗

´
+ εt+1.

with a new and different mean,

δ∗ = δ − σ2ε
1− φ

λ

and then you set λ = 0. You’d get

f
(2)
t =

µ
δ − σ2ε

1− φ
λ

¶
+ φ

µ
y
(1)
t −

µ
δ − σ2ε

1− φ
λ

¶¶
−
µ
1

2

¶
σ2ε

f
(2)
t = δ + φ

³
y
(1)
t − δ

´
− σ2ε
1− φ

λ+ φ
σ2ε
1− φ

λ−
µ
1

2

¶
σ2ε

f
(2)
t = δ + φ

³
y
(1)
t − δ

´
− 1− φ

1− φ
σ2ελ−

µ
1

2

¶
σ2ε

f
(2)
t = δ + φ

³
y
(1)
t − δ

´
−
µ
1

2
+ λ

¶
σ2ε

the same thing! “Transform to risk-neutral probabilities which alter the drift,
then use risk-neutral valuation formula” We can write the whold model this way.

f
(2)
t = δ∗ + φ

³
y
(1)
t − δ∗

´
− (1
2
)σ2ε

f
(3)
t = δ∗ + φ2

³
y
(1)
t − δ∗

´
−
∙
1

2
(1 + φ)2

¸
σ2ε

f
(4)
t = δ∗ + φ3

³
y
(1)
t − δ∗

´
−
∙
1

2

¡
1 + φ+ φ2

¢2¸
σ2ε

Advantage: prettier formula. Disadvantage: can’t describe real dynamics — don’t
fit the first equation by running a regression of y(1)t+1 on y

(1)
t

• Let’s see an example.
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1. I chose some parameters to fit the FB zero coupon bond data. I ran a regression
of y(1)t+1 on y

(1)
t to get ρ; I took the variance of errors from that regression to get

σε; I took the mean δ = E
³
y
(1)
t

´
. Finally, I picked the market price of risk λ to

fit the average 5 year forward spread:

f
(5)
t = δ + φ4

³
y
(1)
t − δ

´
−
∙
1

2

¡
1 + φ+ φ2 + φ3

¢2
+ λ(1 + φ+ φ2 + φ3)

¸
σ2ε

λ = −
E
³
f
(5)
t

´
− δ

(1 + φ+ φ2 + φ3)σ2ε
− 1
2

¡
1 + φ+ φ2 + φ3

¢
2. I plot y(n)t for a bunch of y(1)t . The dashed lines in the right hand graph give the
expectations hypothesis terms from above, so you can see the distortion from risk
aversion λ and the Jensen’s inequatlity σ2ε term.
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Cool! This captures some basic patterns; yields are upward sloping when lower,
downward sloping when higher. The substantial risk premium I estimated to
match the average upward slope does introduce a substantial deviation of the
model from expectations at the long end.

3. Note already: the parameters φ, λ can be chosen to match the cross section of
yields — the shapes of these curves — or the time series — the AR(1) coefficient of
the short rate and the expected bond returns. These do not necessarily give the
same answer, a sign of model misspecification.

4. Take the history of y(1)t . Find the model-implied y
(n)
t : compare with data.
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1−5 year zero coupon yields

5. You can see a decent fit — upwward sloping yields when the interest rate is low.
But you can see yields are going up to a constant long-term value, rather than
some sort of “local mean. This is clearer if we plot spreads,
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Answer: we need a two-factor model....

Cochrane-Piazzesi 2

1. Our original motivation: How do you forecast rates? How much of f
(n)
t is Ety

(1)
t+n−1?

(We were tasked with, examine the “conundrum,” a period in which long term forward rates
were anomalous. Task: Understand rates in 2005. Why were long term rates not rising when
short term rates rose? Greenspan, “Conundrum” that risk premia seemed to be falling. Us:
you must be kidding that you can measure risk premia so well! But let’s try. It seems so
simple — use all rates to forecast Ety

(1)
t+n−1, then the residual isk the risk premium)
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Forward rates in two recessions. The federal funds rate, 1-5, 10 and 15 year forward rates
are plotted. Federal funds, 1, 5 and 10 year forwards are emphasized. The vertical lines in

the lower panel highlight specific dates that we analyze more closely below.

Or is it so easy? VARs leave huge uncertainty about Ety
(1)
t+5. In addition to wide standard

errors, there is a lot of specification uncertainty. Interest rates have a root close to one, and
0.98 vs. 0.99 makes a huge difference. The graph: Ety

(1)
t+j based on a VAR using 5 yields at

each date. Top:
ft+1 = μ+ Φft + εt+1.

Bottom:
∆f

(n)
t+1 = μn +

X
m

φn,m

³
f
(m)
t − y

(1)
t

´
+ ε

(n)
t+1
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1. Can we use the structure of a term structure model to learn about the time series from
the cross section?

(a) Well, f (n)t = E∗(y
(1)
t+n) but obviously (!) we can’t learn about E without saying

something about risk premiums. Most basically ptu
0(ct) =

P
states πsβu

0(cs)xs;
probability and marginal utility always enter jointly.

(b) But we just learned a lot about risk premiums! Can this inform the effort?

2. “Affine model with risk premium.” Another objective: learn about longer-run dynamics
than the one-year regressions in CP1.

(a) What’s Etr
(n)
t+2?

(b) Get back to “implications for prices”, feed risk premia through some sort of present
value model

3. This is not the usual point of affine model. Usually the point is just to fit the cross
section. In particular, to price an extra security in terms of given securities. (As Black
scholes prices an option in terms of stocks and bonds.) Many authors of affine models
lose sight of this.

