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Portfolio Selection and Asset 
Pricing Models 

LUBO0 PASTOR* 

ABSTRACT 

Finance theory can be used to form informative prior beliefs in financial decision 
making. This paper approaches portfolio selection in a Bayesian framework that 
incorporates a prior degree of belief in an asset pricing model. Sample evidence on 
home bias and value and size effects is evaluated from an asset-allocation perspec- 
tive. U.S. investors' belief in the domestic CAPM must be very strong to justify the 
home bias observed in their equity holdings. The same strong prior belief results in 
large and stable optimal positions in the Fama-French book-to-market portfolio in 
combination with the market since the 1940s. 

FINANCE THEORY HAS PRODUCED A VARIETY of models that attempt to provide 
some insight into the environment in which financial decisions are made. 
How should these models be used by financial decision makers? Empirical 
finance typically approaches a theoretical model by testing whether its im- 
plications are supported by the data. Based on the result of a hypothesis 
test, the model is either rejected or not rejected. It is not clear what such an 
outcome implies about the usefulness of the model for decision making. If 
the model is not rejected, should it be used as the truth? And if it is rejected, 
should it be discarded as worthless? Such a simplistic approach, based solely 
on the result of a hypothesis test, fails to capture many aspects of both the 
model and the data that could potentially be useful to a decision maker. 
Instead, it might be reasonable to assume that financial models are neither 
perfect nor useless. By definition, every model is a simplification of reality. 
Hence, even if the data fail to reject the model, the decision maker may not 
necessarily want to use the model as a dogma. At the same time, the notion 
that models implied by finance theory could be entirely worthless seems 
rather extreme. Hence, even if the data reject the model, the decision maker 
may want to use the model at least to some degree. 

* Graduate School of Business, University of Chicago. The paper is based on my dissertation 
at the Wharton School, University of Pennsylvania. I am grateful to the members of my dis- 
sertation committee, Don Keim, Karen Lewis, Craig MacKinlay, Frank Schorfheide, and espe- 
cially to the committee chair Rob Stambaugh, for their numerous helpful comments. The comments 
of Greg Bauer, Michael Brandt, Mark Britten-Jones, Chris G6czy, Chris Jones, Ron Kaniel, 
Krishna Ramaswamy, Jay Shanken (the referee), Ren6 Stulz (the editor), and seminar partici- 
pants at Columbia University, Harvard University, MIT, New York University, the University of 
California at Los Angeles, the University of Chicago, the University of Pennsylvania, the Uni- 
versity of Rochester, Yale University, and the 1999 meetings of the American Finance Associa- 
tion are also appreciated. Of course, I am fully responsible for all the weaknesses of the paper. 
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A natural approach to using financial models in decision making can be 
developed in a Bayesian framework. A model can be used as a point of ref- 
erence around which the decision maker can center his prior beliefs. These 
prior beliefs are combined with the data, which may violate the implications 
of the model, and the revised beliefs are used to make decisions. The relative 
importance of the sample evidence versus the model depends on the strength 
of the violations of the model in the data relative to the strength of the prior 
belief in the model.' Following such an approach, this paper explores how 
asset pricing models can be used in portfolio selection. 

The goal of portfolio selection is to find an optimal allocation of wealth 
across a number of assets. At least two approaches to portfolio selection 
are commonly used in finance. A "data-based" approach assumes a func- 
tional form for the distribution of asset returns and estimates its param- 
eters from the time series of returns. For example, sample estimates of the 
mean and covariance matrix of asset returns can be used to compute the 
optimal weights in a mean-variance framework. This approach ignores the 
potential usefulness of asset pricing models.2 Asset pricing models imply 
an alternative approach to portfolio selection. In this "model-based" ap- 
proach, the optimal portfolio of every investor is a combination of bench- 
mark portfolios that expose the investor only to priced sources of risk.3 For 
example, under the Capital Asset Pricing Model, the market portfolio is 
the single benchmark, and is therefore the optimal portfolio of every in- 
vestor. This approach makes no use of the time series of returns on the 
nonbenchmark assets. 

The two typical approaches to portfolio selection essentially reflect two 
extreme views about the validity of asset pricing models. The first approach 
regards asset pricing models as useless, and the second approach considers 
one of these models to be a perfect description of reality. Such polar views 
could be adopted as a result of a hypothesis test, as described at the outset.4 
However, the portfolio literature is silent about what happens in between. 
For example, what if an investor thinks highly of a certain pricing model, 
but is concerned that the model may not hold exactly due to mild violations 
of its assumptions in the real world?5 

1 The idea of using financial models to form prior beliefs in decision making is also men- 
tioned in Stambaugh (1998). 

2 Examples of asset pricing models include the Capital Asset Pricing Models (CAPM) of 
Sharpe (1964) and Lintner (1965), the intertemporal CAPM of Merton (1973), and models based 
on the arbitrage pricing theory of Ross (1976). The precise meaning of the term data-based 
approach is clarified in Section I.A. 

3 Examples of benchmark portfolios are factor-mimicking portfolios, whose returns mimic 
the realizations of the factors in a factor-based asset pricing model. 

4 Frequentist tests of asset pricing models are too numerous to list. Bayesian tests include 
Shanken (1987), Harvey and Zhou (1990), McCulloch and Rossi (1990, 1991), Kandel, McCul- 
loch, and Stambaugh (1995), and Geweke and Zhou (1996). 

5 For instance, Jagannathan and Wang (1996) argue that "We have to keep in mind that the 
CAPM, like any other model, is only an approximation of reality. Hence, it would be rather 
surprising if it turns out to be "100 percent accurate"." 
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This paper approaches the portfolio selection problem in a Bayesian frame- 
work that incorporates the investor's prior degree of confidence in an asset 
pricing model. The degree of confidence can range from a dogmatic belief in 
the model to a belief that the model is useless. As the degree of skepticism 
about the model grows, the resulting optimal allocation moves away from a 
combination of benchmark portfolios toward the allocation obtained in the 
data-based approach. We explore how fast the optimal allocation moves from 
one extreme to the other in response to sample evidence and what deter- 
mines the strength of the influence of sample evidence on the optimal allo- 
cation. The approach developed in the paper uses both an asset pricing model 
and the time series of asset returns to find the optimal portfolio. 

The investor specifies an informative prior distribution on the assets' mis- 
pricing a within an asset pricing model. As is typical in Bayesian analysis, 
the sample mispricing a' is "shrunk" toward the prior mean of a to obtain the 
posterior mean of a, which is used in portfolio analysis. The most natural 
choice for the prior mean of a is zero, the value implied by the model. Prior 
confidence in the model's implication that a = 0 is expressed through 0-a, the 
prior standard deviation of a. Due to the shrinkage in a, the sample mean is 
shrunk toward the expected return implied by the pricing model. Shrinking 
the sample mean reduces the sensitivity of the optimal weights to the sam- 
pling error in a'. The weights have less extreme values and are more stable 
over time than in the data-based approach. 

The idea of specifying an informative prior on a is proposed in Pastor and 
Stambaugh (1999), where the authors suggest a Bayesian approach to esti- 
mating costs of equity and analyze the sources of uncertainty in the cost of 
equity estimates for individual firms. The part of our methodology that leads 
to the posterior distribution can be viewed as a multivariate extension of a 
part of the methodology in Pastor and Stambaugh. However, the focus of 
this paper is quite different. Instead of examining an estimation problem, we 
concentrate on the decision problem of forming the optimal portfolio of mul- 
tiple risky assets. 

In this paper, the investor's prior beliefs are centered around an asset 
pricing model. In a related study, Black and Litterman (1992) suggest using 
the CAPM as a benchmark toward which the investor can shrink his sub- 
jective views about expected returns. The extent of the deviations from the 
CAPM depends on the investor's degree of confidence in his subjective views. 
That study makes no direct use of sample information about expected re- 
turns. In contrast, our approach shrinks the sample means toward their 
values implied by the model. The extent of the deviations from the model 
depends on the strength of the violations of the model in the data as well as 
on the investor's degree of confidence in the model. 

The focus of the empirical analysis is to investigate the extent to which 
optimal holdings depart from the market portfolio, which plays a central 
role in finance theory. In our mean-variance examples, wealth is allocated 
between the market portfolio and an asset (or assets) with nonzero sample 
mispricing a' within the CAPM. It is well known that one should invest 
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(disinvest) in any asset whose a is positive (negative), since combining the 
asset with the market portfolio increases the portfolio's Sharpe ratio.6 How- 
ever, the true value of a is unknown. How much attention should the inves- 
tor pay to a nonzero value of the sample estimate of a? The impact of a' on 
the optimal allocation is investigated for different assets and different prior 
beliefs about a. 

The empirical analysis investigates the home bias in the equity holdings 
of U.S. investors and the issues of investing based on value and size. The 
home bias puzzle is associated with the observation that investors' equity 
holdings typically include a substantially larger proportion of domestic eq- 
uities than is suggested by standard portfolio theory. U.S. investors hold 
only about eight percent of their equity holdings in foreign equities, al- 
though their optimal allocation in foreign equities based on the sample mo- 
ments of asset returns is more than 40 percent.7 However, several recent 
studies cannot reject the hypothesis that the global mean-variance efficient 
portfolio puts zero weights on non-U.S. stocks. These two different ways of 
looking at the data, one based on point estimates and the other on the result 
of a hypothesis test, lead to different conclusions about the home bias and 
about the benefits of international diversification for U.S. investors. 

This paper assesses the evidence in the data from an asset allocation per- 
spective. A U.S. investor confronted with the data decides how much to in- 
vest in foreign stocks. In our framework, the bias toward domestic equities 
can simply reflect a certain degree of prior confidence in the domestic CAPM. 
However, we find that U.S. investors' belief in the global mean-variance ef- 
ficiency of the U.S. market portfolio must be very strong to justify the home 
bias observed in their equity holdings. Their actual holdings are consistent 
with the prior belief that the annual mispricing of a foreign stock portfolio 
within the domestic CAPM is in the tight interval between -2 percent and 
2 percent. 

Surprisingly, even the same strong prior belief in the CAPM is signifi- 
cantly revised by the sample evidence about the Fama and French (1993) 
book-to-market portfolio (HML, or "high minus low"). Consider an investor 
who allocates his wealth between HML and the market portfolio, and who 
believes that the annual mispricing of HML within the CAPM is between 
-2 percent and 2 percent. As of January 1997, this investor should optimally 
invest 40 percent of his wealth in HML, despite his strong belief in the 

6An asset with a nonzero a that is combined with a passive portfolio is sometimes referred 
to as an "active portfolio," following Treynor and Black (1973). The portfolio's Sharpe ratio is 
the ratio of its expected excess return and the standard deviation of its return. Adding an asset 
with mispricing a to the market portfolio increases the portfolio's squared Sharpe ratio by 
(a/o-)2, where o(2 is the residual variance from the market model regression. See Gibbons, Ross, 
and Shanken (1989). 

7 See Lewis (1999). The foreign portfolio in her example is Morgan Stanley's EAFE index, 
and her sample period is January 1970 through December 1996. The home bias puzzle is also 
present from the perspective of the international CAPM. The weight of non-U.S. equity in the 
value-weighted world market portfolio is about 60 percent. 
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mean-variance efficiency of the market portfolio. Moreover, this investor's 
optimal position in HML is large and rather stable, mostly between 20 per- 
cent and 40 percent, in every month since the early 1940s. The optimal 
positions in HML for investors with weaker beliefs in the CAPM are even 
larger and still fairly stable. For example, an investor who is completely 
skeptical about the CAPM should have held approximately 50 to 80 percent 
of his wealth in HML in the last five decades. The robust optimal weights in 
HML are primarily due to the robust value premium over the last 60 years. 

The rest of the paper is organized as follows. Section I first describes the 
data-based approach to portfolio selection and then develops our "model-and- 
data-based" Bayesian methodology. Section II describes the data used in the 
empirical analysis. In Sections III through V, optimal combinations of the 
market portfolio with a number of different assets are explored. Section III 
examines the home bias puzzle. Section IV looks into investing based on 
value and size. Section V explores the effect of imposing prior beliefs that 
depart from the model. Section VI concludes. 

I. Methodology 

The methodology section is divided into four subsections. The first sub- 
section lays out the portfolio selection problem and discusses the data-based 
approach to this problem. The remaining subsections develop a methodology 
that can be used to compute optimal weights in the presence of a nontrivial 
prior degree of belief in an asset pricing model. The second subsection spec- 
ifies the assumptions on the stochastic behavior of returns and the resulting 
likelihood function. The third subsection describes the prior distribution on 
the model parameters. The final subsection describes how the predictive 
distribution of returns is obtained. 

A. Portfolio Selection 

Consider a risk-averse investor with a one-period investment horizon who 
must allocate funds between a riskless asset and a portfolio of (N + K) risky 
assets, K of which are benchmark portfolios. The returns on the benchmark 
portfolios replicate the realizations of K priced sources of risk in a certain 
asset pricing model. The (N + K) risky assets are referred to as "investable 
assets," and the N risky assets are referred to as "nonbenchmark assets" or 
simply "assets." The investor is assumed to consider the past to be informa- 
tive about the future. The allocation decision is made based on the informa- 
tion set 'I containing a finite history of returns on the investable assets and 
prior information. The investor believes that his portfolio decision has no 
effect on the probability distribution of asset returns. The markets are as- 
sumed to be frictionless, with no transaction costs or taxes. 

