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Bottom line

• Forecast 1 year treasury bond returns, over 1 year rate:

rx
(n)
t+1 = an + b0nft + ε

(n)
t+1

• R2 up to 44%, up from Fama-Bliss / Campbell Shiller 15%

• A single factor γ0f forecasts bonds of all maturities. High expected returns in “bad
times.”

• Tent-shaped factor is correlated with slope but is not slope. Improvement comes
because it tells you when to bail out — when rates will rise in an upward-slope
environment



Background — Expectations and Fama-Bliss.

• 1. Expectations hypothesis. Expected returns are constant over time.
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t+1 = an + 0× xt + ε

(n)
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2. Fama-Bliss.

(a) Expectations Hypothesis: β = 0. Instead, β ≈ 1.If the n year forward is 1%
higher than the spot, then the n-year bond will earn 1% more on average

(b) R2 ≈ 0.15; Held up well in 1990s

Table 2. Fama-Bliss excess return regressions
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Maturity n β s.e. R2 χ2(1) p-val
2 0.99 (0.33) 0.16 18.4 h0.00i
3 1.35 (0.41) 0.17 19.2 h0.00i
4 1.61 (0.48) 0.18 16.4 h0.00i
5 1.27 (0.64) 0.09 5.7 h0.02i
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•Regressions of bond excess returns on all forward rates, not just matched f − y

•The same linear combination of forward rates forecasts all maturities’ returns.



A single factor for expected bond returns
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•Two step estimation; first γ then b.

Table 1 Estimates of the single-factor model

A. Estimates of the return-forecasting factor, rxt+1 = γ>ft + ε̄t+1
γ0 γ1 γ2 γ3 γ4 γ5 R2 χ2(5)

OLS estimates −3.24 −2.14 0.81 3.00 0.80 −2.08 0.35 105.5

B. Individual-bond regressions
Restricted Unrestricted

rx
(n)
t+1 = bn

³
γ>ft

´
+ ε

(n)
t+1 rx

(n)
t+1 = βnft + ε

(n)
t+1

n bn R2 R2 χ2(5)
2 0.47 0.31 0.32 121.8
3 0.87 0.34 0.34 113.8
4 1.24 0.37 0.37 115.7
5 1.43 0.34 0.35 88.2



•γ capture tent shape.

•bn increase steadily with maturity.

•Restricted model bnγ almost perfectly matches unrestricted coefficients. (well below
1σ)

•R2 = 0.34 − 0.37 up from 0.15 − 0.17. And we’ll get to 0.44! Very significant
rejection of γ = 0

•R2 almost unaffected by the restriction. Restriction looks good in the graph.

•See paper version of table 1 for standard errors, joint tests including small sample, unit
roots, etc. Bottom line: highly significant; EH is rejected, improvement on FB/3 factor
models is significant.



More lags
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•More lags are significant, same pattern. Suggests moving averages
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k 1 2 3 4 6
R2 0.35 0.41 0.43 0.44 0.43

•Interpretation: Yields should be Markov, so a small transitory measurement error.
ft−1/12 is informative about the true ft, so it enters with the same pattern.



Stock Return Forecasts

Table 3. Forecasts of excess stock returns (VWNYSE)

rxt+1 = a+ bxt + εt+1

γ>f (t) d/p (t) y(5) − y(1) (t) R2

1.73 (2.20) 0.07
3.56 (1.80) 3.29 (1.48) 0.08

1.87 (2.38) −0.58 (−0.20) 0.07
1.49 (2.17) 2.64 (1.39) 0.10

MA γ>f 2.11 (3.39) 0.12
MA γ>f 2.23 (3.86) 1.95 (1.02) −1.41 (−0.63) 0.15

• 5 year bond had b = 1.43. Thus, 1.73− 2.11 is what you expect for a perpetuity.

• Does better than D/P and spread; Drives out spread; Survives with D/P

• A common term risk premium in stocks, bonds. Reassurance on fads & measure-
ment errors



Interest Rate Forecasts

Table A4. Forecasting short rate changes y(1)t+1 − y
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(capital gains on long bonds, not just “ride yields” )
•Pattern of coefficients is exactly γ. γ0f forecasts short rate changes.
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• γ0f and slope are correlated. Both show a rising yield curve but no rate rise
•γ0f improvement in many episodes. γ0f says get out in 1984, 1987, 1994, 2004(?)
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Real time and trading rules
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Regression forecasts γ̂>ft. “Real-time” re-estimates the regression at each t from 1965
to t.



Trading rule

rxt+1 ×Et(rxt+1) = rxt+1 ×
h
γ> (α0ft + α1ft−1 + a2ft−2)

i
.
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“Trading rule” profits, using full-sample and real-time estimates of the
return-forecasting factor.
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Macro
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Return forecast
Unemployment

γ0f is correlated with business cycles, and lower frequency. (Level, not growth.) “busi-
ness cycle related risk premium.”



Relation to factor models (why is this news?)
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Panel A: Yields are a linear combination of forwards. γ0f = γ∗0y; which full set is a
matter of taste.
γ∗ ≈ Slope plus 4-5 spread.

