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1 Introduction

This note explores long-run mean-variance analysis as described in Cochrane (2012a) “A

Mean-Variance Benchmark for Intertemporal Portfolio Theory,” in the standard environ-

ment of continuous time, i.i.d. lognormal returns and a constant interest rate. In this

case markets are complete, so the discount factor method 0() =  can easily solve

portfolio problems, and the central points of long-run mean-variance analysis — the ability

to handle incomplete markets and return dynamics — will not show. Still, we must under-

stand this environment before proceeding to more complex and interesting environments,

and that is the purpose of this note.

I compare the quadratic and power utility solutions. The quadratic solution is quali-

tatively similar to the power utility solution. However, at standard values for the equity

premium, stock market volatility, and riskfree rates, the quadratic is not a useful “ap-

proximation” for the power utility answer, or vice versa. However, we can see in what

sense the quadratic and power solutions resemble each other, which gives us some idea

how useful a “benchmark” the quadratic solution might be in this situation.

I characterize the long-run mean-variance frontier, and show how it captures volatility

over time, captured by the difference between riskfree rate and discount rate, and volatility

over states of nature, captured by the maximum Sharpe ratio.

In this dynamic trading environment, payoffs are constructed by a portfolio strat-

egy, which describes the composition of the instantaneous portfolio, and a payout strat-

egy, which describes how quickly one takes funds out of the investment portfolio. Both

quadratic and power utility investors hold portfolios with mean-variance efficient instan-

taneous returns, and pay out as an increasing function of wealth. The quadratic utility

investor becomes more risk averse as wealth rises, and has a constant in the consumption-

wealth function.

The quadratic policy can also be described more elegantly in terms of the long-run

mean-variance frontier. He invests some initial wealth in an indexed perpetuity. He invests

his remaining wealth in a short position in a strategy that itself shorts a mean-variance

efficient portfolio. This strategy maintains the same constant weights over time as in

the power utility case. The double-short position generates the long-run mean-variance

efficient payoff without further dynamic trading.

Described either way, these examples make clear that the long-run mean-variance

efficient payoff is not formed from a constantly rebalanced allocation between riskfree

rate and mean-variance efficient returns,  + 1

0Σ−1 as is the case for power utility.
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Total wealth, which becomes the market portfolio in equilibrium has a negative lognor-

mal distribution. Wealth never grows above the value  that can support bliss point

consumption forever, but it can decline arbitrarily in the negative direction. Though the

underlying returns — technologies really — are lognormal, the investor becomes more risk

averse and lowers risky investment as wealth rises, so the market return does not inherit

this property.

This example is important to separate the character of underlying technological op-

portunities (a constant riskfree investment and a set of lognormal diffusions here) from

the character of observed asset returns, which include the possibility of dynamically re-

balancing in and out of the underlying technologies.

This investigation also resolves Dybvig and Ingersoll’s (1982) classic puzzle about

the CAPM and quadratic utility in a mean-variance environment. They show arbitrage

opportunities result if the market return can attain sufficiently high values. In a market

of quadratic utility investors, the market return never achieves those values.

A long section tracks down why the formulas blow up for parameter values 2 −
 − 0Σ−1 ≤ 0, which are in fact quite reasonable. The answer is that an impatient

quadratic utility investor exploits the lognormal opportunities. With a finite lifetime

he consumes more today, driving wealth down, but then repaying with a burst of very

negative consumption late in life. Similarly, he supports current consumption with a

double-or-nothing trading strategy, allowing a burst of huge negative consumption in

the very rare event that the risky investments do not recover. In the limit, the burst

of negative consumption is forever delayed. This investigation solves the puzzle, but

the fact remains then that quadratic utility, long horizons and parameter configurations

2 − − 0Σ−1 ≤ 0 are just not a very interesting combination.
This fact should not really surprise us. Lognormal long-horizon returns become

severely distorted from normal. Mean-variance thinking is more naturally applied in

an environment with returns that are closer to normal. The pathologies of extreme long

horizon lognormal returns and mean-variance portfolios are well known, and I survey

them.

This is not necessarily fatal for the quadratic model to become more than an interesting

conceptual benchmark. I look at the data, and market return data seem to behave more

normal than lognormal. The long right tail predicted by the lognormal is missing, while

the fat left tail of short horizon returns also disappears. Even at a 10 year horizon, index

returns are better described by a normal rather than lognormal distribution. This finding

is not that surprising: we know that there is some mean-reversion in returns, and that

volatility decreases when the market rises. Both effects cut off the large troublesome right

tail of the lognormal. However, it does mean that a quantitatively realistic calculation

(one that violates 2 −  − 0Σ−1  0) must incorporate at least stochastic volatility

and potentially mean-reversion, to say nothing of additional state variables, exceeding by

far the back of any envelope.

Quadratic utility with a fixed bliss point leads to consumption that does not grow over
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time, and wealth always below a fixed value. I show in the last section that specifying

bliss points that grow over time is a potential resolution to this difficulty. I investigate

a geometrically growing bliss point; I show how to construct a stochastic bliss point so

that the quadratic and power solutions match, which may be a useful starting point

for approximate solutions, and I show how temporal nonesparabilties such as habits or

durable goods can induce similar behavior in the bliss point and allow growth.

1.1 Setup and ∗

There is a constant riskfree rate . There are  basis assets whose instantaneous

excess returns follow

 =  −  = + ;
0 = Σ

I use the notation  to denote instantaneous returns, i.e. if dividends are paid at rate

, then  ≡ + 

The investor creates a payoff stream  from initial wealth0 by dynamically investing,

 = (
 − )+ 0




with the usual transversality condition that the time-zero value of wealth must eventually

tend to zero lim→∞ ( ) = 0, and the usual limits on portfolio investments  to rule

out doubling strategies. The payoff space  consists of payoffs generated in this way by

different choices of payout strategy  and portfolio strategy .

The payoff ∗ ∈  that generates prices by  = ̃(∗) is characterized by

∗
∗

=
³
− 

´
− 0Σ−1 (75)

and thus

∗ = (−
− 1

2
0Σ−1)−0Σ−1

R 
0
 (76)

Prices are given by

() = ̃(∗) = 

Z ∞
=0

−∗

The price of ∗ itself is

(∗) = ̃(∗2) = 

Z ∞
=0

−2(−
−1

2
0Σ−1)−20Σ−1

R 
=0

 (77)

(∗) =
1

2 − − 0Σ−1

I consider the possibility that 2 −  − 0Σ−1 ≤ 0 and thus (∗) = ∞ below. From

(75) (or directly from (76)) we have (∗ ) = (−) and hence

̃(∗) = 

Z ∞
0

−(−
) =




 (78)

With a constant risk free rate, we have  =  of course.
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1.2 Consumption-portfolio problems

Since this market is complete, we can write the portfolio problem directly as

max ̃ [()]  () = ̃ (∗ ) =0

The first order conditions give the solution to the portfolio problem,

0() = ∗ ⇒  = 0−1 (∗ )

For power utility

() =
1

1− 

1−
 

we have



 = (

∗
 )
− 1
  (79)

where the superscript  in  reminds us that this is consumption for the power utility

investor. For quadratic utility

() = −1
2

³
 − 

´2


we have



 =  − ∗ (80)

As before, the investor purchases the bliss point, financed by shorting the “most expen-

sive” payoff ∗.

Equations (79) and (80) give us the essence of the difference between power and

quadratic utility, i.e. long-run mean-variance efficient portfolios. The power utility payoff

is a nonlinear declining function of ∗. The quadratic utility payoff, which corresponds
to the long-run mean-variance frontier, is a linear declining function of ∗, and thus the
payoff is itself mean-variance efficient.