Let W denote the investor's current wealth, and 8 the proportion of the 
wealth invested in the riskless asset. The optimal value of 6 depends on the 
degree of the investor's risk aversion and is not investigated in this paper. 
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Let w denote the (N + K) x 1 vector of the weights in the portfolio of the 
investable assets, wherew 'LN?K =1 and CN?K is an (N + K) -vector of ones. 
The investor's wealth one period later is 

W+1 = W(1 + rf + (1 - 8)w'r+?), (1) 

where rf stands for the rate of return on the riskless asset and r+1 is the 
(N + K) x 1 vector of the next-period returns on the investable assets in 
excess of rf. The investor chooses w to maximize the expected utility of the 
next-period wealth: 

max fu(W+i)p(r+?1') dr+?, (2) 
w 

where u is the investor's utility function and p (r+1 1) is the probability 
density of r+1 conditional on (P, often referred to as the predictive density.8 
Although the predictive density is in general unknown, the density p (r+ 1 0, P) 
is usually assumed to be known, where 0 denotes the parameters of the 
statistical model that describes the stochastic behavior of returns. However, 
0 is unknown. The simplest way to deal with this challenge is to treat the 
sample estimates 0 as their true values. However, such an approach ignores 
the estimation risk in the estimates and hence understates the true level of 
uncertainty faced by the investor. As shown by Zellner and Chetty (1965), 
Brown (1976), Klein and Bawa (1976), and others, estimation risk can be 
accounted for in a Bayesian framework. Instead of using p(r+1 0S,'), the 
predictive density can be obtained as 

p (r+l l D) = Jp(r+110S, D)p( (StD) d0 (3) 

The posterior distribution of 0, p (0 I), is proportional to the product of the 
prior distribution and the likelihood function, 

P (O I b) oc p (0) L(0; (D). (4) 

One approach to specifying the likelihood function is to assume that, in 
each period, the joint distribution of the excess returns on the investable 
assets is multivariate normal with parameters E and V. If the prior distri- 
bution of 0 -(E,V) is noninformative and all investable assets have return 
histories of the same length, the resulting predictive density is a multivar- 
iate Student t and the tangency portfolio weights are the same as the weights 

8 Throughout the paper, p is a generic notation for any probability density function. 
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obtained when E and V are simply replaced by their maximum-likelihood 
estimates. Such an approach corresponds to our approach when N = 0 and 
the investor seeks an optimal mix of the benchmark portfolios. 

Stambaugh (1997) assumes a standard noninformative prior on 0 and de- 
rives closed-form expressions for the first two moments of the predictive 
density when the assets have return histories that differ in length. In our 
framework, the K benchmarks may have longer histories than the N assets. 
When our investor is completely skeptical about the pricing model implied 
by the K benchmarks, the results essentially coincide with the results ob- 
tained in Stambaugh's unequal-history framework. The expressions for the 
first two moments of the predictive density p (r 1 1), E and V, are given in 
Appendix A. As in the equal-history framework, estimation risk is included 
in V, which exceeds the maximum-likelihood estimate of the covariance ma- 
trix by a positive definite matrix. Unlike in the equal-history framework, 
the weights in the tangency portfolio are affected by estimation risk and in 
general differ from the weights produced by the maximum-likelihood esti- 
mates of E and V. Although more complicated approaches based solely on 
the data can be constructed, our designation "data-based approach" refers to 
the approach that obtains the weights using the moments given in Appendix A. 

The remainder of Section I proposes an alternative methodology for ob- 
taining E and V. Unlike the data-based approach described above, the new 
methodology allows the investor to use an asset pricing model and incorpo- 
rate his prior degree of confidence in the model's pricing abilities. Regard- 
less of the approach used to obtain E and V, the (N + K) x 1 vector of the 
weights in the portfolio with the maximum Sharpe ratio is 

V-1k 
W* ~~~~~~~~~~~~~~(5) 

LN+KVE 

The above expression is a standard mean-variance result, which requires 
the return on the riskless asset to be smaller than the return on the global 
minimum variance portfolio of risky assets. A risk-averse mean-variance in- 
vestor optimally chooses a portfolio with the maximum Sharpe ratio. For 
simplicity, the examples presented in this paper focus on the familiar mean- 
variance case and calculate the optimal portfolio weights using equation (5). 
However, our procedure can be used to construct the entire predictive dis- 
tribution of returns on the investable assets, not only its first two moments. 
As a result, the portfolio choice problem in equation (2) can also be solved for 
utility functions that involve higher order moments such as skewness and 
kurtosis. 

Note that our investor should not be viewed as a representative investor. 
The equilibrium in asset markets cannot be supported if all investors have 
the same perception of the likelihood function and identical nondogmatic 
prior beliefs. For example, with identical imperfect beliefs in the CAPM, all 
investors would deviate from the market portfolio in the direction pointed by 
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the data. If all investors perceive the same likelihood, the existence of an 
equilibrium requires heterogeneity of investors' prior beliefs, with some prior 
beliefs about mispricing centered at nonzero values. 

B. Likelihood 

Suppose that L returns on K benchmark portfolios are available and de- 
note the L x K matrix of those returns in excess of rf by FL. Let Ft denote 
the tth row of FL, t = 1,... ,L. Also, suppose that T c L returns on N risky 
assets are available in the most recent periods t = L - T + 1,... ,L. Let R 
denote the T x N matrix of those returns in excess of rf. Let Rt denote the 
(t-L+T)throwofR,t=L-T+1,...,L,andletFTdenotetheTxK 
submatrix of FL corresponding to the same period as R. The multivariate 
regression of the asset returns on the benchmark returns can be written as 

R =XB + U, vec(U) - N(O, I IT), (6) 

where X =[LT FT], "vec" denotes an operator that stacks the columns of a 
matrix into a vector, "0" denotes the Kronecker product, and 

B= B2 (7) 

is a (K + 1) x N matrix containing the N x 1 vector of the intercepts a and 
the K x N matrix of the slopes (benchmark loadings) B2 from the regression. 
The rows of the disturbance matrix U are assumed to be serially uncorre- 
lated and homoskedastic with an N x N covariance matrix E. Also denote 
the N(K + 1) x 1 vector 

b = vec(B') [ (8) 

where / = vec(B') is an NK x 1 vector. 
The benchmark returns are assumed to be distributed as i.i.d. normal, 

Ft -N(EF,VF), (9) 

where EF is 1 x K and VF is K x K. The benchmark returns are also assumed 
to be independent over time and independent of U. 

The assumptions about the stochastic behavior of returns imply that the 
likelihood function for the parameters (B, 1, EF, VF) can be factored into a 
product of two normal likelihood functions, 

p(R,FL IB,>,EF,VF) =p(RIF TB, 2)p(FL IEF,VF). (10) 
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The likelihood function for the regression parameters is 

p(RIFT B,E) oc III-T/2exp{f- tr(R -XB)'(R -XB)E1} 

oc IT/2exp{- trS S tr(B - B)'X'X(B - B)E-1} (11) 

where S = (R -XB)'(R -XB), B ] = (X'X)-1X'R, tr is the trace 

operator, 1I denotes the determinant of I-, and oc means "proportional to." 
The likelihood function for the benchmark moments is 

p(FLIEF,VF) oc I VF /2 exp{ -tr(FL - LLEF)(F L- LEF)VF } 

I VFI L/2exp t- tr QVF - - tr(EF- EF) (EF- EF)VF }, 

(12) 

where Q = (FL- LLEF)'(F - CLEF) and EF= (1/L) X1Ft. 

C. Prior 

The prior distribution of the parameters (B,I,EF,VF) is specified to be 
noninformative about all of the parameters except for a, the first row of the 
matrix B. The decision maker is assumed to have no prior information about 
the moments of the benchmark returns, the benchmark loadings, and the 
residual covariance matrix. The only prior information is about the assets' 
mispricing a, which corresponds to a certain degree of belief in the validity 
of the asset pricing model. For example, if the CAPM is considered, although 
there is no prior information about the location of the market portfolio in a 
mean-variance space, there may be some prior belief about the market port- 
folio's degree of inefficiency. The regression parameters and the benchmark 
moments are assumed to be independent in the prior: 

p (B,1, EF, VF) = P(B,IE)P(EF, VF)*. (13) 

The prior on the regression parameters B and E is a normal-inverted- 
Wishart prior: 

b l - ~ N(b, *(I)) (14) 

I`-1 W(H-1, v), (5 
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where 

b = (16) 

PtE,(E)=0?f() 01 (17) 

E(E)= S2IN. (18) 

The notation W(H-1, v) stands for a Wishart distribution with parameter 
matrix H`1 and v degrees of freedom. The prior is made essentially non- 
informative about E by setting v equal to 15, so that the prior contains 
only about as much information as a sample of 15 observations. E(1) de- 
notes the prior expectation of li. From the properties of the inverted Wishart 
distribution (see, e.g., Anderson (1984)), E(E) - H/(v - N - 1), where H = 

S'(v - N - 1)IN is consistent with equation (18). For simplicity, equation 
(18) assumes that, in the prior, the regression residuals are uncorrelated 
and the residual variances are equal across assets. In the posterior, sample 
evidence overwhelms the noninformative prior on i, so the residuals are in 
general correlated and the variances are unequal across assets. 

In equation (17), T(1) is an N(K + 1) x N(K + 1) matrix, whose (1, 1) block 
is the N x N prior covariance matrix of a conditional on E. The (1,2) and 
(2,1) blocks of T(1) are zero matrices corresponding to the prior covariances 
between the intercepts and the slopes from the regression in equation (6). 
These prior covariances are assumed to be zero for tractability reasons, un- 
like in Pa'stor and Stambaugh (1999). The (2,2) block of T(1) is the NK x NK 
prior covariance matrix (1 of the regression slopes /3. The prior is made non- 
informative about 13 by setting fl equal to a diagonal matrix with extremely 
large diagonal elements. Since b is independent of X, the unconditional prior 
covariance matrix of b equals 

Vb cov(b,b') = E{I'T()}l [ (L (sz ) 0 1 [ 01 (19) 

where IN denotes an identity matrix of rank N. As a result, the marginal 
prior distribution for the N x 1 vector a of asset mispricings has a mean of 
o and a covariance matrix of o2IN.9 

9 The elements of a are uncorrelated in the prior, but they are in general correlated in the pos- 
terior. The marginal prior for a is easily shown to be a Student t distribution with v - N + 1 de- 
grees of freedom. In the empirical examples withN = 1, the prior for a therefore has v = 15 degrees 
of freedom and its 95 percent critical values are ?2.l1O-a. 
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If the benchmark returns are constructed as excess returns or returns on 
zero-investment positions, as is the case throughout the paper, then the pric- 
ing model implies that a is an N-vector of zeros (see Huberman, Kandel, and 
Stambaugh (1987)). If the elements of a are a priori centered at the model- 
predicted value of zero (i.e., if ar is a zero vector), the value of Oa, represents 
a prior degree of belief that the pricing model holds. An investor's choice of 
0, may be influenced by many factors, including the results of the studies 
that test the implications of the model. For example, if most previous studies 
are unable to reject the model, the investor might choose to specify a low 
value for ua. Hypothesis tests could therefore play a role in decision making 
through the specification of the prior degree of belief in the model. Note that 
if the prior degree of belief in the model is formed based on the result of a 
hypothesis test, the data used to update the prior should not overlap with 
the data used to conduct the hypothesis test. 

The elements of a can also be centered at nonzero values, such as the 
forecasts of a provided by a security analyst (see Treynor and Black (1973)). 
In that case, a, no longer represents a degree of belief in the model, but 
rather a degree of belief in the accuracy of the forecast. This case is illus- 
trated in Section V. 

Note that, in equation (17), the conditional prior covariance matrix of a is 
proportional to the residual covariance matrix li. The motivation for the 
prior link between the intercepts and the residual covariance matrix is the 
same as in Pa'stor and Stambaugh (1999) and comes from MacKinlay (1995). 
It is well known that a'I-Ioa is the difference between two maximum squared 
Sharpe ratios-one obtainable by combining the N assets with the K bench- 
mark portfolios, and the other by combining only the benchmark portfolios 
(see Gibbons et al. (1989)). If a is not linked to i, then, as argued by Mac- 
Kinlay, very large Sharpe ratios could potentially be obtained by combining 
the assets with the benchmarks. If or is a zero vector, our link between a and 
Y, reduces the probability of very large Sharpe ratios by adjusting the prior 
variances of the elements of a downward if the diagonal elements of I are 
small. If the conditional covariance matrix of 13 were also proportional to i, 
our prior on the regression parameters would be the natural conjugate prior. 
Nevertheless, this covariance matrix is made independent of I in the prior, 
since there is no theoretical reason why it should be dependent.10 

The prior on the benchmark moments EF and VF is a standard diffuse 
prior for the parameters of a multivariate normal distribution: 

P(EF, VF) OC VF K-K? 1)/2 (20) 

This prior reflects noninformative beliefs about EF and VF and is discussed 
in detail in Box and Tiao (1973). 