4. (Digression: affine models are just waking up to the fact that it is very hard to hedge
bond options with bonds. This is the heart of the “unspanned stochastic volatility”
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message. JC suggestion: well, then you should be hedging one bond option with other
bond options, not with treasuries! A suggestion: create something like affine models
that span through a basis set of simple bond options. These will reveal volatility much
better than bond prices.)

5. (Note: Point to second to last graph of Dec 30 2007. All yield curve models have
trouble with data below a year. Plug piazzesi’s thesis.)

2. Affine model summary

Xt =
£
xt levelt slopet curvet

¤0
.

Xt+1 = μ+ φXt + vt+1; E
¡
vt+1v

0
t+1

¢
= V,

Mt+1 = exp

µ
−δ0 − δ01Xt −

1

2
λ0tV λt − λ0tvt+1

¶
λt = λ0 + λ1Xt.

(A bit of why; we need σt(M) to generate Et(R
e)/σt(R

e) that varies over time )

p
(n)
t = logEt (Mt+n)

Here we go
p
(1)
t = e−δ0−δ

0
1Xt

y
(1)
t = δ0 + δ01Xt

This identifies δ0 and δ1. (You can also take the short rate as a factor in X, which makes
the model simpler. We chose not to)

p
(2)
t = logEt

³
e−δ0−δ

0
1Xt− 1

2
λ0tV λt−λ0tvt+1e−δ0−δ

0
1(μ+φXt+vt+1)

´
= logEt

³
e−2δ0−δ

0
1μ−δ01(I+φ)Xt− 1

2
λ0tV λt−(λ0t+δ01)vt+1

´
= −2δ0 − δ01μ− δ01 (I + φ)Xt + δ01V δ1 − 2δ01V λt
= −2δ0 − δ01μ− δ01 (I + φ)Xt +

1

2
δ01V δ1 − δ01V (λ0 + λ1Xt)

= (·)− δ01 (I + φ)Xt − δ01V λ
0
1Xt

f
(2)
t = p

(1)
t − p

(2)
t = −δ0 − δ01Xt − [(·)− δ01 (I + φ)Xt − δ01V λ1Xt]

= (·) + δ01 (φ− V λ1)Xt

....

f
(n)
t = ..+ δ01φ

∗(n−1)Xt

φ∗ ≡ φ− V λ1
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(Note that since f is a linear function of X and X is an AR(1), this model is homoskedastic
for yields and returns. It’s interesting to add conditional variance. However, conditional
variances in the data are not nearly so simple as the CIR model (variance rises with the level
of rates) predicts; variance is also pretty clearly not well spanned by current yields. If you
forecast r2t+1 with past yields and with lagged r2t the latter enter. This is the “unspanned
stochastic volatility” observation. In my view, understanding volatility is as ripe for plucking
as understanding means was for Piazzesi and I. Start by forecasting r2t+1 with all f , What’s
the factor structure? Then see if r2t enters.... A lot of regressions and plots could get past
the mess of the big ML crowd just as our regressions did)

3. We find φ∗

From the cross section (nonlinear regression) Note OLS (f (n)t = ..+ b0nXt) is as good as you
can get.

min
PT

t=1

PN
n=1

n
f
(n)
t −

h
(·) + φ∗(n−1)Xt

io2
interpret as measurement errors. Note the model

predicts exact factor structure, so it’s easy to “reject.”

This uses no “time-series information,” there is no (zt+1 − awt)
2 (z,w stand for anything) in

this.

In our case, the factors X are “observable.” However, you can also think of them as “latent.”
Then, for any guess of φ∗ you use the first N f (n) to back out the X, then use the remaining
f (n) to assess the fit of that φ∗ (Of course you do this more intelligently, i.e. for any φ∗ use
the first four degrees of freedom of f (n).)
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Affine model loadings, Bf in f (n) = Af +Bf 0Xt. The line gives the loadings of the affine
model, found by searching over parameters δ0, δ1, μ∗, φ

∗. The circles give regression
coefficients of forward rates on the factors.
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4. To φ, forecasting? Alas, knowing φ∗ tells you nothing about φ.

Theorem: ∀φ∗, φ,∃λ1 : φ∗ ≡ φ− V λ1

Proof:λ1 = V −1 (φ− φ∗)

Interpretation: The cross section says nothing about the time series without restrictions on
market prices of risk. ( “A New Perspective on Gaussian DTSMs’ Scott Joslin , Kenneth J.
Singleton and Haoxiang Zhu”)

5. But we know a lot about λ from CP1!

Data: Et

³
rx

(n)
t+1

´
= bn (γ

0ft) = bnxt

Model: Et (rxt+1) = (·) + cov(rxt+1, v
0
t+1) (λ0 + λ1Xt)

(Why? Mt+1 = exp
¡
−δ0 − δ01Xt − 1

2
λ0tV λt − λ0tvt+1

¢
1 = Et(MR) = Et

h
e−δ0−δ

0
1Xt− 1

2
λ0tV λt−λ0tvt+1ert+1

i
...)

λ1 columns: how does the risk premium vary over time — which state variables tell you that
Etrxt+1 is higher at time t than it was at time t-1?

λ1Rows: expected returns depend on covariance of returns with what factor?

• The lesson of CP1 is that all variation through time in market prices of risk is carried
by xt

λt = (λ0 + λ1Xt) =

⎡⎢⎢⎢⎣
λ
(x)
0

λ
(level)
0

λ
(slope)
0

λ
(curve)
0

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

λ
(x,x)
1 0 0 0

λ
(l,x)
1 0 0 0

λ
(s,x)
1 0 0 0

λ
(c,x)
1 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

xt
levelt
slopet
curvet

⎤⎥⎥⎦
• So, what covariances to ER line up with?