To standardize the portfolios to initial wealth, we find Lagrange multipliers from the

budget constraints. For power utility the result is3





0

=
1



"
+ ( − 1)

Ã
 +

1

2

1


0Σ−1

!#

∗− 1



  (81)

3

0 = () = E
h
∗ (

∗
 )
− 1


i
0 = −

1


Z ∞
0

−(
−1
 )(−− 1

2
0Σ−1)−( −1 )0Σ−1

R


0


= −
1


Z ∞
0

−(
−1
 )(−− 1

2
0Σ−1)+ 1

2 (
−1
 )

2
0Σ−1

= −
1


Z ∞
0

−
1
 [+(−1)(+ 1

2
1

0Σ−1)]

=
−

1


1


h
+ ( − 1)

³
 + 1

2
1

0Σ−1

´i
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We have already worked out the quadratic utility case. From Proposition 2, the nicest

expression is




0

=  +
1



³
 − ∗

´
(82)

where  represents a local risk aversion coefficient, controlled by the bliss point .

Figure 1 contrasts the power utility case (81) with the quadratic or mean-variance

case (82). Both consumption decision rules slope downward. Lower returns mean higher

marginal utility ∗ or ∗ and hence lower consumption, so consumption declines as we go
from left to right.

The power utility investor is particularly anxious not to suffer consumption declines;

he therefore consumes more in bad times (right hand side of the graph) funding that

consumption in good times (middle of the graph) He is also more price-sensitive; if con-

sumption is really cheap on the left side of the graph, he can increase consumption without

limit.

By contrast, the quadratic utility investor consumes a bit more in normal times (near

1), financing that by consuming even negative amounts if the price ∗ were to rise past
about 3.5 (in equilibrium, it never does), and with consumption never exceeding the bliss

point (about 7% of wealth here) even if the price of consumption (∗) falls to zero.

Clearly, the difference between power and quadratic is “small” for “small” returns

and thus small movements in ∗ , and vice versa. Figure 1 includes the 1,5, and 10

year densities of ∗ to gives some sense of how large the plausible range is for typical
parameters. The major difference in the likely states is on the left side of the graph,

times of good yields, where the power utility consumption increases without bound but

quadratic utility (with fixed bliss point) consumption stops growing at the bliss point.

Figure 2 plots a simulation of power and quadratic consumption from this model. In

this particular draw, good and bad luck mostly balance, so ∗ mostly stays in the range
that quadratic and power utility give quite similar answers. Again, the major difference

comes if returns are very good, meaning the discount factor ∗ declines a great deal. (Left
hand side of Figure 1.) Here, the quadratic utility investor stops increasing consumption

as it approaches the bliss point,  = 075 in this case, while the power utility investor

keeps going. Very bad luck leads to increases in ∗. Here, the power utility consumption
will stay positive, while quadratic utility consumption continues to fall and can even fall

below zero. We see this kind of event near year 10 of the simulation ( I picked a simulation

that showed both tails).

Substitute this expression for  in (79).

If   1 and enough so that

+ ( − 1)
µ
 +

1

2

1


0Σ−1

¶
 0

it appears that () is infinite. In this case, the answer is  = 0. The consumer endlessly puts off

consumption since investment is so much more attractive.
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Figure 1: Consumption payoffs from power utility and quadratic utility in the iid return

case. The x axis is the pricing payoff or marginal utility process ∗. The  axis gives
consumption relative to initial wealth as a function of ∗. Parameters are risk aversion
 = 2, discount factor  = 001, riskfree rate  = 005 excess return mean  = 004 and

standard deviation  = 020.

The general conclusion I draw from the analysis is that quadratic utility can be a useful

“benchmark” in that the portfolios are qualitatively similar. However, it is certainly not

an “approximation,” in that the answers are different in quantitatively important ways

for a calibration to standard values of equity market volatility.

1.3 Long-run mean-variance frontier

Since ∗ defines the mean-variance frontier, the long-run Sharpe ratio or slope of the long-
run mean-variance frontier is given by ̃(∗)̃(∗). Evaluating in the i.i.d. lognormal
model with a riskfree rate, we have

̃(∗ )
̃(∗ )

=

vuut ( − )2 + 0Σ−1
2 − ( − )2 − 0Σ−1

 (83)

Derivation We evaluate

̃(∗ ) = ̃

µ
1− ∗



¶
= 1− ̃(∗)

(∗)
= 1− 

2(∗)
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Figure 2: Simulated consmption from power and quadratic utility in iid return case.

= 1− 

2

³
2 − − 0Σ−1

´
=

( − )2 + 0Σ−1
2



The first line follows from (78). We can find the variance from

̃2(∗) = ̃(∗2)−
h
̃(∗)

i2
= ̃(∗)−

h
̃(∗)

i2
= ̃(∗)

h
1− ̃(∗)

i
The second equality follows from the defining property ̃(∗) = ̃(). Then

we have

̃(∗)
̃(∗)

=
̃(∗)r

̃(∗)
h
1− ̃(∗)

i =
vuut ̃(∗)

1− ̃(∗)
(84)

and (83) follows.

The formula (83) is complex because the investor cares about volatility over time as

well as across states of nature. To understand it, suppose first that there is no instan-

taneous Sharpe ratio, 0Σ−1 = 0, or equivalently that the risky asset is simply absent.
Then there still is a long-run mean-variance frontier,

̃(∗ )
̃(∗ )

=

vuut ( − )2

2 − ( − )2
 (85)
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The only investment is the riskfree rate  , but there still is the question of how fast to take

money out of wealth placed in the riskfree investment, and thus a trade-off between average

payout level and its volatility over time. If the consumer takes consumption  = ,

then wealth grows at  =
³
 − 

´
, and consumption follows  = 0

(−).

If the consumer chooses  =  , he obtains constant consumption and wealth  = 0,

 = 0. This path has zero long-run variance, and long-run mean ̃() = 0. If

the consumer chooses a lower consumption/wealth ratio    , he will start with lower

consumption initially, but he will then obtain a rising consumption path. The rising path

represents a source of long-run variance, since that measure prizes stability over time as

well as over states of nature.

If  =  , the investor chooses the constant consumption path. In view of (85), the

long-run mean excess return is zero for any level of long-run volatility, so the investor

chooses the minimum long-run variance portfolio. If   , the consumer chooses a

declining consumption path. Lower initial consumption with higher later growth raises

the long-run mean as well as the variance.

In this way, the choice of payout rate gives rise to a long-run mean-variance trade-off,

captured by formula (85), even when there is no risk at all. The long-run Sharpe ratio

in this case expresses the attractiveness of distorting consumption away from a constant

over time in order to raise its overall level.

Now, suppose there is risk, but  =  so there is no interesting substitution over time

and we focus exclusively on risk. The long-run Sharpe ratio simplifies to

̃(∗ )
̃(∗ )

=

s
0Σ−1

 − 0Σ−1
(86)

This function is increasing in the instantaneous sharpe ratio
√
0Σ−1 as we might expect.

Now the investor will get more mean, and variance, by taking a larger investment in the

risky assets.

As a result of the denominator, typical numbers for the long-run Sharpe ratio will be

a good deal larger than those for the instantaneous Sharpe ratio
√
0Σ−1. That fact

simply reflects different units. 10 year Sharpe ratios are about
√
10 larger than one-

year Sharpe ratios, and the long-run frontier in essence characterizes a weighted sum of

long-run returns.

The possibility  − 0Σ−1 ≤ 0 is not outlandish. With a typical 0.5 market Sharpe
ratio, 0Σ−1 = 025. I return to this issue below.