10 MacKinlay and Pastor (1998) impose a stronger form of the a - E link in the likelihood 
function for a larger number of assets. They find that imposing the link can lead to more 
precise expected return estimates and improved portfolio selection. 
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D. Predictive Return Density 

Recall that Bayesian portfolio selection is based on the predictive density 
of the (excess) returns on the investable assets. Let FL,1 denote the 1 x K 
vector of the next-period benchmark returns. The predictive density of the 
benchmark returns equals 

P(FL+1 FL)= fp(FL+1 EF,VF,FL)P(EF,VFI FL)dEFdVF. (21) 

This predictive density corresponds to a multivariate Student t distribution 
with L - K degrees of freedom, as shown in Appendix B. 

Let RL+? denote the 1 x N vector of the next-period returns on the non- 
benchmark assets. The predictive density of the asset returns is 

p(RL+?11)= {P(RL+11FL+1,4)P(FL+1 F)dFL+l 

(22) 

= P(RL+1 B,I,FL+?1,)P(B,YI2 )p(FL+1 FL) dFL+1dBdY2. 

The density p (RL+ ?l B, X, FL+,_, () is normal since 

RL+1 = XL+1B + UL+1, UL+1 N(O,Y), (23) 

where XL+?l = [1 FL+ 1]. The predictive benchmark return density p (FL+?-l FL) 
is discussed in Appendix B and the posterior density p (B, I I) is discussed 
in Appendix C. It is possible to make draws of RL+1 from the predictive 
density (equation (22)) as follows. First, draw the benchmark returns FL+? 
as described in Appendix B. Second, draw the regression parameters B and 
Y, using Gibbs sampling as described in Appendix C. Finally, draw the 
asset returns RL+1 conditional on B, Y, and FL+? from the normal density 
implied by equation (23). A large number of such draws of RL+1 yield a 
simulated predictive distribution of the asset returns. The first two moments 
of the joint predictive density of the returns on the (N + K) investable 
assets, E and V, are estimated (to an arbitrary degree of precision) across 
the predictive draws of [RL+l FL+?1], except that the predictive benchmark 
moments are taken directly from equations (B5) and (B6) in Appendix B. 
The optimal weights in the investable assets are computed as shown in 
equation (5). 

In order to present some intuition about the mean of the predictive return 
density, it is convenient to consider the simplest case with one benchmark 
and one nonbenchmark asset (K - 1, N - 1). In this case, the regression in 
equation (6) can be written as 

Rt = a+?3Ft+ut, ut -N(O,a2), t=L-T+1, ... ,L. (24) 
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The posterior means of a and /8 can be shown to be equal to 

or = (1 - W&) + w,&ar (25) 

? +. (26) 

In the above, 

var(Ft ) 
w^v (27) 

E(y) Ft2 ?vr(Ft) 

2 F) + v?ar(Ft) 

Tofa 

where Pt (l/T)Xf%=LT?l Ft, Ft2 (1/T )XfrtLT? l Ft, var(Ft) - t (Ft)2, 
and E ( 2) stands for the prior expected value of the residual variance 2. 
The weight w,> indicates how much attention the investor pays to the sample 
violation of the model, or. In line with intuition, wa> increases as the belief in 
the model becomes weaker (as 0a, increases), as the amount of sample evi- 
dence increases (as T increases), and as the expected precision of or increases 
(as E (cr2) decreases). 

As the value of a in equation (28) is typically very small relative to /3, the 
posterior mean of /3 in equation (26) is close to /3. Intuitively, since there is 
no prior information about /3, the revised beliefs about /3 center on the sam- 
ple estimate. Also note that the absolute value of f increases as OJ,X decreases. 
For OJ,X 0 , the market model regression is essentially run without the in- 
tercept. Since ,8 is (in reasonable samples) very close to ,8 even for 0a, 0 , 
whether the regression is run with or without the intercept has little effect 
on the resulting estimate of /3. 

The~ mean E(RL?l F>) of the predictive density of asset returns equals 
?U ? /3EF, where EF is a long-series average of benchmark returns taken from 
equation (12). The posterior mean of ar in equation (25) is simply a weighted 
average of the prior mean of ar and its sample estimate. It follows for or 0 
that the mean of the predictive density is close (up to a small value of (EF) 
to a weighted average of or ? IlEF and I:EF. The value of or ? I1EF is close to 
or ? ,St the sample mean of the nonbenchmark asset returns over the most 
recent T periods, unless there is a substantial difference between the sample 
means of the benchmark returns over the most recent L and T periods. That 
is, the sample mean of the asset returns is essentially shrunk toward a 
simple model estimate of the expected return, ,BEF. Hence the expected re- 
turn estimate used in portfolio selection is close to a shrinkage estimator of 
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expected return introduced to portfolio analysis by Jobson, Korkie, and Ratti 
(1979) and later applied by Jorion (1985, 1986, 1991) and Frost and Sa- 
varino (1986). In those studies, however, the prior distribution ignores the 
potential usefulness of asset pricing models. As a result, the sample mean is 
shrunk toward a value that is not related to an asset pricing model, such as 
a grand mean of asset returns. In contrast, the sample means of the non- 
benchmark asset returns in this study are shrunk toward values implied by 
finance theory. The sample means of the benchmark returns are not shrunk. 
If it is believed that those sample means contain substantial estimation er- 
ror, the noninformative prior in equation (20) can be replaced by an infor- 
mative prior. 

The studies cited in the previous paragraph find that portfolio perfor- 
mance can be improved by specifying an informative prior that reduces the 
estimation error in the expected return estimate. This reduction is helpful 
since the weights in equation (5) are known to be quite sensitive to changes 
in the expected return estimate. A substantial part of the estimation error in 
a sample mean is due to the error in a'. When the prior belief in the model 
is strong (i.e., when a,c is small), w& in equation (27) is close to zero and the 
resulting expected return estimate contains only a small fraction of the es- 
timation error in a'. Therefore, instead of resorting to approaches that may 
not be easy to justify economically (such as imposing artificial constraints 
on asset holdings or shrinking sample means to an ad hoc value), it is pos- 
sible to reduce the sampling variability of the optimal portfolio weights by 
specifying at least a mild degree of belief in the model in the form of a 
relatively small Oa,* 

II. Data 

The focus of the empirical analysis is to investigate the extent to which 
optimal holdings depart from the market portfolio. Although the methodol- 
ogy presented in the previous section is applicable when K benchmarks are 
mixed with N nonbenchmark assets, the empirical examples presented in 
the following sections are restricted to K= 1, where the single benchmark is 
the market portfolio. 

In the empirical examples, different assets are optimally combined with 
the U.S. market portfolio. In Section III, which investigates the home bias 
puzzle, the nonmarket asset is a portfolio of foreign stocks. Section IV looks 
into investing based on value and size by combining the Fama-French book- 
to-market and size portfolios with the market. In Section V, which explores 
the effect of including prior beliefs that depart from the model, a portfolio of 
small stocks is combined with the market. A brief description of the data 
follows. 

The proxy for the market portfolio used throughout the study is the value- 
weighted portfolio of all stocks listed on the New York Stock Exchange (VW 
NYSE). The monthly returns on VW NYSE are obtained from the Center for 
Research in Security Prices (CRSP). The average return on VW NYSE in 
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excess of the return on a one-month Treasury bill in January 1926 through 
December 1996 is 0.66 percent per month, and the standard deviation is 
5.49 percent per month. 

The portfolio of foreign stocks is the "World-Except-U.S." portfolio (WXUS) 
provided by Morgan Stanley Capital International. This portfolio is a value- 
weighted portfolio of the 22 most developed equity markets outside the United 
States. On average, 60 percent of the market capitalization in each country 
is included in the index. The U.S. dollar returns on WXUS including re- 
invested dividends are obtained from Datastream. Between January 1970 
and December 1996, the mean monthly return in excess of the return on a 
one-month U.S. Treasury bill is 0.57 percent, and the standard deviation 
4.95 percent. 

The Fama-French book-to-market portfolio (HML) buys stocks with a high 
ratio of book value to market value and shorts the same dollar amount of 
stocks with a low ratio. The size portfolio ("small minus big," or SMB) buys 
small-cap stocks and shorts the same dollar amount of large-cap stocks. For 
more details on the construction of HML and SMB, see Fama and French 
(1993). This study uses a series of returns on HML and SMB that begins in 
July 1927.11 Over the 70-year period up to December 1996, the average re- 
turn on HML, sometimes referred to as the value premium, is 0.45 percent 
per month and the average return on SMB, sometimes referred to as the size 
premium, is 0.17 percent per month. The standard deviations of the HML 
and SMB returns are 3.12 percent and 3.26 percent, respectively. 

The small stock portfolio analyzed in this study is the "9-10 Fund" admin- 
istered by Dimensional Fund Advisors (DFA). The DFA 9-10 Fund, launched 
in 1982, is a passive fund designed to closely follow the returns on small- 
capitalization stocks. This set of small-cap stocks roughly corresponds to the 
stocks in the bottom two size-based deciles provided by the CRSP.12 The 
CRSP's ninth and tenth deciles contain those NYSE, AMEX, and NASDAQ- 
traded stocks whose market capitalization falls into the bottom two deciles 
based on NYSE breakpoints. The CRSP 9-10 index therefore includes ap- 
proximately the smallest 20 percent of all stocks, and DFA loosely tracks the 
return on these small stocks. DFA's mean excess return during January 1982 
through December 1996 is 0.72 percent per month, and the standard devi- 
ation 4.88 percent. 

III. Home Bias 

Investors tend to hold a substantially larger proportion of their equity in 
domestic equities than is suggested either by the weight of their country in 
the value-weighted world equity portfolio or by the sample return moments 
used in the standard mean-variance framework. This phenomenon is docu- 

" The data were generously provided by Ken French. 
12 For a detailed description of the DFA 9-10 Fund and its differences from the CRSP 9-10 

index, see Keim (1999). 
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mented in a number of studies and is often referred to as the "home bias 
puzzle".13 For example, U.S. investors' foreign equity holdings account for 
only about eight percent of their total equity holdings.14 In contrast, a simple 
mean-variance illustration based on the sample moments of returns, such as 
in Lewis (1999) and Britten-Jones (1999), implies that U.S. investors' opti- 
mal weight in foreign equities is about 40 percent. Hence, the point esti- 
mates of the mean and the covariance matrix of returns suggest that U.S. 
investors would benefit by increasing the extent of their international 
diversification. 

On the other hand, evidence presented in the recent studies by Bekaert 
and Urias (1996), Gorman and Jorgensen (1997), and Britten-Jones (1999) 
indicates that the U.S. investors' gains from international diversification 
may not be statistically significant. Britten-Jones and Gorman and Jor- 
gensen cannot reject the hypothesis that the global mean-variance efficient 
portfolio has no exposure to non-U.S. stocks. In other words, global mean- 
variance efficiency of the U.S. market portfolio is not rejected. Hence, the 
conclusion about the benefits of international diversification based on the 
hypothesis test is different from the conclusion based on the point estimates. 
The disagreement in the conclusions from these two different perspectives 
begs for further investigation. 

This paper assesses the sample evidence on home bias and the benefits of 
international diversification from an asset allocation perspective. "Explain- 
ing" the home bias puzzle is not the purpose of this analysis. Sensible ex- 
planations of home bias would certainly include some aspects omitted from 
our analysis, such as information asymmetries, transaction costs, the pos- 
sibility of investing in foreign index futures, etc. Instead, our analysis is 
intended to provide a different way of looking at the data, based on a simple 
decision problem of a U.S. investor. A U.S. investor is allowed to invest in 
two assets, a foreign stock portfolio, and the U.S. market portfolio, the latter 
of which plays the role of a benchmark asset. The choice of the U.S. market 
as a benchmark is motivated by the previous studies, which assess the ben- 
efits of international diversification by testing whether the U.S. market is 
globally mean-variance efficient. The investor has a certain degree of belief 
in the global efficiency of the U.S. market portfolio, sometimes referred to as 
a belief in the domestic CAPM. This section investigates how strongly a 
typical U.S. investor must believe in the domestic CAPM in order to justify 
the level of his domestic equity holdings. 

The investor would benefit from investing in foreign equities if and only if 
the intercept a from a regression of foreign equity excess returns on U.S. 
equity excess returns is positive. Recall that the foreign stock portfolio used 

13 One of the first studies that documents the home bias puzzle is Levy and Sarnat (1970). 
Recent studies of home bias and the benefits of international diversification include Kang and 
Stulz (1997), Errunza, Hogan, and Hung (1999), and Lewis (1999). 

14 This recent estimate is based on Bohn and Tesar (1996). Bohn and Tesar also report that 
the home bias has eroded with time; 15 years earlier, the fraction of foreign shares in U.S. 
investors' equity portfolios was only 2.5 percent. French and Poterba (1991) report a six percent 
estimate as of December 1989. 
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in this study is Morgan Stanley's World-Except-U.S. portfolio (WXUS), as 
described earlier. Based on the period from January 1973 through December 
1996, the results from the regression of the excess returns of WXUS on the 
excess returns of VW NYSE are a' = 0.24 percent per month (2.89 percent 
annualized), / = 0.56, 2 = 0.0018, and R2 = 25.27 percent. The standard 
error of WXUS's a' is 3.05 percent per year, resulting in a t-statistic for a' of 
0.95. In view of the positive estimate of a and in the absence of a prior belief 
that a is negative, portfolio theory indeed suggests that a U.S. investor with 
some skepticism about the domestic CAPM should invest in foreign stocks. 