Et

³
rx

(n)
t+1

´
= (·) + cov(rx

(n)
t+1, v

0
t+1) (λ0 + λ1Xt)

bnxt = cov(rx
(n)
t+1, v

x
t+1)λ

(x,x)
1 xt + cov(rx

(n)
t+1, v

l
t+1)λ

(l,x)
1 xt + ...

bn = cov(rx
(n)
t+1, v

x
t+1)λ

(x,x)
1 + cov(rx

(n)
t+1, v

l
t+1)λ

(l,x)
1 + ...

bn become the “expected returns” to match. (we’re matching not “expected returns”
but expected returns conditional on X, i.e. x) The right hand side is a multiple-beta
model, with λ as market prices of risk. We want to run a multiple “cross-sectional”
regression of bn on cov(rx(n), vi) and see which covariances line up with the expected
returns. This is just like Fama - French who look at which betas (h, say) line up with
expected returns.

• Visually, you want to know which linear combination of the colored lines add up to the
black squares. It’s all the green line!
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cov(r,slope)cov(r,curve)

Maturity, years

Loading qr of expected excess returns on the return-forecasting factor xt, covariance of
returns with factor shocks, and fitted values. The fitted value is the OLS cross-sectional
regression of qr on cov(r, vlevel), the dashed line nearly colinear with qr. The covariance

lines are rescaled to fit on the graph.

1. Market prices of risk correspond entirely to covariance with the level shock.

2. Details: Black squares: bn in this notation, qr in paper notation. These rise nearly
literally, which is a finding from CP1. If expected returns on bonds rise (all at the
same time, a one factor model), then long maturity expected returns rise more.

3. Colored lines: these are cov(r,v) for various shocks. For example, if all yields rise by
the same amount, then p(n) = ny(n) mean prices of long term bonds decline more, and
ex-post returns rise more. The green line thus makes sense. The other lines are curved
because non-parallel shifts in y(n) imply different patterns of r(n) across maturities.

4. It didn’t have to come out this way. Even if there is a single-factor model (γ0f) it could
have come out that all maturities expected returns rise by the same amount (1%) when
the factor moves. Then the black squares would have been flat. Or they could have
had a curved pattern.

5. You can estimate λ1 with a “cross-sectional regression. In the graph, zeros on all
covariances and a single estimated λ on level is plotted as a purple line. Look carefully.
(This is the crucial piece of information, and ML will basically focus on this. Note that
you have to impose it — we tried running the actual regression and it blows up since
there are multiple right hand variables all of which should have zero coefficients.)
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6. Uncertainty about market prices of risk is down to one number!

λt =

⎡⎢⎢⎣
0
λ0l
0
0

⎤⎥⎥⎦+
⎡⎢⎢⎣
0 0 0 0
λ1l 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

xt
levelt
slopet
curvet

⎤⎥⎥⎦

6. Summary

a) Find φ∗ to match the cross section f
(n)
t = φ∗(n−1)Xt.

b) use a cross sectional regression of bn on cov(rx(n), level) to estimate λ1l

c) φ ≡ φ∗ + V λ1

d) Xt+1 = μ+ φXt + vt+1 so we can forecast anything we want.

7. Transition Matrix Estimates

x level slope curve
Risk-neutral: φ∗

x 0.35 -0.02 -1.05 8.19
level 0.03 0.98 -0.21 -0.22
slope 0.00 -0.02 0.76 0.77
curve 0.00 -0.01 0.02 0.70

Actual: φ
x 0.61 -0.02 -1.05 8.19
level -0.09 0.98 -0.21 -0.22
slope -0.00 -0.02 0.76 0.77
curve 0.00 -0.01 0.02 0.70

• The risk-neutral φ∗ from the cross-section = a lot of information about the true φ!

• All but first column of φ are unchanged.⎡⎢⎢⎣
v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34
v41 v42 v43 v44

⎤⎥⎥⎦
⎡⎢⎢⎣
0 0 0 0
λ1l 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ =
⎡⎢⎢⎣

v12λl 0 0 0
v22λl 0 0 0
v32λl 0 0 0
v42λl 0 0 0

⎤⎥⎥⎦
• 0.98 does not change! Near unit-root estimation problems are solved. The root is
identified from the cross section. (and λ=0 restrictions)

• True dynamics φ : x is not an AR(1). Slopet, curvet → xt+1. (Top right row.)
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1. We can expect future risk premium without current risk premiums. There is a
term-structure of risk premiums. If the current yield is above expected future
short rates, that could reflect returns that are expected to be high in the future
even though they are not high now.

y
(n)
t = Et

h
y
(1)
t + y

(1)
t+2 + ..+ y

(1)
t+n−1

i
+ rpy

(n)
t

rpy
(n)
t =

1

n

h
Et

³
rx

(n)
t+1

´
+Et

³
rx

(n−1)
t+2

´
+ . . .+Et

³
rx

(2)
t+n−1

´i
2. What about Et(rx

(n)) for longer horizons? For example, the two year return will
combine Etrx

(n)
t+1 and EtEt+1r

(n−1)
t+2 . What does that look like? A: it is not xt = γ0ft

. Since xt+1 is forecast by lt, st, ct, then Etrx
(n−1)
t+2 will depend on lt, st, ct as well

as xt (Conversely, when we look at shorter horizons, we should not expect xt to
forecast one-month returns.) x t is only the return-forecasting factor at an annual
horizon.

• Plots
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1. Top left: xt does have an AR(1) element. When xt moves, there isn’t much
response of the other factors (ok, a bit of level), and a nice decay. If that’s all
there were, then life would be so simple. But it’s not...

2. Bottom left. When slope rises today, with no movement in xt, then xt rises
tomorrow. Thus a high slope at t will imply a high xt+1 and a high rxt+2. Again,
x is “the” return forecast factor only at one specific horizon.