1.4 Portfolio and payout strategies

The whole point of the contingent-claim approach is to forget about trading strategies

and to focus on final payoffs. However, we can easily find the trading strategies in this

case, so it’s interesting to investigate what they are, and how the quadratic and power

utility portfolio weights compare.
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We generate yields or payoff streams by varying the portfolio weights  in the risky

assets and by taking the payoff as a dividend. Wealth then follows

 =
³


 − 

´
+ 0


  (87)

 and  describe real dollar payouts and dollar positions in the excess returns rather

than proportional weights. I use  =  and  =  to describe portfolio weights

as fractions of wealth.

The power-utility investor holds a constantly-rebalanced instantaneously mean-variance

efficient portfolio with constant weights and consumes a constant fraction of wealth,

 =
1


Σ−1 (88)



 =

1



"
+ ( − 1)

Ã
 +

1

2

1


0Σ−1

!#
 (89)

The quadratic utility investor also holds a constantly-rebalanced mean-variance effi-

cient portfolio. (Equivalently, the long-run mean-variance frontier results from such a

portfolio)

 =

³
 − 

´


Σ−1 =
1


Σ−1 (90)

The composition of the portfolio is instantaneously mean-variance efficient. However, the

size of the risky asset portfolio changes over time. We can interpret the term before Σ−1

as the inverse of a local risk-aversion coefficient, and I have defined  in that way in the

right-hand equality. As wealth rises to the value  =  that would support bliss-point

consumption, the quadratic-utility investor becomes more risk averse.

The payout rule for the quadratic-utility investor is



 =  −

h³
2 − 0Σ−1

´
− 

i Ã 


−

!
(91)

Both power (89) and quadratic (91) payout rules rise proportionally to wealth, but

quadratic utility consumption also has an intercept.

1.4.1 Constant-weight portfolios; portfolios for the frontier; and shorting the

short

There is another representation of the quadratic utility portfolio (90) with constant port-

folio weights, rather than the time-varying weight 1 described by (90). This expression

also shows one way to dynamically construct the mean-variance frontier.

We start by understanding the dynamic portfolio underlying ∗. Start with the diffu-
sion representation for ∗ (75) and then rewrite it as a value process in the form (87),

∗

∗
=

³
− 

´
− 0Σ−1 (92)
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∗

∗
=

h
 −

³
2 − − 0Σ−1

´i
− 0Σ−1 (+ )

∗

∗
=

"
 − 1

(∗)

#
− 0Σ−1 (+ )

∗ =
³
∗ − ∗

´
− ∗

0Σ−1  (93)

The last equation shows us that ∗ is value process that generates the payoff ∗ = ∗(∗)
as its dividend stream. ∗ wears many hats: It is a discount factor, it is a payoff, and it
is a value process that generates its own yield as a payoff!

Now, we understand how to create ∗: From (93), the portfolio that generates the pay-
off ∗ is a constantly-rebalanced constant-weight short position in a mean-variance efficient
investment,  = −0Σ−1 , that pays out a constant fraction 1(∗) =

³
2 − − 0Σ−1

´
of its value. The point: unlike the quadratic utility portfolio (90), but like the power utility

portfolio (88), these weights are constants.

The quadratic utility investor consumes a constant linear function of ∗

 = ̂ =  −
h
 −0

i
∗

and his portfolio yield is a constant linear function of ∗ :

̂ =  +
1



³
 − ∗

´


Thus, in place of the time-varying weights in (90), we can say that the quadratic utility

investor shorts a portfolio that is short a constant fraction of wealth in a mean-variance

efficient portfolio.

There are two lessons here. First, the portfolio strategy underlying a given payout is

not unique or uniquely characterized, even in this simple example. Second, to create a

long-run mean-variance efficient yield

 =  + × ( − ∗)

you do not simply hold a constant fraction of wealth in a mean-variance efficient instan-

taneous return  + 0Σ−1 for some positive  and pay out at some fixed rate. It is
formed either with the dynamic strategy described by (90) and (91), or by the constant-

weight strategy described here: a short position in a security (∗) that itself cumulates a
short position −0Σ−1 in a mean-variance efficient portfolio. While the double short-
ing action cancels itself in instantaneous returns, it does not cancel itself in cumulated

returns, since the cumulation process is nonlinear.

1.5 Consumption and the wealth (market) portfolio

We solve next for the actual values of consumption and wealth, not just the rules relating

them.
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With quadratic utility, wealth followsÃ



−

!
=

Ã



−0

!
−(

+ 1
2
0Σ−1−)−0Σ−1

R 
0
 (94)

The return of the wealth portfolio, which is the market portfolio for an identical-agent

model, is

 =

"
 +

Ã




− 1
!
0Σ−1

#
+

Ã




− 1
!
0Σ−1 (95)

Consumption itself follows

 −  =
³
 − 0

´
−(

+ 1
2
0Σ−1−)−0Σ−1

R 
0
 (96)

where

 − 0 =

Ã



−0

!³
2 − − 0Σ−1

´


(I assume here
³
2 − − 0Σ−1

´
 0 which I discuss below.)

The corresponding expressions for power utility are

 =0
1


h
(+1

2
0Σ−1−)+0Σ−1

R 
0


i
(97)

 = 0
1


h
(+ 1

2
0Σ−1−)+0Σ−1

R 
0


i
(98)

0 =
1



"
+ ( − 1)

Ã
 +

1

2

1


0Σ−1

!#
0

In the power utility model in the power utility model (97),  is lognormally distrib-

uted. In the quadratic utility model, equation (94) shows that
³



−

´
, not  itself

as is lognormally distributed. Wealth never exceeds the value needed to support the bliss

point,  . It can decline to arbitrarily large negative values.

Expression (94) and (95) make an important point. Based on power utility experience,

you might think of forming portfolios of riskfree rate and a lognormal diffusion, specifying

the latter as the “market” portfolio. But it isn’t, and it can’t be. The lognormal diffusion

is not long-run mean-variance efficient. It doesn’t make sense to specify a lognormal

diffusion for the market portfolio in a long-run mean-variance exercise.

The way to think of the computations here is that we have stared with two underlying

technologies, riskfree and risky, the latter following a lognormal diffusion. Investors will

then control the characteristics of the average or market portfolio so that the market

portfolio does not follow a lognormal diffusion. As wealth grows, the weights in the risky

assets decline. In aggregate, as I have not specified any adjustment costs, this means in-

vestors cut back physical investment in the risky technology. This action by investors cuts

off the troublesome (to quadratic utility) right tail of the lognormal diffusion. Though an

11



uncontrolled lognormal diffusion will produce wealth past the bliss point, quadratic util-

ity investors eat up the wealth before they get to the bliss point. Power utility investors,

especially with  6= 1, do a similar aggregate rebalancing, to control  ≥ 0. But since
that rebalancing does not change the character of the distribution it’s harder to notice.

Dybvig and Ingersoll (1982) criticized CAPM economies in discrete time models with

dynamic trading allowing market completion, pointing out that the discount factors would

imply negative marginal utility and hence arbitrage opportunities for the non-quadratic

investors. (The unique discount factor supporting the CAPM is +1 = − 
+1, so if


+1 is sufficiently large, +1 must be negative)

That puzzle does not apply here, since market returns are never large enough to drive

marginal utility negative. Dybvig and Ingersoll specify the market return process ex-

ogenously, which is how they obtain a puzzle. I specify the technological opportunities

exogenously, but allow investors to collectively rebalance out of risky assets. The result-

ing market portfolio does not have the lognormal diffusion character of the underlying

technological opportunity.

