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Empirical work in economics and finance frequently throws away a vast amount of
the variation in the data. It is common to difference one, two, and even three times, in
“difference-of-difference”estimates. For example, one might run a regression in which the
data have been differenced over time, across states, and across industries or companies. In
addition, it is common to include a multitude of dummies fixed effects, and controls, all of
which remove variation from the data. The meaning of the regression coeffi cients changes
apace, with the regression of left shoes on price and right shoes, and the regression of wages
on education with industry controls as classic cautionary tales. (See ps at the end if these
aren’t obvious.)

There is a similar tension between robustness and effi ciency. Maximum likelihood, GLS
or other “effi cient”procedures advocated by econometrics texts often suggest a lot of filtering
of the data, or focusing on moments other than the straightforward correlations.

This note tells a little parable from money demand estimation to illustrate the dangers
of over-differencing. The message is not that “differencing is bad.”People usually difference
or control in order to try to isolate exogenous variation when the right hand variables are
endogenous. But this parable offers a graphic illustration of the possibility that the baby
can be thrown out with the bathwater when much of the variation in the data is thrown out.

The standard theory of money demand holds that velocity V = Y/M rises —money
demand falls —when interest rates rise. When interest rates rise, the opportunity cost of
holding cash rather than interest-bearing assets rises. Figure 1 shows that this prediction
works remarkably well. (There is a question of what monetary aggregate to use and how to
incorporate the vast expansion of highly liquid interest bearing assets. The St. Louis Fed’s
MZM definition tries to take account of this fact. The point here being econometric and not
about the deep theory of money, I won’t pursue the question.)

Figure 2 makes a scatterplot of the same data. We are soon going to run a regression of
velocity on interest rates, and the eye can be deceiving in time-series plots, so this is a good
check on a regression. (The eye tends to focus on the wiggles, where the theory works well
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Figure 1: Velocity and interest rates. Velocity, the ratio of nominal GDP to money, is the
St. Louis Fed MZMV series. The interest rate is the 3 month Treasury bill rate, TB3MS.
I subtract 1 from velocity and divide interest rates by 10 so they fit on the same graph.
Source: Fred database.

though the major source of variation is the big up and down. The eye also tends to shift
time series to the right and left a bit in order to line up wiggles better, but regressions won’t
do that.)

raw nonpara. parametric
b R2 ρ se t se t se t

levels 0.136 0.77 0.86 0.004 30.44 0.008 17.7 0.016 8.34
xt − ρ̂xt−1 0.043 0.25 0.51 0.010 4.52
xt − xt−1 0.018 0.09 0.31 0.005 3.37

Table 1. Regressions of velocity on interest rates. 1959:1-2011:7 “Raw”stan-
dard errors are conventional OLS standard errors. “Nonparametric” use the
Newey-West correction with 5 years of lags on each side. “Parametric”uses the
correction factor cov(β̂) = (1 + ρ)/(1 − ρ)(X ′X)−1σ2ε. The regression equations
in each row are:

Vt = a+ brt + εt

Vt − ρ̂Vt−1 = a+ b (rt − ρ̂rt−1) + (εt − ρ̂εt−1)

Vt − Vt−1 = a+ b (rt − rt−1) + (εt − εt−1)
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Figure 2: Velocty vs interest rate scatter plot.

Table 1, row 1, runs the regression of velocity on interest rates. We see a sensible
coeffi cient, corresponding to standard views of the interest-elasticity of money demand. We
have an impressive 0.77 R2. It looks like a good regression. Except for the horrendous 0.86
autocorrelation of the residuals. As a result of that autocorrelation, the 30.44 t statistic is
surely vastly inflated. The remaining columns give two better measures, which correct the
OLS regression standard errors for the correlation of the residuals, giving much more sensible
results. (Neither correction is aggressive enough, a lesson for another day.)

The standard econometric advice in this situation is to run GLS, or equivalently to quasi-
first difference the data. OLS estimates are consistent (unbiased in the fixed-x distribution
theory), so there is nothing “wrong”with them, but GLS is effi cient too, meaning they are
asymptotically more accurate. Since ρ = 0.86, and is downward-biased at that, quasi-first
differencing is essentially the same thing as first differencing.

The next two rows of Table 1 present the results of running the regression with differenced
data. You see first of all a dramatic difference in the economic result. The slope coeffi cient
declines by a factor of ten in the differenced specification. The R2, once confirming the
beautiful correlation in the plots, is down to 10%. The t statistics look more reasonable,
which is good, but we know how to fix t statistics. And the residuals are still autocorrelated,
suggesting even more differencing.

Figure 3 presents the differenced data, and Figure 4 presents the scatterplot. You can
see that the lovely and persuasive correlation in the level picture is completely gone in the
differences.

What happened? Why did the estimated coeffi cient change so much? When we transform
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Figure 3: First difference of velocity, and interest rate. I subtract one from the first difference
of velocity so the series can be visually distinguished.
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Figure 4: Scatter plot of changes in velocity and changes in interest rates
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to differences, going from
Vt = a+ brt + εt (1)

to
∆Vt = a+ b∆rt + δt (2)

we make a very important implicit assumption: we assume that the model is exactly right, and
that the data are well measured. The “effi ciency”of GLS relies heavily on those assumptions,
to tell us that we can measure the b of equation (1) by measuring the b of equation (2) instead.

But no economic model is perfectly true, and no economic data are perfectly measured.
There is surely some dynamic relationship between interest rates and money demand, at a
minimum something like

Vt = a+ b(L)rt + εt. (3)

In levels, we’re basically measuring b(1), while in differences, we’re basically measuring b(0).