3. Top right. Level movements seem to have no effect on risk premiums at any
horizon. It’s interesting that covariance with level risk generates all risk premiums,
but a shift in the level of interest rates does not affect expected returns. (If you
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understand that statement, you really understand the difference between columns
and rows of λ, and the difference between cov(Etrxt+1) and cov(rxt+1)!)

• Plot 2
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Here, you’re looking instead at how a shock at t impacts xt+j (the blue line here is
the same as the red line in the last plot — time to change color) along with how that
shock changes the forward curve at time t (red) and the path of expected future one
year rates Ety

(1)
t+n (black dash). The red line plots current forwards as a function of

maturity, and expected x and y(1) as a function of time.

1. Top left: An x shock doesn’t do much at all to the forward curve (red). Now you
know why it’s “nearly unspanned.” It does move the risk premium, and hence the
expected one year rate line. So a shock to x changes (reflects changes in) expected
one year rates, a rise in the risk premium. Since the dynamic pattern is an AR(1),
the spread just widens and then sits.

2. A level shock is (red), well, a level shock. It has almost no effect on x, and hence
almost no effect on risk premiums. There is a little divergence out in the far
number of years.

3. A slope shock moves forwards in a, well, slope-shaped pattern (red). Since it sets
off an expectation of future risk premiums, there is a divergence between forwards
and expected yields in the out years only.

7. Decompositions

Well, what’s the answer anyway? When we see f (n)t move over time, what does that imply
about risk premiums and what does it imply about expected future rates?
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Turn off all frisk premiums The forward rate is exactly the same as the expected 5 year rate.
Note the historical pattern, 5 year forwards just glide over the valleys.
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When we turn on the risk premium, we get a different picture. In the beginnings of recessions,
people seemed to think the interest rate decline might last a long time. Hence, if forward
rates are not declining this must reflect a large risk premium. Two effects are offsetting —
current short rates decline, the risk premium rises, so long rates do not move much. In the
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middle of the recession, people get the signal it will end this time — we’re not doing Japan
1990 or US 1930-1940 again. Then expected one year rates rise, the risk premium declines.

A last data plea

A last plea to think about data more seriously. There’s a lot in this graph, but all I want
to say now is to compare the GSW forwards 12 31 2001 and the Fama Bliss forwards. The
GSW interpolated data miss the “tent shape” that is so crucial to Fama Bliss. What does
the real “forward curve” look like? Time to stop this business of ad-hoc filtering to zeros
before starting! This is easy for the estimation stage. An affine model can price coupon
bonds, so just pick parameters to make the actual and predicted price of coupon bonds
equal. The hard part is, how do you extract right hand variable information (γ0ft) from the
full spectrum of coupon bond prices?
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“Term structure model” in general

Ingredients:

1) Write a time series model for the discount factor in discrete or continuous time.

Xt+1 = μ+ φXt + εt+1

Mt+1 = F (Xt)
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Xt may be “observable” or “latent,” (which just means we will be able to invert and find
them from factors.)

2a) Solve M forward, Mt,t+n =Mt+1Mt+2...Mt+n. Then

P
(n)
t = Et [Mt,t+n]

2b) Solve differential / difference equation, i.e. solve P (n)
t “backward” from P

(0)
t = 1,

P
(n)
t = Et

h
Mt,t+1P

(n−1)
t+1

i
Result: P (n)

t = function of state variables that drive M .

This is easiest for logs. Translation from levels to logs: either continuous time or lognormal
distributions.

Next steps

• “Unspanned stochastic volatility” and other state variables. (Duffee)

• Liquidity and other spreads (Krishnamurthy, Longstaff, etc.)

• Supply effects (Krishnamurthy and Vissing-Jorgenson; “Understadnding Policy”)

• Corporate spreads — basic regressions still open!
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FX

• We’re going to review the current state of FX work. In my opinion it’s a good bit
behind the stock and bond work above, which means low-hanging fruit for you to
apply the same ideas. (Note Lustig et. al. as a “low hanging fruit” example.”)

• The basic idea: Suppose the UK interest rate = 5%, US interest rate = 2%. Should
you invest in UK? The naive view: Yes, you’ll make 3% more. The traditional view:
No, the pound will depreciate 3% (on average) The fact: The pound seems to go up!
As with D/P the adjustment goes the “wrong way.”

• Evidence: Typically country by country time series regressions, following Fama’s orig-
inal in 1981.

$ Returnit+1 = ai + bi(i
f
t − idt ) + εt+1

b ≥ 1. Small R2.

• This is the basis for the “carry trade,” borrow in low interest rate countries and lend
in high interest rate countries. (Note the analogy to “ride the yield curve” also called
a “carry trade,” “borrow in low interest rate maturities and lend in high maturities.
I long for a unifying view!)

• Variations: You can do this for two common choices of right hand variables, forward-
spot spread or interest differential, and you can do this for two choices of left hand
variable, exchange rate or excess return. As usual, everything is related by identities.
The identies (or arbitrage) say that two ways of getting money to the same place give
the same result.

it*it

st

st+1

ft

Figure 9:

1. “Covered interest parity” and a right hand variable identity.

ft − st = i∗t − it

i.e. going around the box gets zero

it + ft − i∗t − st = 0

Thus, regressions with ft− st on the right are the same as regressions with i∗t − it.
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2. Left hand hand variable identity: You can look at exchange rate changes (∆s) or
expected returns. By an identity,

rxt+1 = i∗t − it −∆st+1

Thus, if you regress on either right hand variable,

br + bs = 0

Either exchange rates are predictable or excess returns are predictable.