Dybvig and Ingersoll’s main theorem (p. 237) states:

Theorem 1: Suppose that (i) mean-variance pricing holds for all assets....(ii)

markets are complete so that any payoff across states can be purchased as some

portfolio of marketed securities; and (iii) the market portfolio generates suffi-

ciently large returns in some state(s), that is, prob ( − 
+1  0)  0 [my

notation]. Then there exists an arbitrage possibility.

The third condition does not obtain, because a market of quadratic utility investors

does not allow the market return to become sufficiently high. The value of the market

may become negative   0, but marginal utility is proportional to the discount factor³
 − 

´
= ∗ , and marginal utility is always positive.

Derivation

Uniting (87), (90), and (91),

 =

Ã
 −

"
 −

³
2 − − 0Σ−1

´Ã 


−

!#!
+

Ã



−

!
0Σ−1

 =

Ã
 −  +

³
2 − 

´Ã 


−

!!
+

Ã



−

!
0Σ−1

 =
³
 − 

´Ã 


−

!
+

Ã



−

!
0Σ−1



Ã



−

!
=

³
− 

´Ã 


−

!
−

Ã



−

!
0Σ−1
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The “return on the market portfolio” is price gain plus dividend,

 =




+






 = +

Ã




− 1
!
0Σ−1

 =

"
 +

Ã




− 1
!
0Σ−1

#
+

Ã




− 1
!
0Σ−1

The last expression follows either by substituting in the expressions for 

or more directly from the portfolio weights (90)

1.6 Potentially infinite price of ∗

Formula (77),

(∗) =
1

2 − − 0Σ−1

reveals a technical limitation of this standard setup. If 2 −  − 0Σ−1 ≤ 0, the

price of the payoff ∗ is infinite. Then the yield ∗ = ∗(∗) is undefined. Since

(∗) = ̃(∗2), at these parameter values at least the payoff ∗ and possibly others
violates the square integrability condition ̃(∗2) ∞. (Hansen and Sargent 2004 p. 211
warn us, “the requirement that consumption processes in C have unambiguously finite

prices is a nontrivial restriction that is not satisfied in general”)

At these parameter values, the infinite-horizon quadratic utility consumption-investment

problem, solved directly or with the ∗ machinery, suffers a technical problem. The so-
lutions we have studied suggest  = , but that solution is infeasible. Yet any solution

   can be show to be suboptimal.

These parameters are not particularly extreme, at least relative to standard statistics.

For example, if one takes a 6% equity premium and an 18% standard deviation of market

returns, then 0Σ−1 = 19 = 011. A 6% interest rate  and a 1% discount rate  are

just enough to give an infinite (∗), and any lower interest rate or higher discount factor
make matters worse. (One might argue that these standard statistics are extreme, which

is the entire equity premium puzzle, but that’s another issue.) The issue is similar to the

“nirvana” solutions that Kim and Ohmberg (1996) find for power utility in a time-varying

return environment.

Everything seems to explode at 2 − − 0Σ−1 = 0. We can write the Sharpe ratio
from (83) as

̃(∗ )
̃(∗ )

=

vuut ( − )2 + 0Σ−1
2 − ( − )2 − 0Σ−1

=

vuut 2

 [2 − − 0Σ−1]
− 1

so the slope of the long-run mean-variance frontier rises to infinity. The minimum second-

moment yield ∗ = ∗(
∗) is collapses to zero — zero mean and zero standard deviation.
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A payoff that costs one and delivers zero is a great short opportunity; shorting this payoff

and investing in the risk free rate gives higher and higher long-run Sharpe ratios. The

consumption decision rule (91) goes simply to consumption at the bliss point,  = , for

any initial wealth.

I examine this issue in this section, by studying finite horizon problems, and problems

with a wealth constraint or a limit on how negative consumption can go. All three of these

environments solve the technical problems — (∗) is finite, the long-run mean-variance
frontier is well defined, and the quadratic utility consumption-portfolio problem is well

behaved — for any parameter values. In each case the limit, as the horizon grows, the

wealth constraint or consumption constraint decline, is  = , but this limit point is

invalid.

However, the well behaved finite or constrained problems are not very interesting. In

each case, the investor finances consumption very near the bliss point by selling off a

huge lump of negative consumption, either very late in life, or in one extreme state of

nature. In the limit, this negative lump disappears, which is the technical problem of

truly infinite horizons. But close to the limit, this description of optimization is just not

very interesting.

1.7 Finite horizons and the limit

To understand these limiting issues more deeply, we can look at the corresponding finite-

horizon problems (from  = 0 to  ). These models are well-behaved. By construction,

terminal wealth is always zero  = 0, and they do not produce solutions with apparent

arbitrage opportunities.

With a finite horizon, all the discount factors and consumption streams remain square-

integrable. The discount factor payoff is still

∗ = (−
− 1

2
0Σ−1)−0Σ−1

R 
0


Its price is

(∗) =
1− [(−2

 )+0Σ−1]

2 − − 0Σ−1
if  6= 2 − 0Σ−1

(∗) =  if  = 2 − 0Σ−1

The price (∗) is now finite in all cases — finite horizon models are technically well behaved.
In the troublesome cases  ≥ 2 −0Σ−1 ≤ 0, (∗) grows with horizon, and, as we will
see, the quadratic utility consumption-portfolio problems in this environment are not that

interesting. The investor finances consumption near the bliss point by borrowing a huge

amount, and then paying it off with a huge negative consumption late in life, or a huge

negative consumption in the rare state of nature that borrowing cannot be paid off by

stock market investments. To the extent that one finds such portfolio analysis unrealistic,

then this is an uninteresting set of parameter values or a poor environment to consider.
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With the finite horizon cases in hand, we can then take the limit as  → ∞ and

understand how the limit point potentially differs from the limit.

Constraints on wealth or borrowing,  ≥ ̄ , or a constraint on consumption  ≥ ̄

such as  ≥ 0 produce well-behaved problems just as the finite-horizon constraint = 0

does. In the presence of wealth or consumption constraints, the impatient investor follows

a declining consumption profile that hits a lower bound when the constraint binds. At

that point the shadow value of the constraint adds to the interest rate, leading to an

optimal constant consumption value. Here too, as we relax the constraints the solutions

approach  = , but the limit point is not a valid solution. For practical problems,

imposing a wealth or consumption constraint produce slightly more reasonable solutions.

However, solving for the lagrange multiplier is slightly more algebraically involved, since

you have to find the time when the constraint starts to bind. For that reason, I only

present the finite-horizon cases.

Since the general case is rather complex, I focus on two special cases that get at

the central intuition. By examining the case  = 0, we understand what happens to

the allocation of consumption over time as the boundary, now  = 2 is crossed. By

examining the case  =  ,  6= 0, we then understand the effects of risky assets without
the mess caused by the terms involving allocation over time. All the derivations are

presented below.

1.7.1 Allocation over time,  = 0.

Consider the finite-horizon problem

max

µ
−1
2

¶ Z 

0
−( − )

2 s.t. =
³
 − 

´
; 0; = 0

The optimal consumption profile in this case is

 −  =

"

1− −




−

# ³
2 − 

´
1− (−2 )

(−
); if  6= 2 (99)

 −  =

"

1− −




−

#
1


(−

); if  = 2

To understand this profile over time for fixed  , we can write it as

 −  =
³
 − 0

´
(−

) (100)

Figure 3 illustrates these paths.

As we expect, if  =  = 005, the investor wants a constant consumption path that

spends the annuity value of wealth,

 = 0 =


1− −

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Figure 3: Consumption paths over time.  = 005,  = 2,  = 50,  as indicated.

If    , the investor wants a rising consumption profile. (−) in (100) is negative,
so consumption starts below the bliss point  (assuming, as always inadequate wealth to

finance  directly), and then exponentially approaches  over time. The investor saves

early in life and builds up wealth to finance larger consumer later on.