Panel B: γ0f has nothing to do with slope (symmetry: γ0 linear = 0) and curvature
(curved at the long, not short end).

Panel C: You can’t approximate γ0f well with level, slope, and curvature factors. (See
table below)

•Moral 1 Term structure models need L, S, C to get ∆yt+1 and γ0f to get Etrxt+1
Adding γ0f will not help much to hit yields (pricing errors) but it will help to get
transition dynamics right (i.e. expected returns, yield differences)
Moral 2. You can’t first reduce to L, S, C, then examine Etrxt+1 →Reason #1 this
was missed.

Panel D: Stable as we add forward rates.



• Is γ0f forecast significantly better than forecasts using yield curve factors or simple
spreads?

See Table 4 of paper,

regression of average returns on 3 forward factors

const curve slope level R2

b -0.02 0.17 0.06

t -0.98 1.23

b -0.04 1.39 0.17 0.20

t -2.44 3.15 1.59

b -0.04 2.74 1.39 0.17 0.30

t -2.65 5.72 3.92 1.97

regression of average returns on x

const x R2

b 0.00 0.47 0.36

t 0.08 7.99

regression of average returns on x and 3 forward factors

const x curve slope level R2

b 0.00 0.47 -0.06 -0.05 0.00 0.36

t 0.02 4.95 -0.10 -0.10 0.04



• How would you integrate this in to an affine model?

Paper: shows you how to construct market prices of risk so that an affine model
exactly matches this (any) return regression. (Also see “Decomposing the Yield
Curve”)



Why is this news? 2. Lags matter, and montly models
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•Small R2. No single-factor. Pattern looks like measurement error. Nothing there!
Why? Lags matter — yields are not a VAR(1). (VAR(12) works here)

•Moral: Must look at annual returns directly (or fit ARMA(1,1), or deal with measure-
ment error) to see annual horizon return forecasts.



Is this all measurement error?

Danger: if pt is measured too high, then rt+1 = pt+1 − pt will be too low, and a high
pt will seem to forecast a low rt+1. Is this all there is to our results?

1. No. Lags also forecast, with no common price.

2. No. γ0f also forecasts stock returns with no common price.

3. Measurement error gives a pattern that the n period yield at t forecasts the n
period bond return. It does not give a common factor (m yield helps to forecast
n bond return) Measurement error cannot produce our central finding, the single
factor.
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Testing the single factor model

• Paper Table 6: the single factor model is dramatically rejected! (Joint not individual
coefficients)
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•

rxt+1 = βft + εt+1 (1)

rxt+1 = bγ0ft + εt+1 (2)



• GMM

ET (ft ⊗ εt+1) = 0 (1)
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• Results: If we do optimal GMM on (2), weird parameters. And huge rejections.

• Why??? Restriction:
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should not be predictable. (E(ε⊗ ft) = 0) Since
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• Paper, Table 7:

Table 7. Forecasting the failures of the single-factor model
A. Coefficients and t-statistics

Right hand variable

Left hand var. const. y
(1)
t y

(2)
t y

(3)
t y

(4)
t y

(5)
t

rx
(2)
t+1 − b2rxt+1 −0.11 −0.20 0.80 −0.30 −0.66 0.40

(t-stat) (−0.75) (−1.43) (2.19) (−0.90) (−1.94) (1.68)

rx
(3)
t+1 − b3rxt+1 0.14 0.23 −1.28 2.36 −1.01 −0.30

(t-stat) (1.62) (2.22) (−5.29) (11.24) (−4.97) (−2.26)
rx
(4)
t+1 − b4rxt+1 0.21 0.20 −0.06 −1.18 1.84 −0.82

(t-stat) (2.33) (2.39) (−0.33) (−8.45) (9.13) (−5.48)
rx
(5)
t+1 − b5rxt+1 −0.24 −0.23 0.55 −0.88 −0.17 0.72

(t-stat) (−1.14) (−1.06) (1.14) (−2.01) (−0.42) (2.61)

B. Regression statistics

Left hand var. R2 χ2(5) σ(γ̃>y) σ(lhs) σ(b(n)γ>y) σ(rx
(n)
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t+1 − b3rxt+1 0.37 151 0.21 0.34 2.09 3.53

rx
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t+1 − b4rxt+1 0.33 193 0.18 0.30 2.98 4.90
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t+1 − b5rxt+1 0.12 32 0.21 0.61 3.45 6.00



• These are predictable!

• With large R2and statistical significance!

• But they are tiny.

• Pattern: diagonal. y(n) out of line, it reverts back next period. No common factor.

• Tiny measurement errors or tiny (but profitable if you can leverage) “spread trades”

• The single-factor γ0f accounts for all the economically important variation in ex-
pected returns.

• This is why we do a two-step OLS not efficient GMM estimation. Efficient GMM
of a single factor model weights by R2, not size.



More stuff in paper.

Q: What about...

•Subsamples? Yes.

•Other data? McCulloch-Kwan data, not just FB interpolation