• Like bonds the first question was “does expectations work?” Is ft = Et (st+1)? Fama
figured out to do this by a) running st+1 on ft b) much better, running st+1 − st on
ft− st as a much more powerful test c) once you see that isn’t working, it’s interesting
to note rxt+1 on ft− st d) I like expressing it in terms of i∗t − it which is more intuitive
to me than forward rates.

• The cp “common factor” investigation has not been done, “covariance with what” is
only beginning, the present value relation hasn’t been done, etc.

• Fact 1: Expectations is about right in levels (433). (Just as the yield curve is pretty
flat on average)

• Fact 2: We whould see bs = +1 in regressions. In fact: it’s negative. Some numbers.
From Asset Pricing

An update from Burnside et al.
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• Can we see it in a graph just like we did for bonds?
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1. Higher interest rates are associated with stronger exchange. $/LB goes up when
UK rate goes up. There is something to the standard story!

2. If you invest in higher UK rates, you make money until pound weakens, until
$/UK goes down.

3. A higher exchange rate goes on for many years at a time. These are 3 month
rates. You see the same “sluggish adjustment” as in yields.

• Comments:

1. “Carry trade” by i∗−i > 0 and i∗−i > E (i∗ − i) are very different! (See hoizontal
lines in the graph). The right hand variable is very slow moving.

2. The R2 is low (monthly data). It’s economically large: All interest differential
(and more?) is expected return, none expected depreciation ( ≤ 1 year). Again,
read the regression as “what is the information in the price” not “how do I start
my hedge fund?”

3. NB though, many hedge funds do essentially this. As in CP1 they usually trade
“enhanced carry,” they have some idea of “when to get out.” They also form
portfolios (something like Σ−1(i− i∗))

4. Economics? Low interest rate episodes are recessions, so this has the usual business
cycle pattern. When the US risk premium is high, so is the premium for holding
currency risk.

5. Wait, that was too quick.

(a) Why does cov(u0(cust+1),eurot+1/$t+1?) (And the opposite for the Euro in-
vestor.) Models have some work to do.
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(b) If so, we should not have separate regressors i∗ − i for each country, there
should be a common factor (maybe 1

N

P
j i
∗
j−it) that forecasts all currencies.

Do like CP1 for currencies? It hasn’t been done yet really.
(c) If so, i∗ − i should forecast stock and bond returns, as γ0f forecasts stock

returns. And DP should forecast bond and FX returns. and γ0f should fore-
cast FX...Or there should be a reduced factor structure in which a common
component of i∗− i , DP, γ; f , forecasts a common component of all returns.

6. ai is important.

$ Returnit+1 = ai + bi(i
i
t − iust ) + εit+1; t = 1, 2, ...T

There are “country dummies” in the regression. If you leave out ai you get Turkey
or Brazil — perpetually high i∗−i (40%) matched by 40% inflation and devaluation.
The fact is “more than usual” interest differential corresponds to a high return.
Does this matter? Does slow moving right hand variable mean the ai estimate
biases bi up? If there is a unit root in inflation, maybe the ai is meaningless, there
is no “usual” differential. Paper topic!

7. The graph suggests “expectations works” in longer run regressions. I’m not aware
of papers that do the right hand panel of the Fama-Bliss table well to document
this well. (more low hanging fruit.)

8. What about the “present value identity?” Does this link to longer—term regres-
sions? Here is a stab at the question.

rxt+1 = i∗t − it − st+1 + st

st = (it − i∗t ) + rxt+1 + st+1

st = Et

∞X
j=0

£¡
it+j − i∗t+j

¢
+ rxt+j+1

¤
+Etst+j

This isn’t much help, I’m not getting any discounting and nominal exchange rates
can go anywhere. But how about real exchange rates? Let πt = inflation, so real
exchange rate change is

srt+1 − srt = st+1 − st −
¡
π∗t+1 − πt+1

¢
.

Then,

rxt+1 = i∗t − it −
¡
srt+1 − srt +

¡
π∗t+1 − πt+1

¢¢
rxt+1 = (i∗t − it)−

¡
π∗t+1 − πt+1

¢
−
¡
srt+1 − srt

¢
rxt+1 = (r∗t − rt)−

¡
srt+1 − srt

¢
where r = ex-post real rates.

srt = (rt − r∗t ) + rxt+1 + srt+1

srt = Et

∞X
j=0

£¡
rt+j − r∗t+j

¢
+ rxt+j+1

¤
+Ets

r
t+j

So, if the expected real exchange rate must approach one in the long run, the
current real exchange rate must be matched by real interest differentials or excess
returns. I wonder which it is....
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9. Big crashes — the “peso problem” was invented precisely for this regression! Many
governments do “soft interventions” leading to big left tails and long samples that
don’t include the left tails.

10. Strategies that involve small constant gain and occasional big crashes are ubiqui-
tous in hedge funds etc. Dynamic trading can synthesize options. Earth quake
insurance. Put options. This is very hard to tell by statistical measures.

11. The last two comments motivate Jurek, Burnside Eichenbaum Rebelo “crash neu-
tral” currency trades.

Jurek

(April 2009 draft) Good: Updates, it investigates the “peso problem,” and the claim that
UIP was profitable even if you bought crash insurance against peso problems. It extend
pricing questions to currency options. I like to read a recent paper for the latest data, and
som reassurance on the “state of the art,” so if you do better than this you’re doing better
than a big literature.

Bad: In many ways it’s an example of “how not to write a paper.” It’s a train of thought
and travelogue of experiments. Table IX is the paper. If the data kill you in revision, you
have to rewrite the paper, not treat it as an “update.” Writing papers is the art of throwing
things out.