It is shown below that the statistical insignificance of a' does not prevent 
a Bayesian investor from investing in foreign stocks. In contrast, if the in- 
vestment decision is based solely on testing the hypothesis that a = 0, an 
investor facing an insignificant a' approaches portfolio selection as if a = 0. 
In other words, since the hypothesis is not rejected, the investor maintains 
his implicit prior belief that a = 0. If the test revealed a' to be significantly 
different from zero, such an investor would approach portfolio selection as if 
a = a, since no other information about a is available. That is, the investor's 
implicit prior would be revised all the way to a = a'. Such "binary" updating 
of the prior seems less appealing than the "smooth" updating provided in our 
Bayesian approach. 

Before looking at the optimal allocations, let us make a short detour to 
explain how the prior parameters are specified. The values of v and Q2 are 
specified such that the priors of E and ,8 are noninformative. The value of S2 
is estimated from a 36-month period prior to the sample period. The return 
history on WXUS is available back to January 1970. The regression of the 
excess returns of WXUS on the excess returns of VW NYSE from January 
1970 through December 1972 produces a sample estimate of the residual 
variance equal to 0.0013, so WXUS's s2(= E(o2)) is set equal to 0.0013. The 
values of or and o-a are varied in order to express different beliefs about the 
expected mispricing and about the validity of the domestic CAPM. The CAPM 
predicts that a is equal to zero. For or = 0, as o-a grows, so does the degree 
of skepticism that the CAPM holds. 

Part A of Table I reports the optimal percentage weight in WXUS when 
it is combined with VW NYSE to form the portfolio with the maximum 
Sharpe ratio. The resulting portfolio is optimal from the viewpoint of an 
investor whose prior beliefs about expected mispricing and about the va- 
lidity of the CAPM are varied across a number of values. WXUS's or takes 
on the model-predicted value of zero and the values of ?5 percent per year. 
Part B of the table reports the corresponding perceived maximum Sharpe 
ratios, which indicate how valuable (ex ante) the optimal portfolios are to 
the investor. Parts C and D report the posterior means and standard de- 
viations of WXUS's a. 

With perfect confidence in the domestic CAPM, represented by a-= (Ora = 0, 
nonzero values of a' are believed to be due solely to sampling error. There- 
fore, the optimal weight in WXUS is zero and all the wealth is invested in 
the U.S. market portfolio. As o-a grows while oe 0, the belief in the model 
becomes weaker and the investor pays some attention to WXUS's positive 
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Table I 

Optimal Weight in Foreign Stocks 
in a Two-Asset Portfolio with the U.S. Market 

The foreign stock portfolio is the "M.S.C.I. World-Except-U.S." (WXUS) portfolio provided by 
Morgan Stanley Capital International. The U.S. market portfolio is proxied by the value- 
weighted portfolio of NYSE stocks (VW NYSE). The optimal weight in the foreign stock 
portfolio is given by the first element of Vf-E/A V-1E and the maximum Sharpe ratio by 

VE'V 'E, where E and V are the first two moments of the predictive density of the returns 
on the investable assets, obtained using our "model-and-data-based" methodology proposed in 
Section I. The maximum Sharpe ratio is the ex ante Sharpe ratio perceived by an investor 
who forms an optimal portfolio of the two assets. The intercept from the regression of the 
excess returns on VVXUS on the excess returns on VW NYSE is denoted by a. The prior 
distribution of a has a mean of ci and a standard deviation of o-. Over the sample period of 
January 1973 through December 1996, the OLS estimates of the market model regression 
coefficients are ci = 2.89 percent per year (with a standard error of 3.05 percent per year) and 
e = 0.56. The values of ci, o-a, and the posterior mean and standard deviation of a are 
annualized percentage values. 

Expected Prior Standard Deviation of a (o-r) 
Prior Mispricing 

(a) 0 1% 2% 3% 5% 10% 00 

A. Optimal percentage weight in foreign stocks 
0 0.00 7.65 20.57 29.92 38.99 44.70 47.00 

+5% 70.54 67.77 62.34 57.69 52.42 48.64 47.00 
-5% -174.10 -119.69 -48.55 -8.67 23.22 40.55 47.00 

B. Maximum Sharpe ratio 
0 0.1208 0.1210 0.1227 0.1251 0.1287 0.1317 0.1331 

+5% 0.1548 0.1515 0.1456 0.1412 0.1369 0.1342 0.1331 
-5% 0.1542 0.1426 0.1267 0.1210 0.1232 0.1295 0.1331 

C. Posterior mean of a (c) 
0 0.00 0.39 1.10 1.68 2.30 2.72 2.89 

+5% 5.00 4.72 4.20 3.77 3.33 3.02 2.89 
-5% -5.00 -3.95 -1.99 -0.41 1.27 2.41 2.89 

D. Posterior standard deviation of a 
0 0.00 1.12 1.89 2.33 2.72 2.95 3.05 

+5% 0.00 1.12 1.88 2.33 2.72 2.95 3.05 
-5% 0.00 1.13 1.90 2.34 2.72 2.96 3.05 

sample estimate of a. As a result, the optimal weight in WXUS increases 
with aa, up to the level of 47.00 percent for o-a = so. This value is close to 
46.48 percent, the value predicted by the data-based approach introduced in 
Section I.A.15 The table also shows what happens between the two extremes. 
If there is some doubt about the CAPM, represented by og > 0, it is optimal 
for the investor to account for the positive a' and invest in WXUS. For example, 
an investor whose prior belief in the CAPM is represented by o(a = 1 percent 
per year should optimally invest about eight percent of wealth in foreign 

15 The small difference between the two values is due to the fact that the functional forms of 
the noninformative priors in the two cases are different, which results in small differences in 
"degree-of-freedom-type" adjustments. 
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stocks, and an investor with o-a = 3 percent per year should invest 30 per- 
cent. The actual allocation in foreign stocks observed in the equity holdings 
of U.S. investors is consistent with o-a of about one percent, which represents 
a strong belief in the mean-variance efficiency of the U.S. market portfolio. 

The prior with o-a = 1 percent seems to be very strong. This prior essentially 
rules out mispricing of the foreign stock portfolio larger than two percent in 
absolute value. Moreover, this prior places a large weight on the prior view rel- 
ative to sample evidence. Part C of Table I shows that, for o-a = 1 percent, the 
posterior mean of a is only 0.39 percent, which is much closer to the prior mean 
a = 0 than to the sample value a' = 2.89 percent. The prior on a is strong rel- 
ative to the sample evidence since it shrinks a' close to or. Finally, imagine that 
the prior with o-a = 1 percent were to be formed as a posterior after an investor 
with no prior information observes a hypothetical sample with the same sam- 
ple statistics as the observed sample. With no prior information, the posterior 
standard deviation of alpha from the hypothetical sample is essentially equal 
to the standard error of a' in the hypothetical sample. Note that the standard 
error of WXUS's observed a' is greater than three percent per year and that the 
standard error is inversely proportional to the square root of the sample size. 
In order to make the standard error of a' from the hypothetical sample as low 
as one percent per year, the hypothetical sample must be more than nine times 
as long as the observed sample-that is, more than 216 years long.16 

The results in Table I provide a "snapshot" view of the home bias issue. 
Optimal allocations are computed in January 1997 based on the sample pe- 
riod from January 1973 through December 1996. More information on home 
bias is provided by analyzing the optimal allocations computed in previous 
years. For every portfolio formation month between January 1978 and Jan- 
uary 1997, optimal weights in the foreign stock portfolio are computed based 
on a sample of returns that ends one month prior to the portfolio formation 
month.17 Two different approaches to specifying the starting dates of the 
sample periods are pursued. In the "cumulative sample period" approach, all 
sample periods begin in January 1973. In the "10-year rolling sample pe- 
riod" approach, the starting dates roll over time together with the ending 
dates such that all sample periods are 10 years long. Using rolling sample 
periods could be useful when there is suspicion that the regression coeffi- 
cients change over time in a manner that is difficult to model explicitly. 

Figure 1 plots the optimal allocations in foreign stocks for every portfolio 
formation month from January 1978 to January 1997. For each month, four 
different allocations are reported, corresponding to (T, = 1 percent, 2 percent, 
3 percent, and so. Throughout, or = 0. The first plot in Figure 1 is based on 
cumulative sample periods. Note that the allocations in January 1997 cor- 

16 Thanks to Bill Schwert for suggesting this interpretation. In the same spirit, Kandel and 
Stambaugh (1996) used a hypothetical prior sample to construct prior beliefs in their study of 
stock return predictability. 

17 When one asset is combined with one benchmark at many different dates, the moments of 
the predictive density are not computed using the computationally intensive Gibbs sampling 
procedure described in Appendix C, but are instead approximated based on equations (D4) and 
(D5) in Appendix D. The approximation is very precise, as explained in Appendix D. 
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Figure 1. Optimal percentage weights in foreign stocks in a two-asset portfolio with 
the U.S. market. The foreign stock portfolio is the Morgan Stanley "World-Except-U.S." (WXUS) 
portfolio. The prior distribution of a, the intercept from the regression of the excess returns on 
WXUS on the excess returns on the value-weighted NYSE index, has a mean of zero and an 
annualized standard deviation of o- . Each portfolio formation month follows the sample period 
over which the optimal weights are estimated. In the first plot, the sample periods begin in 
January 1973 and end in each month between December 1977 and December 1996. In the 
second plot, the sample periods are moving 10-year windows, except for the first five years, in 
which the periods begin in January 1973. 

respond to those reported in the first row of Table I. In this plot, the optimal 
weight in foreign stocks is consistently positive, with a minor exception in 
the last three months of 1982. For a = oo, the optimal weights in WXUS 
tend to be large and unstable, although they never exceed 100 percent. Since 
aa = oo yields essentially the same results as standard mean-variance opti- 
mization with sample means and covariances (except for the difference in 
the lengths of the return histories for VW NYSE and WXUS), it is often the 
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large weights corresponding to aa oo that are shown as evidence of home 
bias in U.S. investors' holdings. In the presence of some prior belief in the 
mean-variance efficiency of the U.S. market portfolio (faa < oo), the optimal 
weights in foreign stocks are lower and more stable over time. However, it is 
interesting that these weights are sometimes substantial even for fairly low 
values of aa. For example, the weights can be as high as 57 percent for aa 
3 percent and as high as 14 percent for a = 1 percent. 

The second part of Figure 1 plots the optimal weights in WXUS based on 10- 
year rolling sample periods. The weights in the first five years are identical to 
those from cumulative regressions, since fewer than 10 years of data are avail- 
able by then. Although the results from rolling regressions are fairly similar 
to those from cumulative regressions, three differences emerge. First, the weights 
for aa oo tend to have more extreme values than in cumulative regressions. 
With shorter sample periods, a's tend to have more extreme values, which re- 
sults in more extreme weights. Second, the weights obtained for finite values 
of aa are now somewhat smaller relative to those obtained for aa = o. Since 
the sample periods are now shorter, less attention is paid to sample evidence 
than in the case of cumulative regressions, for a given value of aa. Finally, the 
optimal weights in foreign stocks based on 10-year rolling regressions are de- 
creasing since 1995, and even turn negative in the second half of 1996. In other 
words, if the first two moments of returns are estimated based on the returns 
in the preceding decade, home bias disappears. Of course, this result could sim- 
ply reflect the recent long-lasting bull market in the United States and the fact 
that 10-year periods are too short to estimate means. Britten-Jones (1999) also 
obtains an optimal weight in the U.S. equity that exceeds 100 percent based 
on the past 10 years of data, and shows that the standard error in the weight 
estimate is huge (about 70 percent). 

An alternative approach to investigating the home bias in the equity hold- 
ings of U.S. investors is to take the world market portfolio (WRLD) as the 
benchmark. The optimal weight in the U.S. market in a two-asset portfolio 
with WRLD depends on the sample mispricing of the U.S. market relative to 
WRLD as well as on the prior degree of belief in the international CAPM. 
The returns on WRLD used in the following experiment are the U.S. dollar 
returns on the world market portfolio provided by Morgan Stanley Capital 
International, obtained from Datastream. A regression of excess VW NYSE 
returns on excess WRLD returns in January 1973 through December 1996 
yields a' = 0.10 percent per month (1.22 percent annualized), /8 = 0.87, C2 

0.0007, and R2 = 69.72 percent. The t-statistic of VW NYSE's a' is 0.67. With 
no belief in the efficiency of the world market portfolio (aa - oo), the positive 
a' implies the allocations of 53 percent in VVW NYSE and 47 percent in WRLD, 
which amounts to about 30 percent in non-U.S. stocks.18 As the belief in the 

18 The 30 percent foreign stock allocation for ora = oo differs from the 47 percent allocation 
obtained previously with the U.S. market as a benchmark. This difference reflects the differ- 
ence in the lengths of the return histories in the two cases. Recall that the methodology re- 
quires the benchmark return history to be no shorter than the nonbenchmark history. With VW 
NYSE as a benchmark, its return history begins in January 1926. With WRLD as a benchmark, 
VW NYSE's history begins in January 1973, the beginning of WRLD's history in our sample. 
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international CAPM becomes stronger (i.e., as ua decreases), the optimal 
allocation moves toward 100 percent in WRLD. As a result, no value of o 
can produce a weight in foreign stocks smaller than the 30 percent obtained 
for a, oo. Hence this alternative setup, in which the benchmark model is 
the international CAPM, cannot reconcile the observed allocations with the 
optimal allocations. Our conclusions related to the home bias puzzle reflect 
the approach based on the domestic CAPM. As argued earlier, choosing the 
U.S. market as the benchmark is consistent with the existing literature. The 
goal is to analyze to what extent a U.S. investor who is fully invested in the 
U.S. market should diversify internationally after observing the return data. 

