Bond Risk Premia

John H. Cochrane and Monika Piazzesi
University of Chicago GSB

January 16, 2007

Bottom line

- Forecast 1 year treasury bond returns, over 1 year rate:

$$
r x_{t+1}^{(n)}=a_{n}+b_{n}^{\prime} f_{t}+\varepsilon_{t+1}^{(n)}
$$

- R^{2} up to 44%, up from Fama-Bliss / Campbell Shiller 15%
- A single factor $\gamma^{\prime} f$ forecasts bonds of all maturities. High expected returns in "bad times."
- Tent-shaped factor is correlated with slope but is not slope. Improvement comes because it tells you when to bail out - when rates will rise in an upward-slope environment

Background - Expectations and Fama-Bliss.

- 1. Expectations hypothesis. Expected returns are constant over time.

$$
r x_{t+1}^{(n)}=a_{n}+0 \times x_{t}+\varepsilon_{t+1}^{(n)}
$$

2. Fama-Bliss.
(a) Expectations Hypothesis: $\beta=0$. Instead, $\beta \approx 1$.If the n year forward is 1% higher than the spot, then the n-year bond will earn 1% more on average
(b) $R^{2} \approx 0.15$; Held up well in 1990 s

Table 2. Fama-Bliss excess return regressions

$\left(n x_{t+1}^{(n)}=\alpha_{n}+\beta_{n}\left(f_{t}^{(n)}-y_{t}^{(1)}\right)+\varepsilon_{t+1}^{(n)}\right.$					
Maturity n	β	$s . e$.	R^{2}	$\chi^{2}(1)$	p -val
2	0.99	(0.33)	0.16	18.4	$\langle 0.00\rangle$
3	1.35	(0.41)	0.17	19.2	$\langle 0.00\rangle$
4	1.61	(0.48)	0.18	16.4	$\langle 0.00\rangle$
5	1.27	(0.64)	0.09	5.7	$\langle 0.02\rangle$

Cochrane and Piazzesi

-Regressions of bond excess returns on all forward rates, not just matched $f-y$
-The same linear combination of forward rates forecasts all maturities' returns.

A single factor for expected bond returns

$$
r x_{t+1}^{(n)}=b_{n}\left(\gamma_{0}+\gamma_{1} y_{t}^{(1)}+\gamma_{2} f_{t}^{(1 \rightarrow 2)}+\ldots+\gamma_{5} f_{t}^{(4 \rightarrow 5)}\right)+\varepsilon_{t+1}^{(n)} ; \frac{1}{4} \sum_{n=2}^{5} b_{n}=1 .
$$

- Two step estimation; first γ then b.

Table 1 Estimates of the single-factor model
A. Estimates of the return-forecasting factor, $\overline{r x}_{t+1}=\gamma^{\top} f_{t}+\bar{\varepsilon}_{t+1}$

	γ_{0}	γ_{1}	γ_{2}	γ_{3}	γ_{4}	γ_{5}	R^{2}	$\chi^{2}(5)$
OLS estimates	-3.24	-2.14	0.81	3.00	0.80	-2.08	0.35	105.5

B. Individual-bond Restricted				regressions Unrestricted	
	$r x_{t+1}^{(n)}=b_{n}\left(\gamma^{\top} f_{t}\right)+\varepsilon_{t+1}^{(n)}$	$r x_{t+1}^{(n)}=\beta_{n} f_{t}+\varepsilon_{t+1}^{(n)}$			
n	b_{n}	R^{2}	R^{2}	$\chi^{2}(5)$	
2	0.47	0.31	0.32	121.8	
3	0.87	0.34	0.34	113.8	
4	1.24	0.37	0.37	115.7	
5	1.43	0.34	0.35	88.2	

- γ capture tent shape.
- b_{n} increase steadily with maturity.
- Restricted model $b_{n} \gamma$ almost perfectly matches unrestricted coefficients. (well below $1 \sigma)$
$\bullet R^{2}=0.34-0.37$ up from $0.15-0.17$. And we'll get to 0.44 ! Very significant rejection of $\gamma=0$
- R^{2} almost unaffected by the restriction. Restriction looks good in the graph.
- See paper version of table 1 for standard errors, joint tests including small sample, unit roots, etc. Bottom line: highly significant; EH is rejected, improvement on FB/3 factor models is significant.