If    , the consumer is impatient, and wants a declining consumption path. (−)
in (100) is positive, so consumption begins above the annuity value of wealth, and diverges

exponentially downward from . This consumer is borrowing early in life and then

repaying it by dramatic consumption declines later in life. There is nothing wrong with

negative consumption under quadratic utility, and the extreme parameter values  = 10%,

 = 5% and above produce such values.

Now, let’s examine the troublesome case  = 2 , and consider how this finite-horizon

economy behaves as we drive  larger. Figure 4 presents the evolution of consumption,

equation (99), for this case, and Figure 5 presents the evolution of the investor’s wealth,





³
1− −(−)

´
− =

Ã




³
1− −

´
−0

!µ
1− 



¶


We see the investor consume initially above the annuity value of wealth, spending

down his wealth and then borrowing (negative wealth) to do so. Later in life, he radically

reduces consumption in order, initially, to slow the rate of borrowing, and finally he

reduces consumption so drastically that he pays back the debt very late in life and ends

up satisfying the constraint  = 0.
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Figure 4: Consumption paths for a finite-lived  impatient investor with quadratic utility.

 = 1,  = 005, 0 = 05,  = 2 = 010

Now, as  grows, the investor pushes off the day of reckoning further and further,

paying for early consumption closer and closer to the bliss point by longer and longer

borrowing, promising a larger and larger negative consumption episode later in life. Each

step of the limit is well defined: For each finite horizon,  = 0, − = 0, and

0 =
R 
=0 

−. And the limit is well defined for fixed . For each , as  → ∞, we
have  → , and  → 


−
³



−0

´


In the limit, he promises an infinitely large negative consumption event, which is

however infinitely postponed. so it never shows up.

But this limit point  =  is invalid, and it is not the solution to the infinite-period

problem. The first order condition remains

 −  = (
 − 0)

(−)

If we choose the solution 0 =  = , the present value of consumption isZ ∞
=0

− =



 0

and

lim
→∞ − = −

Ã



−0

!
 0
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Figure 5: Evolution of wealth for a finite-lived  impatient investor with quadratic utility.

This solution more than exhausts the initial wealth. The lump of infinitely negative

consumption, infinitely delayed, which repays debt, vanishes from the limit point. Thus,

0 =  produces an infeasible solution. However, any 0   produces a suboptimal

solution. Any 0   which obeys the first order condition produces wealth that grows

positively at rate , and thus the consumer can do better by raising 0 The terminal

condition lim→∞ − is a discontinuous function of initial consumption 0, and it is

not equal to 0 for any value of 0

1.7.2 Risk premium,  6= 0,  = 

Now consider a finite-horizon problem which focuses on risk bearing, simplifying away the

intertemporal terms,

max

µ
−1
2

¶


Z 

0
−( − )

2 s.t. =
³
 − 

´
+ 


 ; 0; = 0;  =  

The above intertemporal model is well studied in the permanent income literature.

The presence of risky assets here is more novel. It is also the ingredient that causes the

quantitative trouble. We don’t need   2 to fit the world, but the squared sharpe ratio

of 0.10-0.25 is much higher than the riskfree rate. Having understood the issues raised by

 6=  , I focus on  =  to simplify the formulas for  6= 0.
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In this case, the optimal consumption paths are

 −  =

Ã

1− −




−0

!"
 − 0Σ−1

1− −(
−0Σ−1)

#
−

1
2
0Σ−1−0Σ−1

R 
0
; if  6= 0Σ−1(101)

 −  =

Ã

1− −




−0

!µ
1



¶
−

1
2
0Σ−1−0Σ−1

R 
0
; if  = 0Σ−1 (102)

Again, to understand the evolution of consumption over time for fixed  , it’s easier still

to write the answer in terms of initial consumption rather than solve out the budget

constraint, as in (100): The consumption path is

 −  =
³
 − 0

´
−

1
2
0Σ−1−0Σ−1

R 
0
 (103)

and initial consumption is

 − 0 =

Ã

1− −




−0

!"
 − 0Σ−1

1− −(
−0Σ−1)

#
; if  6= 0Σ−1; (104)

 − 0 =

Ã

1− −




−0

! ∙
1



¸
if  = 0Σ−1 (105)

Now, consumption is not expected to drift up or down, () = 0. However, (103)

shows that consumption will drift up and down stochastically depending on the outcomes

of the risky assets. If the risky assets do well, 
R 
0   0, then consumption will drift

up towards the bliss point, and vice versa.  follows a lognormal distribution, bounded

above by  but with a long tail that extends to −∞.
The investor’s initial consumption 0 is greater than the annuity value of initial wealth,

0 


1− −
0

(To see this, write (104)-(105) as

 − 0 =

Ã
 − 

1− −
0

!
1− −



1− −[
−0Σ−1]

Ã
 − 0Σ−1



!
; if  6= 0Σ−1;

 − 0 =

Ã
 − 

1− −
0

!
1− −





µ
1



¶
if  = 0Σ−1

The terms after the first parenthesis are positive and smaller than one; 0 is closer to 


than is 

1−− 0. ) He finances that greater consumption by undertaking negative con-

sumption in extremely bad states of nature, where the  ≥ 2,  = 0 investor undertook
negative consumption much later in time in order to finance higher consumption 0.

The essential issue is the same as with the allocation over time problem. For fixed ,

as  increases, the consumption rules (101) and (102) approach  = . That limit point,
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however, is an invalid solution of the infinite-period problem. At the limit point  =∞,
the negative consumption states never happen.

As  increases, 0 approaches , so the first term in (103) gets smaller. But the

variance of the shock rises. The result is a distribution of long-horizon consumption that

bunches up against , but with a very long left tail. When  ≤ 0Σ−1, the investor
again finances large consumption by borrowing and investing in stocks. He then waits for

a sufficiently large stock return to pay off the loan. If stocks go against him, he increases

his portfolio position, doubling up. In a finite-time model, he faces the danger that this

stock return does not happen; in that case he accepts a dramatic consumption plunge

late in life in order to pay back the loan. In the limit point, he waits forever for stocks to

bail him out, again producing an apparent arbitrage opportunity by violating standard

trading limits.

To display this behavior, Figure 6 plots the distribution of consumption in periods  =

5  = 10 in models with horizon  = 5 and  = 10. Comparing the two  = 5 lines (green

and blue), we see that the distribution of consumption approaches 5 =  as the horizon

 increases. However, we see also that the left tail of final period  = 10 consumption

(red) crosses that of  = 5 consumption. As the horizon increases, this pattern continues:

an increasingly small but increasingly disastrous end-of life consumption in the event of a

cumulative stock market decline pays for consumption above the annuity value of wealth

early in life. This time of paying the piper disappears at the limit point  =∞
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Figure 6: Log density of consumption at the last moment of a 5-year ( = 5) and 10-year

( = 10) model. Parameters are  =  = 05,  = 008,  = 016,  = 2,  = 10 and

hence  = 075.
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To give a more concrete picture, we can examine wealth and the asset market position

as well. I found it most intuitive to look at the consumption decision rule in terms of

wealth:

 −  =
0Σ−1− 

(
0Σ−1−)(−) − 1

³
 

 −

´
if  6= 0Σ−1

 −  =
1

 − 

³
 

 −

´
if  = 0Σ−1

where

 
 ≡ 

1− −
 (−)



denotes wealth that can support bliss point consumption. Early in life  is small, wealth

is large, and the denominator is a large number. Hence, the investor consumes very near

. Later in life, if stock returns have been strong,  is still large and this strategy

works. If stocks have not done so well, however, is now small or negative, and possibly

very negative. As  rises, the denominator approaches 0, so the investor will undertake

a drastic consumption decline late in life to pay back his debts and leave  = 0. This

consumption decline is pushed ever later, and is not present at the limit point  =∞.
The weights in risky assets are

 =
³
 

 −

´
0Σ−1

The portfolio is mean-variance efficient, as usual. However, if stocks have not done well,

the investor takes larger and larger positions, “doubling up” to try to use asset markets

to get out of the hole. In the limit point, he can always wait long enough to get out

of debt by this strategy, though for each finite  , he must plan a disastrous decline in

consumption late in life to pay back debts. Again, to solve the infinite-period model with

these parameter values, we must impose the standard wealth constraint and constraint

on the size of trades, and expect them to bind.