In summary, we find that a typical U.S. investor's confidence in the do- 
mestic CAPM must be very strong to justify his low holdings of foreign stocks. 
In particular, he must believe that the mispricing of the foreign stock port- 
folio within the domestic CAPM is no larger than two percent per year. Un- 
less the prior belief of a typical U.S. investor is so strong, home bias remains 
a puzzle. 

IV. Investing Based on Value and Size 

A number of studies document that value stocks (stocks with high book- 
to-market ratios) tend to outperform growth stocks (stocks with low book- 
to-market ratios). Fama and French (1993) provide such evidence for the 
United States in the period following July 1963.19 Davis (1994) shows that 
value stocks outperform growth stocks also in the period from July 1940 
through June 1963. Fama and French (1998) find the evidence of a positive 
value premium in 12 out of 13 major stock markets around the world. In a 
recent study, Davis, Fama, and French (1998) document the robustness of 
the value premium in the United States from July 1929 through June 1997. 
The authors find that the average return on a value-minus-growth portfolio 
during the 34 years prior to July 1963 is positive and similar in magnitude 
to the average return after July 1963. 

It might also be informative to examine the estimates of the value pre- 
mium on a month-by-month basis. The top row in Figure 2 plots the rolling 
estimates of the value premium in each month between July 1937 and De- 
cember 1996. The estimates are computed as 10-year moving averages of the 
returns on HML, the Fama-French book-to-market portfolio. Surprisingly, 
the value premium estimates are positive in every month. For comparison, 
the middle row of Figure 2 plots the rolling estimates of the market pre- 
mium, computed as 10-year moving averages of the excess market returns. 
The market premium estimates are negative in 49 out of 715 months. Cu- 
riously, the ex post value premium is more stable than the market premium 
over the last 60 years. In contrast, the ex post size premium (computed as 

19 Kothari, Shanken, and Sloan (1995) conjecture that the outperformance of growth stocks 
by value stocks may be due to a selection bias present in the COMPUSTAT database. Chan, 
Jegadeesh, and Lakonishok (1995) and Fama and French (1996) argue against this conjecture. 
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Figure 2. The value premium, the market premium, and the size premium. The premi- 
ums are estimated as 10-year moving averages of the returns on the Fama-French HML port- 
folio, the excess returns on the value-weighted NYSE index, and the returns on the Fama- 
French SMB portfolio, respectively. The estimates are percentage monthly values. 

10-year moving averages of the returns on SMB, the Fama-French size port- 
folio) plotted at the bottom of Figure 2 is much less stable over time. For 
example, the premium is negative between 1953 and 1965 as well as through- 
out the 1990s. Our evidence is consistent with the evidence in Davis et al. 
(1998) who find that the size premium in the last seven decades is low and 
not very reliable. It is also interesting that both the value premium and the 
size premium exhibit a downward trend since 1982. Their current rolling 
estimates are 0.14 percent and -0.13 percent per month, respectively, com- 
pared to 0.45 percent and 0.17 percent per month based on the entire sam- 
ple. The ex post value premium is statistically significant based on the whole 
sample (t = 4.18), whereas the size premium is not (t = 1.54). 

One way of assessing the economic significance of the empirical evidence 
on value and size is to consider the Fama-French portfolios HML and SMB 
as investable assets. Investing one dollar in HML or SMB is interpreted as 
investing one dollar in cash and taking a zero-investment position of one 
dollar long and one dollar short in HML or SMB. Consider an investor with 
a certain prior degree of belief in the CAPM who is fully invested in the 
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(U.S.) market portfolio. We investigate what proportion of wealth the inves- 
tor reallocates in the Fama-French portfolios after he observes their past 
returns and updates his prior beliefs. 

The returns on HML and SMB are available from July 1927 through De- 
cember 1996. The first five years from this period are used to estimate the 
prior parameters. In equation (18), s2 is set equal to 0.0011, the average of 
the diagonal elements of the sample estimate of the residual covariance ma- 
trix from the prior period. This value also happens to be close to the esti- 
mates of the residual variances from the sample period, which are equal to 
0.0009 for both HML and SMB. The multivariate regression of the returns 
on HML and SMB on the excess market returns is run across the remaining 
774 months. The regression sample estimates for HML and SMB, respec- 
tively, are a' [0.37 0.04]' percent per month ([4.46 0.52]' percent annual- 
ized), and = [0.14 0.24]'. The annualized standard errors on the a's are 
1.29 percent and 1.32 percent, resulting in the t-statistics on the a's of 3.45 
for HML and 0.39 for SMB. 

Part A of Table II shows the optimal percentage weights in the book-to- 
market and size portfolios when these are combined with the market in Jan- 
uary 1997. Throughout the table, oe = [0 0]'. As aa grows, the optimal allocation 
approaches the allocation computed by the data-based approach, 71.19 per- 
cent in HML and 2.23 percent in SMB. The weight in HML moves surprisingly 
fast toward the large value obtained in the data-based approach. For example, 
for aa 1 percent, the optimal weight in book-to-market is already 40 percent, 
and for aa 2 percent, the book-to-market position is already 60 percent. In 
order for the optimal position in HML to be close to zero, the prior belief in the 
CAPM must be extremely strong, much stronger than a - 1 percent. The pas- 
sive strategy of investing only in the market portfolio is clearly dominated (ex 
ante) by an active strategy that takes a substantial position in the Fama- 
French book-to-market portfolio. Sample evidence about book-to-market is pow- 
erful enough to overwhelm even strong prior beliefs in the CAPM.20 

The weight in SMB is close to zero for any aa primarily because its a' is 
small, but also due to some interaction with HML. When HML is excluded 
and the wealth is allocated only between the market and SMB, the SMB 
weight for (a oo is 19 percent. Apparently, including HML drives SMB out 
of the optimal portfolio. When SMB is excluded and the wealth is allocated 
only between the market and HML, the HML weights are very close to those 
reported in Table 11.21 Including SMB seems to have no effect on the optimal 
portfolio of the market and HML. 

20 The finding that sample evidence can overcome even strong priors in portfolio selection is 
similar in spirit to one of the conclusions of Kandel and Stambaugh (1996). In that study, a 
Bayesian investor allocating funds between the market portfolio and cash is given sample ev- 
idence about the predictability of stock returns. The authors find that this sample evidence can 
exert a substantial influence on the investor's portfolio decision, even when the investor's prior 
beliefs are weighted against predictability. 

21 The detailed results are not reported in separate tables to save space, but they are avail- 
able upon request. 
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Table II 

Optimal Weights in the Fama-French Book-to-Market 
and Size Portfolios in a Three-Asset Portfolio 

with the U.S. Market 
HML is the Fama-French book-to-market portfolio, which finances a long position in high- 
book-to-market stocks by a short position in low-book-to-market stocks. SMB is the Fama- 
French size portfolio, which finances a long position in small-capitalization stocks by a short 
position in big-capitalization stocks. Investing one dollar in HML or SMB is interpreted as 
investing one dollar in cash and taking a zero-investment position of one dollar long and one 
dollar short in HML or SMB. The U.S. market portfolio is proxied by the value-weighted port- 
folio of NYSE stocks (VW NYSE). The optimal weights in HML and SMB are given by the first 
two elements of V-1E/t' V-1E and the maximum Sharpe ratio by E'V1E, where E and V are 
the first two moments of the predictive density of the returns on the investable assets, obtained 
using our "model-and-data-based" methodology proposed in Section I. The maximum Sharpe 
ratio is the ex ante Sharpe ratio perceived by an investor who forms an optimal portfolio of the 
three assets. The vector of the intercepts from the regression of the HML and SMB returns on 
the excess returns on VW NYSE is denoted by a. The prior distribution of both elements of a 
has a mean of zero and a standard deviation of o-,. Over the sample period of July 1932 through 
December 1996, the OLS estimates of the market model regression coefficients are & [4.46 
0.52]' percent per year (with standard errors of [1.29 1.32]' percent per year) and ,3 = [0.14 
0.24]'. The values of o-, and the posterior mean and standard deviation of a are annualized 
percentage values. 

Prior Standard Deviation of a (aj 

Asset 0 1% 2% 3% 5% 10% 00 

A. Optimal percentage weights in book-to-market and size 
HML 0.00 39.94 59.74 65.71 69.23 70.83 71.37 
SMB 0.00 1.20 1.90 2.11 2.23 2.28 2.30 

B. Maximum Sharpe ratio 
0.1208 0.1273 0.1460 0.1578 0.1673 0.1724 0.1742 

C. Posterior mean of a (&) 
HML 0.00 1.44 2.92 3.62 4.11 4.37 4.46 
SMB 0.00 0.17 0.34 0.42 0.48 0.51 0.52 

D. Posterior standard deviation of a 
HML 0.00 0.74 1.05 1.17 1.24 1.28 1.29 
SMB 0.00 0.75 1.07 1.19 1.27 1.31 1.32 

The HML weights in optimal portfolios with the market are large for three 
reasons. First, HML's ' -- 4.46 percent per year is large. Second, HML's prior 
residual variance is small and T is large, implying a large weight on a' in 
equation (25). The two observations imply that the posterior mean of a is 
large. Finally, HML's posterior mean of the residual variance is small be- 
cause the prior of o-2 is noninformative and the sample estimate of the re- 
sidual variance is small. The small posterior mean of the residual variance 
in combination with the large posterior mean of a results in large weights on 
HML, as shown in Appendix E. 
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Figure 3. Optimal percentage weights in the Fama-French book-to-market portfolio 
in a two-asset portfolio with the U.S. market. The prior distribution of a, the intercept 
from the regression of the returns on the Fama-French book-to-market portfolio (HML) on the 
excess returns on the value-weighted NYSE index, has a mean of zero and an annualized stan- 
dard deviation of o-,. Each portfolio formation month follows the sample period over which the 
optimal weights are estimated. In the first plot, the sample periods begin in July 1932 and end 
in each month between June 1937 and December 1996. In the second plot, the sample periods 
are moving 10-year windows, except for the first five years, in which the periods begin in July 
1932. 

Figure 3 plots the optimal allocations in HML for every month between 
July 1937 and January 1997. This figure reveals three striking findings. 
First, the optimal weights in HML are consistently positive since the early 
1940s, based on both cumulative and rolling regressions. In other words, for 
more than half a century, investors holding the market should also include 
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book-to-market in their optimal portfolios. Second, the optimal weights in 
HML are large, even for small values of o-, and relatively short sample pe- 
riods used in rolling regressions. For example, the weights for or, = 1 percent 
average 23 percent for cumulative regressions and 20 percent for 10-year 
rolling regressions since 1943. That is, even investors with strong beliefs in 
the CAPM should take substantial positions in HML. This finding indicates 
that the HML results in Table II are not driven solely by the 70-year length 
of the sample period. Finally, the optimal weights are quite stable over time, 
even for large values of o-,. For example, based on rolling regressions, the 
optimal weights range from 62 percent to 85 percent for o-, - so since 1963. 
The weights range from 43 percent to 69 percent for o-, = 3 percent and from 
12 percent to 28 percent for o-, = 1 percent during that period. Based on 
cumulative regressions, the optimal weights range from 31 percent to 41 per- 
cent for o-, = 1 percent and from 55 percent to 84 percent for 2 ? o>, c so in 
the last two decades. Overall, the results in Figure 3 underline the robust- 
ness of the finding that optimal portfolios in the last 50 years involve sizable 
and fairly stable positive positions in the book-to-market portfolio. Since 
HML's market beta is fairly small, the robust value premium observed in 
Figure 2 is reflected in robust optimal weights in book-to-market, even if the 
confidence in the CAPM is very strong. 

Figure 4 plots the optimal allocations in SMB for every month between 
July 1937 and January 1997. There is no consistent pattern in the optimal 
weights in SMB. For both cumulative and rolling regressions, the weights 
are rather unstable and change sign several times. As of January 1997, the 
cumulative regression recommends taking a position of up to one-fifth of the 
wealth in SMB, whereas the regression based on the last 10 years of data 
recommends taking a large short position. Between 1966 and 1990, the weights 
based on rolling regressions are always positive, consistent with the evi- 
dence from some earlier studies. However, the weights are mostly negative 
outside that period, suggesting that the size effect could be specific to cer- 
tain time periods.22 

V. Departures of Prior Beliefs from the Model 

The examples presented so far consider scenarios in which informative 
prior beliefs center on the CAPM. This section discusses an example in which 
prior beliefs depart from the model. If fundamental research by a financial 
analyst concludes that a certain asset is mispriced by the CAPM, prior be- 
liefs about a can center on a nonzero forecast a- produced by the analyst. In 
such a scenario, o-, no longer represents a degree of confidence in the CAPM, 

22 The size effect is identified in Reinganum (1981) based on the 1963 to 1977 data and in 
Keim (1983) based on the 1963 to 1979 data. Banz (1981) uses the data since 1936, and notes 
that the size effect is not very stable through time. Brown, Kleidon, and Marsh (1983) also note 
the instability of the size effect. 
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Figure 4. Optimal percentage weights in the Fama-French size portfolio in a two- 
asset portfolio with the U.S. market. The prior distribution of a, the intercept from the 
regression of the returns on the Fama-French size portfolio (SMB) on the excess returns on the 
value-weighted NYSE index, has a mean of zero and an annualized standard deviation of oa. 
Each portfolio formation month follows the sample period over which the optimal weights are 
estimated. In the first plot, the sample periods begin in July 1932 and end in each month 
between June 1937 and December 1996. In the second plot, the sample periods are moving 
10-year windows, except for the first five years, in which the periods begin in July 1932. 

but rather a degree of confidence in the analyst's forecast. The sample mean 
is no longer shrunk toward the expected return implied by the CAPM, but 
rather toward the analyst's forecast of the expected return. 