1. Table 1: The standard regressions. Note the much better performance in the later
priod. Note the small R2.

2. Table II “carry trade” portfolio returns. At least it’s good to look at some portfolios
across currencies rather than currency by currency regressions. The basic portfolio one
is just long/short depending on the sign of i− i∗, ignoring the amount. SPR is propor-
tional to the amount of i− i∗. (Why not a real portfolio, Σ−1μ = Σ−1 (a+ b (i− i∗))?)
Note the high Sharpe ratios. Note that Portfolio returns can look good with low R2,
like momentum! Portfolios are a way to look at E(Re)/σ(Re) not var(bxt)/var(Re),
and the former is more interesting.

3. “Carry” = average interest differential. This is large — warning! This suggests that
there is one data point! How much of these “profits” are just sitting in one currency
through the whole sample = 1 data point? See Figure 3

4. Figure 1: returns are scaled to same volatility. Note the big crash! Is it over?

5. Crash-neutral construction. P. 12 bottom use out of the money puts, but scale up
the portfolio so at the money it has the same sensitivity to exchange rate variations.
See Figure 5. Thus, “simultaneously decreasing exposure to depreciations of the high
interest rate currency and increasing exposure to its appreications” (p 12)

6. Table VII crash-neutral trades for portfolios through 2007. Note the decline in mean.
relative to T II. But there is not so much decline in Sharpe ratios. Jurek: “declines
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represent 30-40% of the return to the unhedged strategy.” This is where people got
the idea that the carry trade worked even if you buy peso-problem protection. (Note
a similar story. Before October 1987, out of the money equity put options were cheap.
After that date, they rose a lot and have stayed high ever since!)

7. Figure 8 the crash-neutral trades in the crash. Why did even crash protected decline?
I thought they were crash protected? The price of put option protection shot up in the
last few months.

8. Table 8 The quarterly protection seems to be doing better, echoing my story about
Figure 8. But are you allowed to search ex-post over the protection horizon?

9. Conclusion: a muddle. Is anything left of crash-protected returns?

Lustig, Roussanov, and Verdelhan

• Read Up through p. 15 only (April 2009).

• Big picture. Rather than run regressions, sort in to portfolios and look at means; then
eigenvalue decompose the portfolio covariance matrix. “Do like Fama-French” (and a
bit “like Cochrane Piazzesi”) for FX rather than regressions.

• It makes the connection between regression and Fama-French procedures. It starts
some extendedmusing for me on “how should we characterizeEtRt+1 and covt (Rt+1, ft+1)?

• Table 1. Average returns in portfolios sorted on the basis of ft − st = i∗ − i across
countries.

1. Where are the standard errors?

2. Please put t subscripts (∆st+1, rxt+1 but f − st)!

3. The Point: high f−s correspond to positive appreciation, not negative, and hence
to positive excess returns.

4. It’s nice to put bid-ask spreads in.

5. High-low portfolios: we really want to know whether E(R) is different across
portfolios, and this is a simple way to do it. (More thoughts coming on this
below.)

• Table 2: Principal components of protfolios.

1. No surprise “$ moves” is the first component.

2. The second component is “slope” and third is “curve”.

• Table 3: FF style portfolios HML and EW market. This is a cross sectional regression
of ER = βλ with prespecified factors.

1. Betas panel II: Market betas are all about 1 and hml betas rise. We knew this
from the covariance matrix
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2. It’s not a tautology. The high interest rate countries will all fall or rise together.
It didn’t have to happen

3. Factor risk premiums. Of course, we account for cross sectional variation with a
big λ onHML. You see the pattern that ER is higher in the high f−s portfolios,
and the betas are high there as well.

• Table 5. This is better. It uses the first two principal components as factors. d is the
first component, c is the second.

• UIP risk premium is earned for covariance with the “slope” factor.

• Is this different from Cochrane Piazzesi who find covariance with the “level” factor?
No, because CP are examining bonds, and here they’re examining portfolios. CP model

Etrx
(n)
t+1 = bnxt

Thus, when xt is positive, CP will put long bonds in portfolio 1 and short bonds in
portoflio 5. However, when xt is negative, CP will put short bonds in portoflio 1 and
long bonds in portfolio 5. Covariance of bond returns with a level shock to yields is
not the same thing as covariance of portfolio returns (which change composition) with
a level shock to those portfolio returns. I suspect if we do the LRV procedure on CP
bond data we would get exactly LRV’s results. And vice versa? A good problem set/
paper question!

• Preview on portfolios and time series regressions:

1. Now, rthink about what they’re doing — relation between portfolio sorts and re-
gressions.

2. Asset pricing is in the end about Et(R
ei
t+1) = covt

¡
Re
t+1, ft+1

¢
λt. Re

t+1 = a +
bxt+εt+1 tells you about E(Re

t+1|xt), and forming portfolios based on xt also tells
you E(Rt+1|xt). It’s really a non-parametric forecasting regression with a rather
inefficient kernel!

3. Similarly, the FF procedure amounts to covt
¡
Re
t+1, ft+1

¢
λt = cov

¡
Re
t+1, ft+1|xt

¢
λ.

FF portfolios are a brilliant way to reduce a time-varying conditional problem to
an unconditional problem.

4. Of course, we’ve done this many times before, i.e. 0 = Et(mt+1R
e
t+1); 0 =

E(mt+1R
e
t+1 ⊗ zt) = E(mt+1

£
Re
t+1 ⊗ zt

¤
)

5. Basically, but the details really matter. Is time series or cross sectional variation
more important? Is the value of xt or the portfolio rank more important?