1.7.3 Derivations

For the finite-horizon model, the discount factor is still

∗ = (−
− 1

2
0Σ−1)−0Σ−1

R 
0


Its price is

(∗) = 

Z 

0
−∗2  = 

Z 

0
−2(−

− 1
2
0Σ−1)−20Σ−1

R 
0


=

Z 

0
−2(−

− 1
2
0Σ−1)+20Σ−1 =

Z 

0
[(−2

 )+0Σ−1]

(∗) =
1− [(−2

 )+0Σ−1]

2 − − 0Σ−1
if  6= 2 − 0Σ−1

(∗) =  if  = 2 − 0Σ−1
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The price (∗) is now finite in all cases — finite horizon models are well behaved. In the
troublesome cases  ≥ 2 − 0Σ−1 ≤ 0, however, (∗) grows with horizon. We also
have

() = 

Z 

0
−

  = 
1− −






The optimal consumption stream is

 =  −
h
()−0

i
∗

 =  −
"

1− −




−0

#
∗

(∗)

or, explicitly,

 =  −
"

1− −




−0

#Ã
2 − − 0Σ−1

1− [(−2
 )+0Σ−1]

!
(−

− 1
2
0Σ−1)−0Σ−1

R 
0
; if  6= 2 − 0Σ−1(106)

 =  −
"

1− −




−0

#µ
1



¶
(−

− 1
2
0Σ−1)−0Σ−1

R 
0
; if  = 2 − 0Σ−1

To examine portfolio rules, we can find wealth at time  as

 =  () = 
³

´
−
"

1− −




−0

#
 (

∗)
(∗)

where the time-t price of the remaining stream ∗  ≤  ≤  is

(
∗) =

1

−∗


Z 


−∗2 

=
1

−∗


Z 


−∗2 

2(−− 1
2
0Σ−1)(−)−20Σ−1

R 



= ∗

Z 


(−2

+0Σ−1)(−)

(
∗) = ∗

1− (−2
+0Σ−1)(−)

2 − − 0Σ−1
; if2 − − 0Σ−1 6= 0

= ∗ ( − ) ; if 2 − − 0Σ−1 = 0

Thus, we have

 = 
1− −

 (−)


−
"

1− −




−0

#
1− (−2

+0Σ−1)(−)

1− (−2
+0Σ−1)

∗ if2
 − − 0Σ−1 6= 0(107)

 = 
1− −

 (−)


−
"

1− −




−0

#
 − 


∗ ; if2

 − − 0Σ−1 = 0
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or, explicitly,

 = 
1− −

 (−)


−
"

1− −




−0

#
1− (−2

+0Σ−1)(−)

1− (−2
+0Σ−1)

(−
− 1

2
0Σ−1)−0Σ−1

R 
0
(108)

 = 
1− −

 (−)


−
"

1− −




−0

#
 − 


(−

−1
2
0Σ−1)−0Σ−1

R 
0


Note  = 0 — all wealth is exhausted, but the investor dies without leaving debts, and

0 =0, these solutions respect the initial condition.

To express consumption in terms of wealth, we substitute (108) in (106), yielding

 =  −
³
2 − − 0Σ−1

´
1− (−2

+0Σ−1)(−)

Ã

1− −

 (−)


−

!
; if  6= 2 − 0Σ−1

 =  − 1

 − 

Ã

1− −

 (−)


−

!
; if  = 2 − 0Σ−1

To find portfolios, we look at the diffusion component of  . From (107),

 = −
"

1− −




−0

#
1− (−2

+0Σ−1)(−)

1− (−2
+0Σ−1)

∗

 = +

"

1− −




−0

#
1− (−2

+0Σ−1)(−)

1− (−2
+0Σ−1)

∗
0Σ−1

Thus the portfolio weight on risky assets is.

 =

"

1− −




−0

#
1− (−2

+0Σ−1)(−)

1− (−2
+0Σ−1)

∗
0Σ−1

It is useful to express this weight with wealth  as the state variable. Substituting from

(108) above

 =

Ã

1− −

 (−)


−

!
0Σ−1

We can also write this in a very familiar form as

 =

³
 −



1−− (−)
´




1−− (−)


0Σ−1 =
1




0Σ−1

with a local risk aversion coefficient  However, since most of the analysis concerns

  0 where this definition of  doesn’t make any sense, this expression is not so useful

in studying limits.
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1.8 Lognormal returns and mean-variance frontiers

The trouble revealed by the (∗) =∞ investigation is that the lognormal return model

gives rise to infrequent “disasters” of extremely low return, low consumption, and thus

very high marginal utility. When we price marginal utility, taking (∗2), these high
marginal utility states also have very high prices (∗ plays both roles). Since a quadratic
utility investor does not care that much about consumption declines, being willing even to

tolerate negative consumption with finite marginal utility, he actively sells consumption in

these very high-priced states to finance a great deal of consumption in other states. More

fundamentally, the result comes from the probability structure imposed by lognormal

returns. A probability model with less frequent or less highly valued disaster states will

not generate infinite prices, nor will it generate this opportunity for quadratic utility

investors to sell off infrequent high-price states.

The deeper lesson is that one should pair distributional assumptions and preferences.

Portfolio theory makes the most sense when the assumed return distribution is character-

istic of what a market of investors with the given preferences will produce, allowing for

defined dimensions of investor heterogeneity.

The strange behavior of the long-run mean-variance frontier in the i.i.d. lognormal

environment really has nothing to do with long-run mean-variance frontiers per se; it is

mirrored in the traditional discrete-period arithmetic mean-variance frontier generated by

lognormal returns. The apparently strange portfolio of the quadratic utility investor —

either shorting a portfolio that is short the risky asset, or adopting a time-varying weight

which becomes more risk averse as wealth rises — are exactly how you must produce a

−period mean-variance efficient portfolio in a lognormal environment. The message is
simply that lognormal returns and mean-variance analysis do not work well together. The

long positive tail of a lognormal adds variance without adding much mean. Given a choice

via dynamic trading, an investor interested in mean and variance adopts a dynamic strat-

egy that reduces this right tail, by scaling back investment in good states, and expands

the limited left tail of a lognormal, by expanding investment in bad states. (Campbell

and Viceira (2005) look at the mean-variance properties of long-run log returns, which are

well-behaved, but not the solution to a portfolio problem. Martin (2012) is a nice paper

which expands on the long-run pathologies of lognormal models.)

To understand this claim, let us examine the mean-variance properties of  period

returns, in the standard lognormal i.i.d. setup. Suppose there is a single risky asset that

follows



= + 

and a constant risk free rate . We have the following facts, all derived below:

1. The mean, standard deviation and Sharpe ratio of the risky asset are given by



µ


0

¶
= 
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

µ


0

¶
= 

q


2 − 1

2. The Sharpe ratio of the risky asset is

 =
1− −(−

)
√


2 − 1
The Sharpe ratio first rises, then declines with horizon. The limiting Sharpe ratio

is zero

lim
→∞

 = 0

3. The maximum attainable Sharpe ratio from trading continuously in the risky and

risk free asset, however, is

max =

r

(−)2
2

 − 1

4. This quantity unambiguously rises with horizon, and

lim
→∞

max =∞.