More lags

- More lags are significant, same pattern. Suggests moving averages

$$
\begin{aligned}
r x_{t+1}^{(n)} & =a_{n}+b_{n} \gamma^{\prime}\left(\alpha_{0} f_{t}+\alpha_{1} f_{t-1}+. .+\alpha_{k} f_{t-k}\right)+\varepsilon_{t+1}^{(n)} \\
& =a_{n}+b_{n}\left[\alpha_{0}\left(\gamma^{\prime} f_{t}\right)+\alpha_{1}\left(\gamma^{\prime} f_{t-1}\right)+. .+\alpha_{k}\left(\gamma^{\prime} f_{t-k}\right)\right]+\varepsilon_{t+1}^{(n)}
\end{aligned}
$$

$$
\begin{array}{l|lllll}
k & 1 & 2 & 3 & 4 & 6 \\
R^{2} & 0.35 & 0.41 & 0.43 & 0.44 & 0.43
\end{array}
$$

- Interpretation: Yields should be Markov, so a small transitory measurement error. $f_{t-1 / 12}$ is informative about the true f_{t}, so it enters with the same pattern.

Stock Return Forecasts

Table 3. Forecasts of excess stock returns (VWNYSE)

$$
\overline{r x}_{t+1}=a+b x_{t}+\varepsilon_{t+1}
$$

	$\gamma^{\top} f$	(t)	d / p	(t)	$y^{(5)}-y^{(1)}$	(t)	R^{2}
	1.73	(2.20)					0.07
	1.87	(2.38)	3.56	(1.80)	3.29	(1.48)	0.08
	1.49	(2.17)	2.64	(1.39)			
					0.58	0.07	
MA $\gamma^{\top} f$	2.11	(3.39)					0.12
MA $\gamma^{\top} f$	2.23	(3.86)	1.95	(1.02)	-1.41	(-0.63)	0.15

- 5 year bond had $b=1.43$. Thus, $1.73-2.11$ is what you expect for a perpetuity.
- Does better than D/P and spread; Drives out spread; Survives with D/P
- A common term risk premium in stocks, bonds. Reassurance on fads \& measurement errors

Interest Rate Forecasts

Table A4. Forecasting short rate changes $y_{t+1}^{(1)}-y_{t}^{(1)}$

	$f_{t}^{(2)}-y_{t}^{(1)}$	$y_{t}^{(1)}$	$f_{t}^{(2)}$	$f_{t}^{(3)}$	$f_{t}^{(4)}$	$f_{t}^{(5)}$	R^{2}	χ^{2} / p
FB:	0.01					0.00	0.0	
s.e.	(0.26)							
CP:		-0.02	0.41	-1.21	-0.29	0.89	0.19	82.7
s.e.		(0.40)	(0.29)	(0.22)	(0.17)		$\langle 0.00\rangle$	
	$E_{t}\left(r x_{t+1}^{(2)}\right)=-E_{t}\left(y_{t+1}^{(1)}-y_{t}^{(1)}\right)+\left(f_{t}^{(2)}-y_{t}^{(1)}\right)$.							

- Expectations: $E_{t}\left(r x_{t+1}^{(2)}\right)=$ constant
-Fama-Bliss: $E_{t}\left(y_{t+1}^{(1)}-y_{t}^{(1)}\right)=$ constant
-CP: $E_{t}\left(r x_{t+1}^{(2)}\right)$ varies more than $\left(f_{t}^{(2)}-y_{t}^{(1)}\right)$: must be able to forecast short rates (capital gains on long bonds, not just "ride yields")
\bullet Pattern of coefficients is exactly $\gamma . \gamma^{\prime} f$ forecasts short rate changes.

History

- $\gamma^{\prime} f$ and slope are correlated. Both show a rising yield curve but no rate rise
$\bullet \gamma^{\prime} f$ improvement in many episodes. $\gamma^{\prime} f$ says get out in 1984, 1987, 1994, 2004(?)

Real time and trading rules

Regression forecasts $\hat{\gamma}^{\top} f_{t}$. "Real-time" re-estimates the regression at each t from 1965 to t.

Trading rule

$$
\overline{r x}_{t+1} \times E_{t}\left(\overline{r x}_{t+1}\right)=\overline{r x}_{t+1} \times\left[\gamma^{\top}\left(\alpha_{0} f_{t}+\alpha_{1} f_{t-1}+a_{2} f_{t-2}\right)\right]
$$

"Trading rule" profits, using full-sample and real-time estimates of the return-forecasting factor.

Cumulative trading rule profits; cumulative value of $\overline{r x}_{t+1} \times E_{t}\left(\overline{r x}_{t+1}\right)$.

Macro

$\gamma^{\prime} f$ is correlated with business cycles, and lower frequency. (Level, not growth.) "business cycle related risk premium."

Relation to factor models (why is this news?)