This section computes optimal allocations between the small-stock DFA 
9-10 Fund (DFA) and the market portfolio. Using all available monthly re- 
turn data (January 1982 to December 1996) on DFA, the sample estimates 
from the market model regression are a -0.07 percent per month (-0.83 per- 
cent annualized), 8 =0.98, o2 -0.0008, andR2 =67.77 percent. The standard 
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error on DFA's a' is 2.52 percent per year, resulting in the t-statistic on a' of -0.33. 
Over the past 15 years, small stocks fail to outperform the market, both 
before and after the risk adjustment via the CAPM. In light of this evidence, 
an investor whose nondogmatic prior beliefs center on the CAPM should op- 
timally short the small stock portfolio.23 The focus in this section is instead on 
prior beliefs that depart from the CAPM. For example, the investor may form 
his prior belief about the mispricing of small stocks based on the pre-1982 data. 
Based on such earlier data, the studies by Banz (1981), Reinganum (1981), and 
Keim (1983) document the so-called size effect, according to which small- 
capitalization stocks outperform large-capitalization stocks. 

One way of obtaining a forecast ue around which to center the prior beliefs 
about a is to use the pre-1982 series of returns on the CRSP 9-10 index. The 
description of DFA in Section II suggests that the CRSP 9-10 index can serve 
as a proxy for DFA in the period before DFA was created. The January 1926 
to December 1981 market model regression of monthly excess returns on the 
CRSP 9-10 index on excess market returns produces an estimated intercept 
of 2.82 percent per year, with an annualized standard error of 2.10 percent. 
Therefore, prior beliefs with Ue = 2.82 percent are given special attention in 
our analysis. The sample residual variance from the 1926 to 1982 regression 
is 0.0020, so DFA's E(o-2) is set equal to this value. 

Part A of Table III reports the optimal percentage weights in DFA in com- 
bination with VW NYSE, as of January 1997. DFA's a- takes on the model- 
predicted value of zero as well as the values of ?5 percent and 2.82 percent. 
When ce = 0, the investor shorts DFA in response to its negative c. If the 
investor a priori believes that DFA is systematically mispriced by the CAPM 
(a- zf 0), such a prior belief is substantially reflected in the posterior. Con- 
sider the prior belief that ue = 2.82 percent, formed based on the pre-1982 
data. The optimal weight in DFA moves from 131.16 percent for o', = 0 to 
-40.56 percent for o-, = oo. If the investor's prior belief in ce = 2.82 percent 
is formed on the basis of the standard error of ue from the prior period (2.10 
percent per year), all the wealth should be invested in DFA and nothing in 
the market. That is, the prior belief that a= 2.82 percent is strong enough 
to overcome the effect of DFA's negative ' 

- -0.83 percent per year. It ap- 
pears that security analysis capable of producing nonzero ie and O'a < 00 

could play an important role in asset allocation. 

VI. Conclusion 

Finance theory can be used to form informative prior beliefs in financial 
decision-making. This paper develops a portfolio selection methodology that 
allows a Bayesian investor to include a certain degree of belief in an asset 
pricing model. In the extreme cases of complete confidence and complete 
skepticism about the model, the resulting optimal allocations correspond to 

23 Short optimal position in small stocks is broadly consistent with the evidence presented in 
the second panel of Figure 4. Throughout the 1990s, the optimal weight in the "small-minus- 
big" size portfolio (SMB) computed from the last 10 years of data is negative. 
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Table 

III 

Optimal 

Weight 
in 

Small 

Stocks 
in 
a 

Two-Asset 

Portfolio 

with 

the 

U.S. 

Market 

The 

small 

stock 

portfolio 
is 

the 

DFA 

9-10 

Fund, 
a 

small 

stock 

fund 

run 

by 

Dimensional 

Fund 

Advisors. 

The 

U.S. 

market 

portfolio 
is 

proxied 

by 

the 

value-weighted 

portfolio 

of 

NYSE 

stocks 

(VW 

NYSE). 

The 

optimal 

weight 
in 

the 

small 

stock 

portfolio 
is 

given 

by 

the 

first 

element 
of 

V-'E/s2 

V1E 

and 

the 

maximum 

Sharpe 

ratio 

by 

VE'V 

-E, 

where 
E 

and 
V 

are 

the 

first 

two 

moments 
of 

the 

predictive 

density 
of 

the 

returns 

on 

the 

investable 

assets, 

obtained 

using 

our 

"model-and-data-based" 

methodology 

proposed 
in 

Section 
I. 

The 

maximum 

Sharpe 

ratio 
is 

the 
ex 

ante 

Sharpe 

ratio 

perceived 

by 

an 

investor 

who 

forms 

an 

optimal 

portfolio 
of 

the 

two 

assets. 

The 

intercept 

from 

the 

regression 
of 

the 

excess 

returns 

on 

the 

small 

stock 

portfolio 

on 

the 

excess 

returns 

on 

VW 

NYSE 
is 

denoted 

by 
a. 

The 

prior 

distribution 
of 
a 

has 
a 

mean 
of 
or 

and 
a 

standard 

deviation 
of 

c,. 

Over 

the 

sample 

period 
of 

January 

1982 

through 

December 

1996, 

the 

OLS 

estimates 
of 

the 

market 

model 

regression 

coefficients 

are 
a 
= 

-0.83 

percent 

per 

year 

(with 
a 

standard 

error 
of 

2.52 

percent 

per 

year) 

and 
/l 
= 

0.98. 

The 

values 
of 
c, 

o-,, 

and 

the 

posterior 

mean 

and 

standard 

deviation 
of 
a 

are 

annualized 

percentage 

values. 

Expected 

Prior 

Standard 

Deviation 
of 
a 

(o-fy) 

Prior 

Mispricing 

(a) 

0 

1% 

2% 

3% 

5% 

10% 

00 

A. 

Optimal 

percentage 

weight 
in 

small 

stocks 

0 

0.00 

-2.26 

-7.74 

-14.06 

-24.17 

-34.68 

-40.56 

+5% 

218.04 

205.79 

174.79 

136.98 

72.41 

0.86 

-40.56 

-5% 

-241.48 

-230.85 

-204.64 

-173.80 

-123.48 

-70.36 

-40.56 

+2.82% 

131.16 

122.21 

100.11 

74.03 

31.18 

-14.58 

-40.56 

B. 

Maximum 

Sharpe 

ratio 

0 

0.1208 

0.1208 

0.1209 

0.1211 

0.1217 

0.1226 

0.1233 

+5% 

0.1908 

0.1835 

0.1668 

0.1496 

0.1290 

0.1208 

0.1233 

-5% 

0.1916 

0.1863 

0.1739 

0.1606 

0.1421 

0.1281 

0.1233 

+2.82% 

0.1471 

0.1437 

0.1363 

0.1294 

0.1223 

0.1211 

0.1233 

C. 

Posterior 

mean 
of 
a 

(&) 

0 

0.00 

-0.05 

-0.16 

-0.29 

-0.49 

-0.71 

-0.83 

+5% 

5.00 

4.68 

3.89 

2.98 

1.53 

0.02 

-0.83 

-5% 

-5.00 

-4.77 

-4.20 

-3.55 

-2.51 

-1.43 

-0.83 

+2.82% 

2.82 

2.61 

2.12 

1.55 

0.65 

-0.30 

-0.83 

D. 

Posterior 

standard 

deviation 
of 
a 

0 

0.00 

0.60 

1.10 

1.49 

1.95 

2.33 

2.52 

+5% 

0.00 

0.60 

1.12 

1.50 

1.96 

2.34 

2.52 

-5% 

0.00 

0.60 

1.11 

1.49 

1.95 

2.34 

2.52 

+2.82% 

0.00 

0.60 

1.11 

1.49 

1.95 

2.34 

2.52 
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allocations previously studied in the literature. This paper investigates what 
happens in between. Compared to their counterparts in the data-based ap- 
proach, the optimal portfolio weights are less sensitive to sampling error 
and tend to have less extreme values. The optimal portfolio reflects the 
implications of the model as well as the time series of asset returns. 

In the empirical illustrations, sample evidence on home bias and value 
and size effects is evaluated from an asset-allocation perspective. The em- 
pirical evidence from earlier studies provides different conclusions about the 
benefits of international diversification and the related home bias puzzle. 
Whereas the sample estimates of return moments indicate that U.S. inves- 
tors should invest a substantial part of their wealth abroad, the hypothesis 
that the U.S. market portfolio is globally mean-variance efficient is not re- 
jected. Our framework provides a different perspective on the benefits of 
international diversification. U.S. investors' home equity bias can in princi- 
ple be rationalized by a certain prior degree of belief in the global tangency 
of the U.S. market. However, we find that such prior beliefs must be very 
strong. U.S. investors' actual holdings of domestic versus foreign securities 
are consistent with a prior belief that the mispricing of a portfolio of foreign 
stocks within the domestic CAPM is between -2 percent and 2 percent per 
year. 

Surprisingly, the same strong prior belief is significantly revised by the sam- 
ple evidence about the Fama-French book-to-market portfolio. The current op- 
timal allocation of an investor with such a strong belief in the efficiency of the 
market portfolio involves a 40 percent weight in book-to-market. Moreover, for 
more than half a century, the optimal allocations in book-to-market are large 
and fairly stable. Evidently, sample evidence can substantially revise even strong 
prior beliefs about the optimal allocation. The robust optimal positions in book- 
to-market are primarily due to the fact that the value premium in the U.S. data 
is very robust, in contrast to the size premium. 

This study uses theoretically motivated prior information about expected 
returns in portfolio selection. In contrast, essentially no prior information 
about the covariance matrix is used. From an estimation perspective, the 
focus on expected returns could be helpful since it is well known that means 
are in general estimated with much less precision than covariances and that 
the tangency portfolio weights are very sensitive to small changes in ex- 
pected returns. Nevertheless, using prior information to impose some struc- 
ture on the covariance matrix could potentially also be beneficial, especially 
for a large number of assets. For example, Ledoit (1994) argues that shrink- 
ing the sample covariance matrix toward an identity matrix can be useful 
when constructing optimal portfolios. MacKinlay and Pastor (1998) provide 
some theoretical justification for using a plain identity matrix as a covari- 
ance matrix in portfolio selection. Our methodology allows the investor to 
include prior information about the residual covariance matrix of asset re- 
turns. By simply increasing the degrees of freedom in the prior distribution 
of the residual covariance matrix, the sample matrix can be shrunk arbi- 
trarily close to a matrix specified a priori. 
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Potential extensions of the methodology developed here include relaxing 
the assumption that the investment opportunity set does not change over 
time. For example, conditional expected benchmark returns could be mod- 
eled as linear functions of state variables, as in Ferson and Harvey (1991). 
It could also be interesting to allow the investor to have a multiperiod in- 
vestment horizon and hedge against changes in the investment opportunity 
set.24 Another direction for future research is to allow the investor to specify 
prior beliefs about the validity of several asset pricing models. Empirical 
illustrations with different asset pricing models and different nonbench- 
mark assets might be informative, too. Finally, the out-of-sample perfor- 
mance of investment strategies with different degrees of belief in a model 
could be investigated. Preliminary results reveal substantial payoffs to in- 
corporating some prior belief in the CAPM in portfolio selection. 

Appendix A. Moments of the Predictive Density for Data-Based 
Portfolio Selection with Unequal History Lengths 

This appendix provides the expressions for E and V, the first two mo- 
ments of the predictive density of returns on the investable assets, in the 
case of data-based portfolio selection with unequal history lengths. Recall 
that L vectors Ft (of dimension 1 x K), t = 1,... L, of returns on K benchmark 
portfolios are available, together with T ? L vectors Rt (of dimension 1 x N), 
t = L - T + 1.... ,L, of returns on N nonbenchmark assets. Let B2 and S 
denote the statistics from the regression of the asset returns on the bench- 
mark returns, as defined in equation (11). Define 

1 L 

EF,T= T Ft' T t=L-T+1 

1 L 

EA,T - E R' T t=L-T+1 

l L 

EF - E Ft 
E Et=+ 

EA = EA,T + B2(EF- EF, T) 

24 Even if the true investment opportunities do not change over time, the possibility of future 
learning about the parameter values could induce the investor to hedge against changes in the 
perceived investment opportunity set, as shown by Brennan (1997) in a continuous-time frame- 
work. The continuous-time literature that addresses the role of parameter uncertainty in port- 
folio selection also includes Gennotte (1986), Feldman (1992), and Xia (1998), among others. 
The discrete-time multiperiod problem with return predictability and parameter uncertainty is 
addressed in Barberis (2000). These papers focus on multiperiod decision making and do not 
consider the role of asset pricing models in portfolio selection. 
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VF = - , (Ft - EF)'(Ft - EF) 
Lt=1 

1 L 

VF,T T E (Ft - E'FAFt -EF) T t=L-T+1 

VAF =B2VF 

VFA VAF 

VA -S/T+B2VFB2. 