5. Two interesting portfolios on the mean-variance frontier, which attain this maximum

Sharpe ratio are

(a) First, a constantly—rebalanced short position in the risky asset, a portfolio that

is constantly short the growth-optimal portfolio.




=

⎡⎢⎣ −
³
− 

´2
2

⎤⎥⎦ − − 

2


i.e. a portfolio weight

 = −− 

2


This portfolio is on the lower portion of the time-T mean-variance frontier. It

is the only constant-weight portfolio on the time-T mean-variance frontier.

(b) Second, to express a portfolio on the upper portion of the mean-variance fron-

tier, we can either short the portfolio  that shorts the risky asset,

 = 2
  − 

0

or, equivalently, express the result as a portfolio that “doubles up,” investing

more in the risky asset as wealth declines, but investing less as wealth increases,

to the point that wealth never grows faster than twice the riskfree rate,

 =

⎧⎪⎨⎪⎩ +
³
2

  −

´ ³− 
´2

2

⎫⎪⎬⎪⎭ +
³
2

  −

´ − 

2

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6. A quadratic utility or mean-variance investor, whose objective is

max

∙µ
−1
2

¶³
  −

´2¸
holds a portfolio with weight in the risky asset given by

 =
³
 −(−) −

´ − 

2

He increases his weight in the risky asset as wealth falls, decreasing it to zero as

wealth rises towards the value that guarantees bliss point terminal wealth.

Derivation

The mean, variance and Sharpe ratio of the risky asset follow from



0
= (−

1
2
2)+

R 
0




µ


0

¶
= 



"µ


0

¶2#
= (2+

2)



µ


0

¶
= 

q


2 − 1
Notice the standard deviation grows faster than the mean.

The Sharpe ratio is

 =
 − 

 


√


2 − 1 =
1− −(−

)
√


2 − 1
To find the maximum Sharpe ratio, we characterize the discount factor,

and use the theorem that maximum Sharpe ratio is determined by the variance

of the discount factor:

Λ

Λ
= −− − 




Λ

Λ0
= 

Ã
−− 1

2

(−)
2

2

!
−−



R 
0




µ
Λ

Λ0

¶
= −

 



"µ
Λ

Λ0

¶2#
= 

³
−2+ (−)2

2

´




µ
Λ

Λ0

¶
= −

 

s

(−)

2

2
 − 1

 =

³
Λ
Λ0

´
(Λ

Λ0
)
=

s

(−)

2

2
 − 1
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The max sharpe ratio increases without bound!

To find the Sharpe-ratio maximizing payoff/portfolio, we can exploit the

fact that ΛΛ0 is on the mean-variance frontier, and then find the self-

financing strategy that yields the final payoff ΛΛ0. The answer is

 =
Λ

Λ0


−2
"
− 1

2

(−)
2

2

#
(−)



with differential characterization




=

⎡⎢⎣ −
³
− 

´2
2

⎤⎥⎦ − − 




We can find this answer either by guessing the form  = −(−)ΛΛ0, Ito’s

lemma, and imposing that drift and diffusion coefficients must be of the form

 =
h
 + 

³
− 

´i
+ , or by evaluating

 = 

µ
Λ

Λ

Λ

Λ0

¶
=

Λ

Λ0


"µ
Λ

Λ

¶2#
To examine a portfolio on the top of the frontier, we can short  and invest

in the T bill rate, producing a wealth process

 = 2
  − 

0

One way to do this, of course is to explicitly short V: you short a portfolio that

is always short stocks in the amount −
2

 Or we can unwind all this shorting

and express the same thing as a time-varying weight that is long the stock.

Differentiating the last equation,

 = 2
 − 

0

⎛⎜⎝
⎡⎢⎣ −

³
− 

´2
2

⎤⎥⎦ − − 




⎞⎟⎠
= 2

 −
³
2

  −

´⎛⎜⎝
⎡⎢⎣ −

³
− 

´2
2

⎤⎥⎦ − − 




⎞⎟⎠
=

⎧⎪⎨⎪⎩ +
³
2

  −

´ ³− 
´2

2

⎫⎪⎬⎪⎭ +
³
2

  −

´ − 




The quadratic utility investor’s problem is

max

∙µ
−1
2

¶
(  − )

2

¸
s.t. 0 = 

µ
Λ

Λ0


¶
  − = 

Λ

Λ0

 =   − 
Λ

Λ0
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His wealth at any time  is

 = 

µ
Λ

Λ



¶
= −(−) − 

µ
Λ

Λ

Λ

Λ0

¶
= −(−) −  (109)

Using time-0 wealth to eliminate 

 − −0

0
= 

 =  −(−) −
³
 − −0

´ 
0

Differentiating,

 =  −(−)−
³
 − −0

´ 
0

 =  −(−)−
³
 − −0

´ 
0

Ã"
 − (− )

2

2

#
− − 




!
Using (109), ³

 −(−) −

´
( − −0)

=


0

we can eliminate  ,

 =  −(−)−
³
 − −0

´ ³ −(−) −

´
( − −0)

Ã"
 − (− )

2

2

#
− − 




!

rearranging,

 = +
³
 −(−) −

´ (− )
2

2
+

³
 −(−) −

´ − 




We recognize an investment with dollar weights

 =
³
 −(−) −

´ − 

2

in the risky asset.

1.9 Lognormal returns in data?

Lognormal returns pose difficulties for long-run mean-variance analysis. This raises the

natural question, how lognormal are returns in actual data? To address this issue, Figure

7 plots the cumulative distribution of CRSP value-weighted returns at one year and 10

year horizons. The axes are stretched so that a normal distribution would plot as a

straight line.
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At the one-year horizon (top left) we see the familiar “fat left tail” of the actual return

(squares) relative to a lognormal model. Interestingly we see a less renown “thin right

tail.” Stock market booms are less frequent than the lognormal model predicts. The top

right panel show that one-year returns are in fact much better modeled as normal than

as lognormal! There is no fat left tail, and only a barely discernible thin right tail relative

to a normal distribution.

We are after long-run distributions, and the bottom panels of Figure 7 paint an even

more interesting picture. At a 10 year horizon, the “fat left tail” relative to a lognormal

has disappeared, but the “thin right tail” is dramatic. We are only just beginning to

see the normal distribution’s obvious failure on the left tail: it predicts the possibility of

returns less than -100%, so the data must have a thinner left tail at some point than the

normal predicts. Even the normal distribution now predicts too large a right tail.

These characteristics of long-horizon returns mean that instantaneous returns are not

lognormal. A normal return distribution would be generated by a price process of the

form

 = + 

i.e.



=

µ




¶
+

µ




¶


To generate a pure normal, in particular, volatility must increase after market downturns

and decrease after good times. This qualitative pattern is, in fact, what we see in the

data.

In sum, long-run mean-variance analysis will work a lot better if one models the payoff

streams as normal rather than lognormal. In particular, the large predicted right tail of

the lognormal distribution is the central source of problems for mean-variance analysis.

But while we are used to theoretical models that specify lognormal returns, the data are if

anything more consistent with a normal distribution, especially on the troublesome right

side. In turn, the failure of lognormality means that stock returns carry some important

dynamics, such as time-varying volatility. Alas, this observation precludes simple back of

the envelope exercises. The nature of stochastic volatility is central to the results.