B. Yield factors

Panel A: Yields are a linear combination of forwards. $\gamma^{\prime} f=\gamma^{* \prime} y$; which full set is a matter of taste.
$\gamma^{*} \approx$ Slope plus 4-5 spread.

Panel B: $\gamma^{\prime} f$ has nothing to do with slope (symmetry: γ^{\prime} linear $=0$) and curvature (curved at the long, not short end).

Panel C: You can't approximate $\gamma^{\prime} f$ well with level, slope, and curvature factors. (See table below)

- Moral 1 Term structure models need L, S, C to get Δy_{t+1} and $\gamma^{\prime} f$ to get $E_{t} r x_{t+1}$ Adding $\gamma^{\prime} f$ will not help much to hit yields (pricing errors) but it will help to get transition dynamics right (i.e. expected returns, yield differences)
Moral 2. You can't first reduce to $\mathrm{L}, \mathrm{S}, \mathrm{C}$, then examine $E_{t} r x_{t+1} \rightarrow$ Reason $\# 1$ this was missed.

Panel D: Stable as we add forward rates.

- Is $\gamma^{\prime} f$ forecast significantly better than forecasts using yield curve factors or simple spreads?

See Table 4 of paper,

	const	curve	slope	level	R2
b	-0.02			0.17	0.06
t	-0.98			1.23	
b	-0.04		1.39	0.17	0.20
t	-2.44		3.15	1.59	
b	-0.04	2.74	1.39	0.17	0.30
t	-2.65	5.72	3.92	1.97	
	ession const	averag x	returns R2	n x	
b	0.00	0.47	0.36		
t	0.08	7.99			
	ession const	averag x	returns curve	x and slope	forwa level
b	0.00	0.47	-0.06	-0.05	0.00
t	0.02	4.95	-0.10	-0.10	0.04

- How would you integrate this in to an affine model?

Paper: shows you how to construct market prices of risk so that an affine model exactly matches this (any) return regression. (Also see "Decomposing the Yield Curve")

Why is this news? 2. Lags matter, and montly models

Coefficients $r x_{t+1}^{(n)}=a_{n}+b_{n}^{\prime} f_{t}$ implied by $y_{t+1 / 12}=\phi y_{t}+\varepsilon_{t+12}$, then ϕ^{12}.

- Small R^{2}. No single-factor. Pattern looks like measurement error. Nothing there! Why? Lags matter - yields are not a $\operatorname{VAR}(1)$. $(\operatorname{VAR}(12)$ works here)
- Moral: Must look at annual returns directly (or fit $\operatorname{ARMA}(1,1)$, or deal with measurement error) to see annual horizon return forecasts.

Is this all measurement error?

Danger: if p_{t} is measured too high, then $r_{t+1}=p_{t+1}-p_{t}$ will be too low, and a high p_{t} will seem to forecast a low r_{t+1}. Is this all there is to our results?

1. No. Lags also forecast, with no common price.
2. No. $\gamma^{\prime} f$ also forecasts stock returns with no common price.
3. Measurement error gives a pattern that the n period yield at t forecasts the n period bond return. It does not give a common factor (m yield helps to forecast n bond return) Measurement error cannot produce our central finding, the single factor.

Forward rates

Testing the single factor model

- Paper Table 6: the single factor model is dramatically rejected! (Joint not individual coefficients)

$$
\left[\begin{array}{c}
r x_{t+1}^{(2)} \tag{1}\\
\vdots \\
\vdots x_{t+1}^{(5)}
\end{array}\right]=(\alpha)+\left[\begin{array}{llll}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \beta & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{c}
y_{t}^{(1)} \\
f_{t}^{(2)} \\
\vdots \\
f_{t}^{(5)}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{t+1}^{(2)} \\
\vdots \\
(5) \\
\varepsilon_{t+1}^{5}
\end{array}\right]
$$

vs

$$
\left[\begin{array}{c}
r x_{t+1}^{(2)} \tag{2}\\
\vdots \\
r x_{t+1}^{(5)}
\end{array}\right]=(\alpha)+\left[\begin{array}{c}
b_{2} \\
\vdots \\
b_{5}
\end{array}\right]\left[\begin{array}{llll}
\gamma_{1} & \gamma_{2} & \cdots & \gamma_{5}
\end{array}\right]\left[\begin{array}{c}
y_{t}^{(1)} \\
f_{t}^{(2)} \\
\vdots \\
f_{t}^{(5)}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{t+1}^{(2)} \\
\vdots \\
\varepsilon_{t+1}^{(5)}
\end{array}\right]
$$

$$
\begin{align*}
r x_{t+1} & =\beta f_{t}+\varepsilon_{t+1} \tag{1}\\
r x_{t+1} & =b \gamma^{\prime} f_{t}+\varepsilon_{t+1} \tag{2}
\end{align*}
$$