The data are surely mis-measured. As a simple example a one-quarter lag in reporting
either series would leave the level regression (1) pretty much intact, but destroy the differ-
ences regression (2). More realistically, suppose there is a small iid measurement error in
the levels,

V ∗t = Vt + vt (4)

r∗t = rt + ρt

The level regression (1) is relatively unaffected, but ∆vt and ∆ρt swamp the variation in the
differences specification.

By differencing, then, we have tremendously emphasized the small specification and mea-
surement errors in the data, relative to the signal that our theory is capable of describing.

A purist might say, ok, specify the dynamics in (3) and the measurement error process
in (4), and let’s go at it. But in this case as in many, economic theory really isn’t up to
explaining the high-frequency dynamics of money demand —if interest rates go up this week,
how long does it take to adjust your cash management habits? Such a theory at a minimum
needs to distinguish expected from unexpected interest rate changes, and address the fact
that this is a very flat optimum in which near-rational decision rules cost pennies. Nor do we
have any clue really what the physical and conceptual measurement errors are, let alone how
to model them so maximum likelihood can go looking for effi ciency. We’re not interested in
the dynamics or measurement error, we just want to see how the rough and ready velocity
equation works.

For this reason, much research in macro and finance has given up on “effi cient”estimation
in favor of displaying easily digested and robust moments of the data (macro) or running
OLS regressions and correcting standard errors in place of GLS regressions.

Again, differencing and dummies in panel data regressions are undertaken to find exoge-
nous sources of variation, so “don’t do it”is not good advice. But "ignore the limits of your
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model and mismeasurement of your data and throw away 99% of the variation in the data
without concern”is not good advice either.

A good test is, “explain the source of variation in the data in words.”In my case, you can
see “higher interest rates are associated with lower money demand”is quite different from
“a quarterly rise in interest rates is contemporaneously associated with a quarterly decline
in money demand.”Now, triple difference that, with 4 fixed effects, and 30 controls, and see
if you can write the sentence.

Another good test is, “explain that your economic theory is well enough specified to
describe the differenced and orthogonalized (to controls and fixed effects) data.”That was
clearly not the case in my example — V = a + br is not a theory capable of describing
quarterly changes in money demand, though it does a good job of the levels.

Finally, “describe the sources of specification and measurement error, and explain why
differencing and orthogonalizing does not throw out more signal than noise.” Again, the
converse was the case in my example.
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Figure 5: Four-year differences in velocity and interest rate

Not all differencing is bad. Sometimes the model does speak to the difference and not the
level. Real business cycle models consciously are not models of fluctuation in “trend”growth,
so they Hodrick-Prescott filter the data to focus on the correlations that they think their
model is capable of addressing. Q theory works much better in differenced form than level
form, though with annual not 10-minute differences. Sometimes it’s the level that carries
the misspecification.

In my example, the “level”regression suffers from a fault, that the source of variation is
basically two data points, the rise and fall of inflation peaking in 1980. One might well want
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to know if the theory describes the cyclical wiggles in money demand, though seeing that it
does not describe quarterly changes. Though filtering might be better, just to keep this note
simple Figure 5 plots the four-year changes, as a way of looking at cyclical variation. You
can see that this filter preserves enough signal relative to noise to answer that question.

Acknowledgement: This is not a new point either in the abstract or in the money-demand
example. It was driven home to me by Lucas1 (1988). Bob figured out that the standard
differenced specifications of money demand equations weren’t working and that this was
the right regression for measuring interest elasticity. He also rediscovered cointegration
in estimating the income elasticity, and gave one of the best illustrations of the power of
cointegrating-vector regressions.

Milton Friedman2 (1988) also got it all:

"I have mixed reactions to the current widespread tendency to regard serial
correlation of residuals as a pure nuisance, if not the original sin, in analyzing
time series. Serial correlation of residuals does have the effects indicated in the
text and, hence, does deserve attention. However, some of the means used to at-
tain serially uncorrelated residuals may lead analysts to throw out the baby with
the bath. It is often useful to regard time series as a combination of transitory
stochastic and more permanent underlying components and to regard the two
components as reflecting two different sets of forces; e.g., purely random mea-
surement errors may have a far larger impact on the transitory component than
on the permanent component. The process of obtaining serially uncorrelated
residuals may in effect simply eliminate the permanent components, leaving the
analyst to study the relation among the [remaining] stochastic components of his
series, which may be pure noise, when what is of economic interest is the relation
between the permanent components he has discarded in the process of seeking
to satisfy mechanical statistical tests."

(Thanks to Ed Nelson at the Chicago Fed for passing on the quote)

PS: In case you forgot the classic fairy tales:

You’re running a regression to estimate shoe demand, and you have data on left shoe sales.
Q = a− bP + ε. A buddy notices the R2 is pretty low, and suggests you add some controls
or “explanatory variables.”Aha, you have data on right shoe sales! QL = a− bP + cQR + ε.
Now the R2 is great and the t stats jump. Was this a good idea? No, because the coeffi cient
now means, what is the effect of price holding constant right shoe sales! You have at best
the demand curve for people missing right feet.

1Robert E. Lucas, 1988, “Money demand in the United States: A quantitative review,” Carnegie-
Rochester Conference Series on Public Policy, 29, 137-167.

2“Money and the Stock Market” Journal of Political Economy, 96 221-245
http://www.jstor.org/stable/1833107, p. 230.
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In a wage equation, w = a + b × educ. + ε generally produces R2 in the 20% range.
Ugh. Let’s add more “explanatory variables.”How about industry? That helps “explain”
wages w = a + b × educ. + c × industry + ε and your R2 and t stats jump. But now the
coeffi cient means, what if you get a PhD and stay in the fast food service industry! The
point of education is to change industry, so you don’t want to add this control. High R2 is
a bad sign!

Thanks to Tom Rothemberg, whose amazing econometrics class I still remember 30 years
later.
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