Closing FX/predictability thoughts

• A common pattern across all assets:

1. Dividend yield forecasts stock returns
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2. Long yield - short yield forecasts long-short bond returns

3. Foreign - domestic yield forecasts foreign - domestic returns

4. (Cross section — B/M forecasts returns. In this case, both returns and earnings)

• More facts in common with stocks, bonds

1. “Follow yield,” “All price variation = Expected returns”

2. “Missing adjustment” (short run, i.e. ≤ 1 year)
3. Expected returns are high in “Bad times”, P/D is low, Rf is low relative to Rf∗,
and Rf is low relative to ylong.

4. Is there a “single recession related factor?” Rf , term spread, bond forecast factor
also forecast stock excess returns. Do they forecast fx? does i− i∗ forecast stock
returns? Etc.

• More puzzles in international finance

1. News–flow and price correlations

2. Fact: Net order flow is associated with price changes. (“order flow” not “trades”)

3. Don’t jump to: Any order causes price changes. (Brandt and Kavaiecz coming
up)

Brandt, Cochrane, Santaclara

Puzzles

in international finance pretty much define the field.

1. UIP (Just studied): i∗− i seems to imply appreciation, not depreciation, at least for a
while, and corresponding profits.
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2. The volatility of exchange rates; correlation of real/nominal exchange rates.

σ

µ
ln

et+1
et

¶
= 15%

This is not matched 1-1 by inflation, so real exchange rates vary a lot.

(a) (Mussa) Real relative prices across borders change when exchange rates change,
suggesting “sticky” nominal prices.

(b) When countries move from floating to fixed, relative prices across countries (sausage
in Munich/Pizza in rome) become more stable, and relative prices of trade-
ables/nontradeables (Pizza in Rome/Oil in Rome) become more stable. Stock
prices are a relative price too — installed vs. uninstalled capital. This is more
dramatic.

(c) Put bluntly, why did this happen? (See pound plot)

Figure 10:

3. Savings = investment and poor risk sharing across countries. One is about allocation
across time, the other about allocation across states.

(a) Permanent income logic means that temporary high income should be exported
and then returned later. Also good news about future output (China opening)
should lead to a consumption boom and huge imports of capital. Instead, China
finances investment from domestic savings and exported the whole time. (This
is an open economy facing world interest rates. If the whole world sees a boom,
interest rates rise.) (“Feldstein-Horioka puzzle”)

(b) Complete markets, Pareto-Optimum means

maxE
h
λ1
X

βtu(c1t) + λ2
X

βtu(c2t)
i
s.t. c1t + c2t = Ct

λ1β
tu0(c1t) = λ2β

tu0(c2t)

β
u0(c1t)

u0(c1t−1)
= β

u0(c2t)

u0(c2t−1)µ
c1t
c1t−1

¶−γ
=

µ
c2t
c2t−1

¶−γ
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In fact, cor(∆ci,∆cj) is small (numbers follow). Worse, consumption correlations
are less than output correlations.

(c) In both cases, I find it hilarous that as the world starts to look more like our
models, people think this is a problem. “Global imbalances” is the buzzword for
the idea that we need to slow down trade surpluses and deficits. Mortgage backed
securities did a great job of sharing risk around the world.

4. “Home bias” in portfolios. US people hold mostly US equities, UK people hold more
UK equities and so forth. This is only a puzzle however relative to a world capmmodel,
in which the investor has no job, cares equally about consumption from all countries,
etc. There are lots of easy reasons it’s optimal for portfolios to focus on your own
country, as in my Earth vs. Mars example.

5. Currency crashes, panics, etc. (Much silliniess; “contagion” “capital flight.” etc.)

6. International is RIPE for work, as witnessed by Lustig et al and this paper. Simple
models are making big progress.

This paper preview:

• We can connect domestic and foreign discount factors by a simple change of units.

Mf
t+1 = Md

t+1

St+1
St

utilst+1
Eurot+1

=
utilst+1
$t+1

$t+1/Et+1

$t/Et

mf
t+1 = md

t+1 + ln
St+1
St

Equivalently,

1 = E(Md
t+1Rt+1)

= E(Md
t+1

St+1
St

St
St+1

Rt+1)

= E(Mf
t+1R

f
t+1)

where Rf = any return (domestic or foreign) expressed in foreign currency. This is
cool! Exchange rates let you see mrs, directly, ex post! Well, they let you see differences
in mrs, but that’s something.

• Important — distinguish the “discount factor for returns expressed in domestic cur-
rency” from “discount factor that only prices domestic returns.” The latter makes no
sense unless markets are segmented somehow. All we’re doing here is saying that we
can find a discount factor that predicts a given set of returns converted to Euros from
a discount factor that prices the same returns expressed in dollars. (Which is, when
you see it, rather trivial.) We are not constructing a discount factor that prices Euro
stocks from a discount factor that (only) prices dollar stocks.
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• You can do the same thing with real vs. nominal discount factors. Just mulitply and
divide by π.

• Now,

ln
St+1
St

= mf
t+1 −md

t+1

σ2 (st+1 − st) = σ2
³
mf

t+1

´
+ σ2

¡
md

t+1

¢
− 2ρσ(m)σ(m)

• What does it take to fit the facts?

σ (∆st+1) = 15%

1. Asset pricing, “risk sharing is better than you think.” From asset markets, E(R
e)

σ(Re)
<≈

σ(m) we need at least σ(m) = 50%. Since σ(m) is much bigger than σ(e) we
need a lot of positive corrleation.

0.152 = 2× 0.502 − 2× ρ× 0.502

0.0225 = 0.50 (1− ρ)

0.045 = (1− ρ)

ρ = 0.955

“Risk sharing is better than you think” meaning marginal utility growth is very
correlated across countires.