- GMM

$$
\begin{align*}
E_{T}\left(f_{t} \otimes \varepsilon_{t+1}\right) & =0 \tag{1}\\
E_{T}\left[f_{t} \otimes\left(1_{4}^{\prime} \varepsilon_{t+1}\right)\right] & =0 \rightarrow \gamma(2) \tag{2}\\
E_{T}\left[\left(\gamma^{\prime} f_{t}\right) \otimes \varepsilon_{t+1}\right] & =0 \rightarrow b
\end{align*}
$$

- Results: If we do optimal GMM on (2), weird parameters. And huge rejections.
- Why??? Restriction:

$$
r x_{t+1}^{(n)}-b_{n} \gamma^{\prime} f_{t}=\varepsilon_{t+1}^{(n)}
$$

should not be predictable. $\left(E\left(\varepsilon \otimes f_{t}\right)=0\right)$ Since

$$
\overline{r x}_{t+1}=\gamma^{\prime} f_{t}+\bar{\varepsilon}_{t+1}
$$

then (Portfolio interpretation)

$$
r x_{t+1}^{(n)}-b_{n} \times \overline{r x}_{t+1}=\tilde{\Gamma}_{n}^{\top} f_{t}+w_{t+1}^{(n)}
$$

- Paper, Table 7:

Table 7. Forecasting the failures of the single-factor model
A. Coefficients and t-statistics

Right hand variable

Left hand var.	const.	$y_{t}^{(1)}$	$y_{t}^{(2)}$	$y_{t}^{(3)}$	$y_{t}^{(4)}$	$y_{t}^{(5)}$
$r x_{t+1}^{(2)}-b_{2} \overline{r x}$						
$t+1$	-0.11	-0.20	$\mathbf{0 . 8 0}$	-0.30	-0.66	0.40
(t-stat)	(-0.75)	(-1.43)	$\mathbf{(2 . 1 9)}$	(-0.90)	(-1.94)	(1.68)
$r x_{t+1}^{(3)}-b_{3} \overline{r x}$	$t+1$	0.14	0.23	-1.28	$\mathbf{2 . 3 6}$	-1.01
(t-stat)	(1.62)	(2.22)	(-5.29)	$\mathbf{(1 1 . 2 4)}$	(-4.97)	(-2.26)
$r x_{t+1}^{(4)}-b_{4} \overline{r x}_{t+1}$	0.21	0.20	-0.06	-1.18	$\mathbf{1 . 8 4}$	-0.82
(t-stat)	(2.33)	(2.39)	(-0.33)	(-8.45)	$\mathbf{(9 . 1 3)}$	(-5.48)
$r x_{t+1}^{(5)}-b_{5} \overline{r x}{ }_{t+1}$	-0.24	-0.23	0.55	-0.88	-0.17	$\mathbf{0 . 7 2}$
(t-stat)	(-1.14)	(-1.06)	(1.14)	(-2.01)	(-0.42)	$\mathbf{(2 . 6 1)}$

B. Regression statistics

Left hand var.	R^{2}	$\chi^{2}(5)$	$\sigma\left(\tilde{\gamma}^{\top} y\right)$	$\sigma(\mathrm{lhs})$	$\sigma\left(b^{(n)} \gamma^{\top} y\right)$	$\sigma\left(r x_{t+1}^{(n)}\right)$
$r x_{t+1}^{(2)}-b_{2} \overline{r x}_{t+1}$	0.15	41	0.17	0.43	1.12	1.93
$r x_{t+1}^{(3)}-b_{3} \overline{r x}_{t+1}$	0.37	151	0.21	0.34	2.09	3.53
$r x_{t+1}^{(4)}-b_{4} \overline{r x}_{t+1}$	0.33	193	0.18	0.30	2.98	4.90
$r x_{t+1}^{(5)}-b_{5} \overline{r x}_{t+1}$	0.12	32	0.21	0.61	3.45	6.00

- These are predictable!
- With large R^{2} and statistical significance!
- But they are tiny.
- Pattern: diagonal. $y^{(n)}$ out of line, it reverts back next period. No common factor.
- Tiny measurement errors or tiny (but profitable if you can leverage) "spread trades"
- The single-factor $\gamma^{\prime} f$ accounts for all the economically important variation in expected returns.
- This is why we do a two-step OLS not efficient GMM estimation. Efficient GMM of a single factor model weights by R^{2}, not size.

More stuff in paper.

Q: What about...
\bullet-Subsamples? Yes.

- Other data? McCulloch-Kwan data, not just FB interpolation