The following expressions for E and V are presented in Propositions 1 and 
2 of Stambaugh (1997) and are proved in the appendix to that paper. 

~ EF- 
(Al) 

-EA 

7 [F VFA V= ~~~~~ ~~ , ~~(A2) 
V7AF VA 

where 

7 
L L+1 A 

F V=AL-N-K-2 F 

VA KST L -N-K- 

K L-N-K- 2 ( N 

VAF = KSITFABtVF )1 
A / ~L - N -K- 2 2F2 

T I L + I 

xtr( VFT VF) + (EF- EF,T) VF, T E F, T )1) 
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Appendix B. Predictive Distribution of Benchmark Returns 

The predictive density of the benchmark returns equals 

p(FL+IFL ) = P(FL+lIEF,VF,FL )P (EF,VF I FL) dEFd VF. (Bi) 

The first term after the integral sign, p (Fl + lEF, VF, FL ), is simply a nor- 
mal density with mean EF and covariance matrix VF. The second term, 
p(EF,VFIFL), is the posterior density of the benchmark moments and fol- 
lows standard results. Define the statistics 

EF - L E Ft' (B2) 
Lt=1 

1 L 

VF - E (Ft - EF)'(Ft - EF). (B3) L t=1 

Then the posterior of VF1 is a Wishart distribution with parameter matrix 
(LVF)-1 and (L - 1) degrees of freedom. The posterior of EF given VF is 
normal with mean EF and covariance matrix VFIL. Therefore, draws of FL+, 
from its predictive density can be obtained in three steps. First, draw VF 
from its inverted Wishart posterior, then draw EF from its normal posterior 
given VF, and, finally, draw FL+, from its normal density given EF and VF. 

The moments of the predictive density in equation (B1) are obtainable 
analytically. Following Zellner (1971), 

P(FL+lIFL)c L(L-K) + (FL+1-EA)(L-K VF) (FL+1 EF) 1</ (B4) 

Hence, the predictive density of the benchmark returns is a multivariate 
Student t with L - K degrees of freedom, and its first two moments are 

E(FL+?IFL) EF (B5) 

L) 
L + I 

cov(FL+1,FL+IF VF (B6) 
L - K -2 

Appendix C. Posterior Distribution of Regression Parameters 

We derive the joint posterior density p (B, II 'I) and describe an algorithm 
that can be used to obtain a large number of draws of B and I from their 
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joint posterior. The joint prior density of the regression parameters can be 
written as25 

p (B, ) = p (B I)p (1) 

oc j(,)K112exp{- (b - b)'P(Y,)-2(b - b)} 

X II -(v+N+1)/2 expI-2tr I -'H} 

Oc 1jE -1/2 exp{-2(b - b)'If(l)- (b - b)} (C 1) 

x III-(P+N+l)/2exp 1- {tr - 'H} 

oc lII -(P+N+2)/2 exp 1- (b - b)' () (b - b) - tr 1H}. 

Combining this prior density with the likelihood function in equation (11) 
gives the joint posterior density for the regression parameters 

p(B,Y.IR,FI) oc p(B,Y)p(RIFT,B, Y) 

c (T+?+?N+2)/2 exp 21 (b - b)T (1)- (b - b) - 'trH1 

- 'trSY-7 - ]tr(B - B)'X'X(B -B) 

(C2) 

Since 

(b - b)'4(J) 1(b - b) = (a - U),s2 1(a - d)/o _- ( - + )sO71( /3) 

-tr((a - d)1s2J1(a - )/lo>2) + ( - - I:-) (C3) 

= tr(I-' (a - 7r)(a - d)'s2/oa2) + (/ - /3)/Q-1(B - ) 

the joint posterior of B and I takes the form 

p(B,11D) oc LI -(T+P+N+2)/2exp{-2(I8 - ,)/Q-1 _3 )} 

X exp{-2tr-1C}, (C4) 

25 Note that IT(I)I oc 11. The densities of the multivariate normal and inverted Wishart 
distributions can be found in Zellner (1971, Appendix B). 
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where 

C = S + H+ (a - X)((X -)'s21o-a2 + (B -B')'X'X(B B). (C5) 

It follows from equation (C4) that the conditional posterior of E given B is 
inverted Wishart with parameter matrix C and T + v + 1 degrees of freedom: 

p(E I B, ,) oc | -(T+V+N+2)/2 exp I- 'tr > 1 C }. (C6) 

The tractability of this conditional distribution is due to zero correlations 
between a and,8 in the prior. With a nonzero prior correlation between a and 
,8, the simplification in equation (C3) does not obtain. 

In the case of N = 1, developed in Pastor and Stambaugh (1999), it is 
possible to complete the square on B in the conditional posterior of B given 
E. This conditional posterior is multivariate normal and thus is easy to sam- 
ple from. However, for N > 1, the conditional posterior does not resemble 
any known distribution. The marginal posterior distribution of B is 

p(BID) = JP(B,YjID)d1 (C7) 

The properties of the inverted Wishart distribution can be used to integrate 
out of E in equation (C4), and the following marginal posterior of B is obtained: 

P(B I ) oc IC I-(T+,+1)12 exp 1- 2( -Mp!-168 _ :)I (C8) 

The assumption that no prior information about the assets' betas is avail- 
able is reflected in the prior covariance matrix of,3, fQ. Since this matrix is 
diagonal and contains very large values, the value of (,8 - 13)'Y-1(,8 - /3) is 
close to zero and the marginal posterior density of B in equation (C8) sim- 
plifies into 

p(BI1) cc IS + H + (a - e)(a - j)'s2/1q + (B - B)'X'X(B -B) 

(C9) 

The components of B = [a B2]f' can be drawn from the above density using 
Gibbs sampling, a method proposed by Geman and Geman (1984) and more 
recently described in Casella and George (1992). As shown below, aIRB2, b 
and B21 a, 1' turn out to be distributed as multivariate and generalized ("matric- 
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variate") Student t, respectively. For every posterior draw of B from the 
distribution in equation (C9), E can be drawn from its posterior in equation 
(C6). Some matrix manipulation on equation (C9) leads to 

p(ajB2,I) Oc |1 + c*(a - a*)'D-l(a - a*) (T+?+l)/2 (C10) 

where 

S2 -T 

Ta* + S 2 a/Uf2 - (B2 - B2)Y(FT)YLT 

T + s2/aa2 (Cll) 

D - S ? H ? T&T ' + oror's2/ff - &tpFT(B2 - B2) - (B2- B2)'(F-T 

+ (B2 - B2)'(FT) (FT)(B2 - B2) - c*a*(a*)'. 

The above density is a multivariate Student t distribution with mean a*, 
covariance matrix D/(c*(T + v - N - 1)), and (T + v - N + 1) degrees of 
freedom. As a result, draws of (a IB2,I') can be obtained in a straightforward 
manner. Similarly, 

p(B2 I a, 4) oc IA + (B2-Bj )'M*(B2- B) -(T+V+?1)/2, (C12) 

where 

M*-(FT) (FT) 

B* = B2 + ((FT )(FT) l(FT )T(& - a)' (C13) 

A - S?+ HA+ ( - -)(a - &)'s2/cf2 + T(a - a)(a - a)' - B'(F YLT(a -a)' 

- (a-)~ r F TB +2 ? 2((F T)'(F T))B2 -(B*)'M*B*. 

The above density is in the form of a generalized or matric-variate Student 
t distribution, which is described for example in Box and Tiao (1973). The N 
columns of B2 can be drawn from multivariate Student t distributions. The 
Gibbs chain is initialized at B2 =B2 and repeated draws are made from the 
distributions in equations (CIO) and (C12). After an initial burn-in stage, 
the draws of a and B2 are made from their joint posterior in equation (C9). 
For every such draw of B, Y, is drawn from an inverted Wishart distribution 
in equation (C6). The results in our multi-asset examples are based on Gibbs 
chains of 300,000 draws, after the first 1,000 draws are discarded. The Gibbs 
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chain appears to converge to the target distribution immediately, and pro- 
duces virtually identical results when rerun with a different seed in the 
random number generator. 

Special Case: One Nonbenchmark Asset (N = 1) 

When N = 1, the posteriors of the regression parameters are obtainable 
using the univariate methodology proposed in Pa'stor and Stambaugh (1999). 
The posterior draws of the (K + 1) x 1 vector b B and the scalar a2 _ E can 
be obtained by Gibbs sampling. The conditional posterior for b given a- is 
normal with mean b6 and covariance matrix M-1, 

b 1f2,4 (D N(ba,M-1 ), (C14) 

where 

M = P(uf)-1 + xtx (C15) 

and 

bo j ) M-1 [(ar)-1b 2 X'Xbj. (C16) 

Note that, since b6r is a (matrix) weighted average of the prior mean b and 
the sample estimate b, the sample estimate b is essentially "shrunk" toward 
its prior mean b. The degree of shrinkage is determined in accordance with 
intuition by the precisions of b and b conditional on a. 

The conditional posterior of a 2 given b from equation (C6) simplifies into 

I lb,q) - 2 
(C17) 

XT+V+l1 

an inverted gamma distribution with (T + v + 1) degrees of freedom.26 Recall 
that C is defined in equation (C5). The Gibbs chain is initiated at the value 
of o- equal to its sample estimate and repeated draws are made from the 
conditional densities in equations (C14) and (C17). After a number of draws, 
the effect of the parameter values used to initiate the chain disappears and 
the draws are then made from the joint posterior p(b,o aI). 

26 Since Pastor and Stambaugh (1999) do not assume a zero prior correlation between a and 
/3, the conditional posterior of o-2 in their study is not inverted gamma. Pastor and Stambaugh 
draw o-2 using a Metropolis-Hastings algorithm with an inverted gamma proposal density. For 
a description of the Metropolis-Hastings algorithm, see Chib and Greenberg (1995). 
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Special Case: One Nonbenchmark Asset and One Benchmark 
(N= 1, K= 1) 

For K = 1, the matrices M, T(u), and X'X in equation (C16) are all 2 x 2 
matrices, so equation (C16) can be made more explicit using straightforward 
algebra. Further simplification of b,. is possible due to the assumption that 
the investor has no prior knowledge about the asset's ,/, since all the terms 
involving the reciprocal of the prior standard deviation of /8 (ufp) are very 
close to zero and can be neglected. This simplification shows that b,. does 
not depend on o-, so b60 also equals the unconditional posterior mean of 
b. The elements of b60 can be written as 

or = (1- wa) + waa- (C18) 

g=8 + (Cl9) 

In the above, 

w= - var(F) (C20) 

E (t F2 + var(Ft) 

E(T2) _ 

Tu2 (t - ~)( (C21) 

E(-2 FAt2+ var(Ft) 

where Pt (1/T) t=L-T+lFt, Ft (1/T) fLLT?lFt, var(Ft) - (Ft)2, 
and E(a-2) stands for the prior expected value of the residual variance a 2. 

Note that the weighting on ar and or in the multivariate case in equation 
(Cl1) is very close to that from the univariate case. The main determinants 
of the weighting, oa, s2, and T, enter in the same way in both cases. 

In the presence of prior information about /8 (i.e., when up < oo), b, de- 
pends on a as well as up, so the simplification of b,. into the expressions in 
equations (C18) and (C19) does not obtain. However, with an assumption 
thatPF =0, b, can be simplified even for a finite up. In particular, o can now 
be approximated by the expression in equation (C18), with wa taking an 
even simpler form of 

E~ (v 2 )(C22) 
E (U2) 

Tufa 
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The conditional posterior mean of 8 given o- is a weighted average of the 
prior mean of /3 and its sample estimate, but the unconditional posterior 
mean of /3, P, is not tractable. Of course, A can still be obtained using Gibbs 
sampling. 

Appendix D. Moments of the Predictive Density for N = 1, K = 1 

We provide the expressions for the approximate unconditional posterior 
moments of b and (T2 as well as for the resulting E and V, the first two 
moments of the predictive density of returns on the investable assets. The 
unconditional posterior mean of b is given by equation (C16) and later by 
equations (C18) and (C19). The unconditional posterior covariance matrix of 
b, obtainable by the variance decomposition rule, can be shown to equal 

cov(b,b'1'P E((Dk) = ( E E(c2) (DI) ____Ft2 -7 ? 1 

TL E ),t2+ vvar (Ft)T / 

where E(o-2 (D) is the posterior mean of a 2, shown below. 
The unconditional posterior moments of oF2 can be well approximated based 

on equation (C17) by the posterior moments of oT2 conditional on b,7, the 
posterior mean of b shown in equation (C16). Note from equations (C5) and 
(C17) that the posterior of o-2 depends on b through the last two terms in 
equation (C5). Those terms are in general quite small relative to (S + H), 
and the results are almost unaffected when these terms are ignored. Instead 
of ignoring them, b in those terms is replaced by its posterior mean, and the 
results are virtually indistinguishable from those obtained by Gibbs sam- 
pling. Based on Zellner (1971, Appendix A), the first two approximate pos- 
terior moments of o-2 are 

E(2 2 () = (D2) 

T?v-1 1 = 2C2 
var(o2j4) (T+v-1)2(T+v-3) (D3) 

where C S + H + (o - oi)2S2/-a2 + (b6 - b)'X'X(b. - b). 
The predictive moments for the investable assets are defined as 

E = [E(RL+?1l4) E (FL+1 1 )]' (D4) 

[ var(RL?+ 1() cov(RL+1,FL+?1 1 q) 
(= . (D5) 

-cov (RL+1, FL+ 1 1 q)) var (FL+ 1 l q)) 
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The expressions for E(FL+II i) and var(FL?lI 4) are given in equations 
(B35) and (B6). It follows by the law of iterative expectations that 

E(RL+11P)) = E&(XL+j I )bO + 3EFe* (D6) 

Recall that the posterior means of a and 3, a and P, are defined in equation 
(C16), and EF is defined in equation (B2). The result in equation (D6) does 
not rely on any approximation. Using the variance decomposition rule, it can 
be shown that 

var(RL?lIiP) E(o-2IiP) + tr{cov(XL+?,XL?+lD)[cov(b,b'1'I) + b,b' l]} 

+ E(XL+1?1 )cov(b,b'!P)E(XL+lfPb)' (D7) 

cov(RL?1,FL+11?b) = var(FL+l lt). (D8) 

These two elements of the predictive covariance matrix can be evaluated 
using equations (Dl) and (D2). 