2. Asset pricing, “or exchange rates are too smooth.” Imposing ρ = 0,

σ(∆st+1) =
√
2σ(m) = 1.41× 0.5 = 0.71

We should see 70% variation in exchange rates!

3. Consumption. If we use consumption data, ∆c, small risk aversion γ, and ρ = 0
as suggested by the data, no matter what we do with ρ on the right hand side
σ(m) is just not enough to add up to the observed σ(∆s). σ(m) = γσ(∆c).

0.152 = 2× γ × σ2(∆c)− 2ρ× γ × σ2(∆c)

= 2× γ × σ2(∆c)× (1− ρ)
0.15√
2

= 0.106 = γσ(∆c)(1− ρ)

This isn’t as bad as the equity premium (that’s the whole point), where we needed
γσ(∆c) = 0.5. It’s still not easy. With ρ = 0 and σ(∆c) = 0.01 we need γ = 10.
σ(∆c) = 2% gets us down to γ = 5. And surely there’s some positive correlation.
In sum, you can see that models (especially models with risk sharing) have trouble
producing enough exchage rate movement.

The paper details:
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• We compute a “risk sharing index”

1− σ2(lnmf − lnmd)

σ2(lnmf) + σ2(md)
= 1− σ2(ln et+1/et)

σ2(lnmf) + σ2(md)

Why? lnmf = 2 lnmd also violates risk sharing, but correlation is one.

• Procedure: Just like Hansen-Jagannathan. Find the minimum variance discount factors
m to price both domestic and foreign assets, expressed in dollars, and vice versa. We
use continuous time so we can do logs vs. levels ("E(log) = log(E) theorem" is true in
continuous time, with 1/2σ2 terms)

• Continuous time

Λd = eΛf

d lnΛd = d ln e+ d lnΛf

dS

S
= (r + μ) dt− σdB

dΛ

Λ
= −rdt− μ0Σ−1σdB

d lnΛ

Λ
= −

∙
r +

1

2
μ0Σ−1μ

¸
dt− μ0Σ−1σdB

σ2
µ
d lnΛ

Λ

¶
= μ0Σ−1μ

so the regular calculation works in logs in continuous time. Table 2,3 gives the basic
calculation.

Strongly recommended reading:

• The introduction on transport costs (Earth vs. Mars) and incomplete markets, and
“reconciliation” p. 692 i.e. apples and oranges.

• Earth vs. Mars: Just read 673. Better in print. Suppose there are complete financial
assets and communication but no goods may flow. If mars gets a good shock, mars
stock goes up. The exchange rate must go down. mf and md must be uncorrelated in
the end. Knowing this, there is no advantage to Mars stock in the first place, so your
portfolio should be completely home biased. Complete financial assets do not imply
"perfect risk sharing" nor constant exchange rates, nor absence of home bias. Money,
capital can’t “flow”. International is about transport costs, not markets. (Example,
crashes “investors pulled capital out.” They can’t They can sell to locals at a cheap
price; trade claim on US govt for claim to factory, but it needs a ship to remove capital.)

• Incomplete markets. Now mi = m∗ + εi again.

206



1. Reminder: Risk sharing in incomplete markets:

p = E(mix) = E
£
proj

¡
mi|x

¢
x
¤
= E(m∗x),

mi = m∗ + εi

we should “use asset markets to share as much as possible.”

2. It is not true that md = mf +∆s for arbitrary m pairs. It is true that for any md

that prices assets expressed in dollars, we can construct an mf that prices assets
expressed in Euros. Again, this is just a change of units. But that discount factor
may not equal foreign consumption growth. It is true that m∗d = m∗f + ∆s.
Thus minimum-variance discount factors in the payoff space do obey the identity.
In this sense, what we are learning is “do transport costs mean that we are not
able to use asset markets to share as many risks as possible?”

• The paper also asks if incomplete markets are quantitatively plausible. σ(m) rises as
m becomes less correlated, so incomplete markets makes the equity premium puzzle
that much worse (as in the “correlation puzzle” refinement of Hansen-Jagannathan
that lower correlation of m with r implies a higher σ(m) bound).

• How much international finance uses vs. does not use complete markets?? Be very
careful here. if

e = md −mf

and then
e = γ∆cdt+1 − γ∆cft+1

you are assuming complete markets. If

e = proj(∆c|assets)− proj(∆cf |assets)

then you’re not.

Misconceptions:

1. Each investor is allowed to invest in all assets — the HJ, minimum variance discount
factor for all assets as viewed by each investor. Our equation only applies as a change
of units. These are NOT the minimum variance discount factor for domestic assets
and the minimum discount factor for foreign assets. Why not? You can compute such
quantities, but they are not connected by the exchange rate.

The paper does nothing about “what if there are asset market frictions so you can’t
trade each other’s assets?” We allow markets to be incomplete, but once D can buy
them, so can F. Would it be interesting to give the countries fundamentally different
spaces, or (the same thing) prices that are different by shadow costs or transactions
costs as well as by exchange rates? Yes, but we didn’t do it.
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2. The “discount factor” is not the “optimal portfolio” the “market portfolio”, or a port-
folio anyone actually holds. The correlation of discount factors means nothing about
correlation of portfolios. For example, if our income shocks are the same, we can have
very correlated discount factors, very correlated m∗ but utterly different portfolios.

3. The correlation of stock markets, which underlie the usual “benefits of international
diversification,” is not really in the calculation at all. (Technically, it is reflected in the
Σ part of μ0Σ−1μ, but higher asset correlation does not imply higher discount factor
correlation.) Again, we allow trade in both assets by both investors.

4. Converesly, the discount factor is not a portfolio that anyone holds, so highly correlated
discount factors do not mean portfolios are highly correlated. Thus, also, home bias
does not contradict our calculations.
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