Together with the fact in Figure 7 that market returns are in fact missing the large

troublesome right tail of the lognormal, this calculation suggests better hope for the long-

run mean-variance analysis in actual data than a lognormal model suggests.

1.10 Time-varying returns with unspanned state variables

Finding the payoff spaces and discount factors based on return models with time-varying

investment opportunities and incomplete markets is trickier than it may appear.

For example, suppose the risk free rate and risky returns are controlled by a state
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Figure 7: Distribution of CRSP value-weighted return, 1927-2006. Each plot presents the

cumulative distrbibution of the data (blue cross), with the y axis scaled so that normally

distributed data will fall on a line. The red dashed line is fit to the first and third quartiles

to help assess linearity (matlab function normplot). The 10 year returns are overlapping

annual observations. The units are percent in all cases.

variable ,

 =
h
() + ()

i
+ ()1

 = ()+ 1()1 + 2()2

In order to price 

 and , the discount factor must be of the form

∗
∗

=
h
− ()

i
− ()

()
1 + ∗22 (110)
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((
∗


∗
 ) =

³
− 

´
 and 

³
 − 

´
= −(

∗


∗
 ).) For portfolio theory,

we have to choose correctly ∗2 so that 
0(̂) = ∗ produces a tradeable ̂. With

quadratic utility that requirement simply means producing a traded ∗ .

One might think that the traded discount factor payoff is simply generated by ∗2 = 0.
After all, the resulting discount factor is the only one whose shocks are spanned by the

shock 1 to the traded assets. Alas, this is a subtle mistake. “Traded” here means

an achievable payoff from a valid dynamic trading strategy, not an achievable portfolio

return. Having shocks spanned by the asset return shocks ∗2 = 0 is neither necessary or
sufficient for ∗ to be achievable as the dividend process of a valid trading strategy, i.e.
to be a traded payoff. Typically, in fact, traded discount factors will have ∗2 6= 0.
As an example, consider a finite-horizon economy with payoffs from 0 to  , a varying

interest rate



 = 

and no risky assets. The shock  is not in the span of traded returns. A “traded payoff”

is an {} that results from the trading strategy

 =
³


  − 

´
 (111)

with 0 ∞,  = 0, and hence

0 =

Z 

=0
−
R 
=0

 (112)

The right hand side holds ex-post, so cannot depend on the realization of {}. As in
the permanent-income example, a traded payoff  can load on unspanned shocks such as

, but if  draws down wealth based on some non-traded shock, a future value of +
must pay back the debt so the strategy always ends up at  = 0.

In this example, the discount factor from (110) must be of the form

∗
∗

=
³
− 




´
+ ∗ 

The obvious candidate ∗ = 0, though the unique traded portfolio return, does not give a
traded payoff. With ∗ = 0 we have

∗
∗0
= 

R 
=0
(− ) (113)

Then (112) becomes

0 = ∗0

Z 

=0

R 
=0

(−2)

The right hand side depends on the realization of { 0    } through . Intuitively,
a low realization of 


 means that 

∗
 will rise through (113). Money will be paid out from

the account generating ∗ in (111), lowering . But with this 
∗ process, money will not

be paid back in the future, and since the interest rate is now lower,  cannot recover by

a rising rate of return either. That’s why we see 2 in the formula. We need ∗ 6= 0 to
generate a traded payoff.
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2 Growing bliss points

A second pathology of global applications of the very simple model presented so far is that

wealth never grows higher than the amount necessary to pay for bliss point consumption

forever,    , and consumption never grows past the bliss point,   . This is

easy to see in (94) and (96). Even though the underlying technologies allow growth, the

investor chooses to eat rather than invest, and to invest more conservatively, as wealth

grows. This is certainly not a good feature to bring to data that allow long-run growth.

Even if the right tail of long-run wealth is thinner than a lognormal, it does not stop at

zero.

One natural approach, recommended by Hansen and Sargent (2004), is to specify a

deterministically or stochastically growing bliss point to accommodate growth. Here are

three examples. In each example, the previous analysis applies to the difference between

consumption and growing bliss points, which thus can accommodate growth.

2.1 Geometrically growing bliss points

Consider a geometrically growing bliss point  = .

∗ = (−
− 1

2
0Σ−1)−0Σ−1

R 
0


is unaffected by this change. Thus, the new consumption process is simply

 −  =
³
 − 0

´
∗ (114)

or, explicitly

 −  =
³
 − 0

´
(−

− 1
2
0Σ−1)−0Σ−1

R 
0


where, taking the time-zero price of (114) and rearranging,

 − 0 =

Ã


 − 
−0

!³
2 − − 0Σ−1

´

Similarly, wealth followsÃ


 − 
−

!
=

Ã


 − 
−0

!
∗

or, explicitly Ã


 − 
−

!
=

Ã


 − 
−0

!
(−

−1
2
0Σ−1)−0Σ−1

R 
0


This modification rather transparently allows growth, though deterministic growth.

All the previous characterizations apply to the difference between consumption and the

growing bliss point  rather than between consumption and the fixed bliss point 

Yes, consumption never exceeds the growing bliss point, and wealth never exceeds its

growing perpetuity value. But at least consumption and wealth now grow over time.
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2.2 Stochastic bliss point

By allowing a stochastic bliss point, we can allow the upper limit to grow stochastically.

This structure also allows us to approximate any utility function. As an extreme example,

we can construct a stochastic bliss point following which, the quadratic utility investor

will choose exactly the power utility consumption and wealth process.

Denote by 

 the consumption process for the power utility investor, starting with

wealth 0, e.g. from (98),



 ≡ 


0

1


h
(+ 1

2
0Σ−1−)+0Σ−1

R 
0


i
(115)



0 =

1



"
+ ( − 1)

Ã
 +

1

2

1


0Σ−1

!#
0

and denote by 

 the consumption process for the quadratic utility investor. 


 is derived

to follow the power utility investor’s first order conditions,


−
 = 

−
0 ∗

and (

 ) =0 

Now, regard (115) as an exogenous stochastic process, and suppose the quadratic

utility investor has bliss point

 = 
−
 + 


 . (116)

The quadratic utility investor’s first order conditions are then

 − 

 =

³
0 − 


0

´
∗


−
 + 


 − 


 =

³

−
0 + 


0 − 


0

´
∗


−
0 ∗ + 


 − 


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
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
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
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Together with (

 ) = (


 ) =0, we conclude that

̂

 = 




where I have added a ˆ to emphasize that this is the optimal choice.

In sum, if we specify the bliss point as in (116), the quadratic utility investor will

choose exactly the same wealth and consumption process as the power utility investor.

This result could be useful as the basis of an approximation. Choose this bliss point

so that quadratic and power match in this simple i.i.d. environment. Then tweak the

environment to a more interesting specification.
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2.3 Bliss points tied to past consumption

While putting in a bliss point that is a function of technology shocks is defensible as a way

to produce an approximation to another model — find the point at which we approximate

power by quadratic utility — it doesn’t make much economic sense.

The point is to allow the bliss point to grow so that the quadratic utility investor stays

below the bliss point, yet wealth can grow. Introducing a temporal nonseparability is a

more appetizing route.

Suppose we write the period utility function as

() = −1
2

µ
 −  −

Z ∞
=0

()−
¶2

In the conventional interpretation, ()  0 represents habit persistence, in which past

consumption raises marginal utility, and ()  0 represents durability. In this context,

the () function amounts to a stochastic bliss point, which moves in reaction to past

consumption decisions. Shifting the bliss point up lowers risk aversion. Thus, ()  0

means that after consumption rises, the bliss point will rise, and offset the usual rise in

risk aversion in quadratic models. Cochrane (2012b) works out asset pricing formulas for

this specification.
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