Appendix E. Opti'mal Welght in the Nonbenchmark Asset 
forN= 1,K= 1 

The optimal weight in the nonbenchmark asset can be obtained from equa- 
tion (B5) using equations (D4) and (D5). An alternative representation of the 
weight is obtained below. This equivalent representation serves to provide 
some insight into the components of the weight that are not immediately 
recognizable from equations (D4) and (D5). 

In order to simplify notation, denote the predictive moments in equations 
(D4) and (D5) by 

_k-A VA VA 

E- and V= (El) 
_EF.j - VAT VF 

The vector of the optimal weights in the nonbenchmark asset and in the 
benchmark, respectively, is proportional to 

i~-1k _ V FL W A FE(VAF/VF )E2 
VAF 7 L EX . (E2) 

VA VF-VF7 E9F (VA IVF ) E A (VAF IVF) 
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Since equation (D8) implies that (VAF/VF) is equal to the posterior mean of 
/3, /3, the optimal weight in the nonbenchmark asset is proportional to 

VF 
WA o _ XYUx(EA-P8EF) 

VA VF- VI& 

VF 

VA VF- VIAF 

(E3) 
VA - VA: / VF 

V I2V 

vi 

V7u 

where &z is the posterior mean of a and Vu denotes the predictive residual 
variance, the variance of the next-period disturbance UL+1 from the market 
model regression. Using the variance decomposition rule, 

Vu = var(uL+1?1) = E (var(uL+1?0J 2,P@)) = E (o 2 1 4) _ 2, (E4) 

where o-2 denotes the residual variance and & 2 its posterior mean. The op- 
timal weight in the nonbenchmark asset is therefore proportional to the 
ratio of the posterior means of a and o 2: 

WA OC 
&2 

(E5) 

This simple result is a special case of the result derived by Stevens (1998), 
except that the unknown values of a and o 2 are replaced by their posterior 
means. 

REFERENCES 

Anderson, T. W., 1984, An Introduction to Multivariate Statistical Analysis (John Wiley and 
Sons, New York). 

Banz, Rolf, 1981, The relationship between returns and market value of common stocks, Jour- 
nal of Financial Economics 9, 3-18. 

Barberis, Nicholas, 2000, Investing for the long run when returns are predictable, Journal of 
Finance 55, 225-264. 

Bekaert, Geert, and Michael S. Urias, 1996, Diversification, integation, and emerging market 
closed-end funds, Journal of Finance 51, 835-869. 



Portfolio Selection and Asset Pricing Models 221 

Black, Fisher, and Robert Litterman, 1992, Global portfolio optimization, Financial Analysts 
Journal 48, 28-43. 

Bohn, Henning, and Linda L. Tesar, 1996, U.S. equity investment in foreign markets: Portfolio 
rebalancing or return chasing?, American Economic Review 86, 77-81. 

Box, George E.P., and George C. Tiao, 1973, Bayesian Inference in Statistical Analysis (Addison- 
Wesley, Reading, Mass.). 

Brennan, Michael J., 1997, The role of learning in dynamic portfolio decisions, Working paper 
3-97, UCLA. 

Britten-Jones, Mark, 1999, The sampling error in estimates of mean-variance efficient portfolio 
weights, Journal of Finance 54, 655-671. 

Brown, Philip, Allan W. Kleidon, and Terry A. Marsh, 1983, New evidence on the nature of 
size-related anomalies in stock prices, Journal of Financial Economics 12, 33-56. 

Brown, Stephen J., 1976, Optimal portfolio choice under uncertainty: A Bayesian approach, 
Ph.D. dissertation, University of Chicago. 

Casella, George, and Edward I. George, 1992, Explaining the Gibbs Sampler, The American 
Statistician 46, 167-174. 

Chan, Louis K.C., Narasimhan Jegadeesh, and Josef Lakonishok, 1995, Evaluating the perfor- 
mance of value versus glamour stocks: The impact of selection bias, Journal of Financial 
Economics 38, 269-296. 

Chib, Siddhartha, and Edward Greenberg, 1995, Understanding the Metropolis-Hastings al- 
gorithm, The American Statistician 49, 327-335. 

Davis, James, 1994, The cross-section of realized stock returns: The pre-COMPUSTAT evidence, 
Journal of Finance 49, 1579-1593. 

Davis, James, Eugene F. Fama, and Kenneth R. French, 1998, Characteristics, covariances, and 
average returns: 1929-1997, Working paper, Kansas State University. 

Errunza, Vihang, Ked Hogan, and Mao-Wei Hung, 1999, Can the gains from international di- 
versification be achieved without trading abroad?, Journal of Finance 54, 2075-2107. 

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks 
and bonds, Journal of Financial Economics 33, 3-56. 

Fama, Eugene F., and Kenneth R. French, 1996, The CAPM is wanted, dead or alive, Journal 
of Finance 51, 1947-1958. 

Fama, Eugene F., and Kenneth R. French, 1998, Value versus growth: The international evi- 
dence, Journal of Finance 53, 1975-1999. 

Feldman, David, 1992, Logarithmic preferences, myopic decisions, and incomplete information, 
Journal of Financial and Quantitative Analysis 27, 619-629. 

Ferson, Wayne E., and Campbell R. Harvey, 1991, The variation of economic risk premiums, 
Journal of Political Economy 99, 385-415. 

French, Kenneth R., and James M. Poterba, 1991, International diversification and inter- 
national equity markets, American Economic Review 81, 222-226. 

Frost, Peter A., and James E. Savarino, 1986, An empirical Bayes approach to efficient portfolio 
selection, Journal of Financial and Quantitative Analysis 21, 293-305. 

Geman, S., and D. Geman, 1984, Stochastic relaxation, Gibbs distributions and the Bayesian 
restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 
609-628. 

Gennotte, Gerard, 1986, Optimal portfolio choice under incomplete information (with discus- 
sion), Journal of Finance 41, 733-749. 

Geweke, John, and Guofu Zhou, 1996, Measuring the pricing error of the arbitrage pricing 
theory, Review of Financial Studies 9, 557-587. 

Gibbons, Michael R., Stephen A. Ross, and Jay Shanken, 1989, A test of efficiency of a given 
portfolio, Econometrica 57, 1121-1152. 

Gorman, Larry R., and Bjorn N. Jorgensen, 1997, Domestic versus international portfolio se- 
lection: A statistical examination of the home bias, Working paper, Northwestern University. 

Harvey, Campbell R., and Guofu Zhou, 1990, Bayesian inference in asset pricing tests, Journal 
of Financial Economics 26, 221-254. 



222 The Journal of Finance 

Huberman, Gur, Shmuel Kandel, and Robert F. Stambaugh, 1987, Mimicking portfolios and 
exact arbitrage pricing, Journal of Finance 42, 1-9. 

Jagannathan, Ravi, and Zhenyu Wang, 1996, The conditional CAPM and the cross-section of 
expected returns, Journal of Finance 51, 3-53. 

Jobson, J. D., B. Korkie, and V. Ratti, 1979, Improved estimation for Markowitz portfolios using 
James-Stein type estimators, in Proceedings of the American Statistical Association, Busi- 
ness and Economic Statistics Section (American Statistical Association, Washington). 

Jorion, Philippe, 1985, International portfolio diversification with estimation risk, Journal of 
Business 58, 259-278. 

Jorion, Philippe, 1986, Bayes-Stein estimation for portfolio analysis, Journal of Financial and 
Quantitative Analysis 21, 279-292. 

Jorion, Philippe, 1991, Bayesian and CAPM estimators of the means: Implications for portfolio 
selection, Journal of Banking and Finance 15, 717-727. 

Kandel, Shmuel, Robert McCulloch, and Robert F. Stambaugh, 1995, Bayesian inference and 
portfolio efficiency, Review of Financial Studies 8, 1-53. 

Kandel, Shmuel, and Robert F. Stambaugh, 1996, On the predictability of stock returns: An 
asset allocation perspective, Journal of Finance 51, 385-424. 

Kang, Jun-Koo, and Ren6 M. Stulz, 1997, Why is there a home bias? An analysis of foreign 
portfolio equity ownership in Japan, Journal of Financial Economics 46, 3-28. 

Keim, Donald B., 1983, Size-related anomalies and stock return seasonality: Further empirical 
evidence, Journal of Financial Economics 12, 13-32. 

Keim, Donald B., 1999, An analysis of mutual fund design: The case of investing in small-cap 
stocks, Journal of Financial Economics 51, 173-194. 

Klein, Roger W., and Vijay S. Bawa, 1976, The effect of estimation risk on optimal portfolio 
choice, Journal of Financial Economics 3, 215-231. 

Kothari, S. P., Jay Shanken, and Richard G. Sloan, 1995, Another look at the cross-section of 
expected stock returns, Journal of Finance 50, 185-224. 

Ledoit, Olivier, 1994, Portfolio selection: Improved covariance matrix estimation, manuscript, 
MIT. 

Levy, Haim, and Marshall Sarnat, 1970, International diversification of investment portfolios, 
American Economic Review 60, 668-675. 

Lewis, Karen K., 1999, Trying to explain home bias in equities and consumption, Journal of 
Economic Literature, forthcoming. 

Lintner, John, 1965, The valuation of risk assets and the selection of risky investments in stock 
portfolios and capital budgets, Review of Economics and Statistics 47, 13-37. 

MacKinlay, A. Craig, 1995, Multifactor models do not explain the CAPM, Journal of Financial 
Economics 38, 3-28. 

MacKinlay, A. Craig, and 11ubog Pastor, 1998, Asset pricing models: Implications for expected 
returns and portfolio selection, Working paper, University of Pennsylvania. 

McCulloch, Robert, and Peter E. Rossi, 1990, Posterior, predictive, and utility-based approaches 
to testing the arbitrage pricing theory, Journal of Financial Economics 28, 7-38. 

McCulloch, Robert, and Peter E. Rossi, 1991, A Bayesian approach to testing the arbitrage 
pricing theory, Journal of Econometrics 49, 141-168. 

Merton, Robert C., 1973, An intertemporal capital asset pricing model, Econometrica 41, 867- 
887. 

Pastor, tubog, and Robert F. Stambaugh, 1999, Costs of equity capital and model mispricing, 
Journal of Finance, 54, 67-121. 

Reinganum, Marc R., 1981, Misspecification of capital asset pricing: Empirical anomalies based 
on earnings yields and market values, Journal of Financial Economics 9, 19-46. 

Ross, Stephen A., 1976, The arbitrage theory of capital asset pricing, Journal of Economic 
Theory 13, 341-360. 

Shanken, Jay, 1987, A Bayesian approach to testing portfolio efficiency, Journal of Financial 
Economics 19, 195-215. 

Sharpe, William F., 1964, Capital asset prices: A theory of market equilibrium under conditions 
of risk, Journal of Finance 19, 425-442. 



Portfolio Selection and Asset Pricing Models 223 

Stambaugh, Robert F., 1997, Analyzing investments whose histories differ in length, Journal of 
Financial Economics 45, 285-331. 

Stambaugh, Robert F., 1998, The role of financial models in empirical research, Keynote ad- 
dress at the 1998 Annual Meetings of the Northern Finance Association. 

Stevens, Guy V. G., 1998, On the inverse of the covariance matrix in portfolio analysis, Journal 
of Finance 53, 1821-1827. 

Treynor, Jack, and Fisher Black, 1973, How to use security analysis to improve portfolio selec- 
tion, Journal of Business 46, 65-86. 

Xia, Yihong, 1998, Learning about predictability: The effects of parameter uncertainty in asset 
allocation in a dynamic setting, Working paper, UCLA. 

Zellner, Arnold, 1971, An Introduction to Bayesian Inference in Econometrics (John Wiley & 
Sons, New York). 

Zellner, Arnold, and V. Karuppan Chetty, 1965, Prediction and decision problems in regression 
models from the Bayesian point of view, Journal of the American Statistical Association 60, 
608-616. 


	Article Contents
	p. 179
	p. 180
	p. 181
	p. 182
	p. 183
	p. 184
	p. 185
	p. 186
	p. 187
	p. 188
	p. 189
	p. 190
	p. 191
	p. 192
	p. 193
	p. 194
	p. 195
	p. 196
	p. 197
	p. 198
	p. 199
	p. 200
	p. 201
	p. 202
	p. 203
	p. 204
	p. 205
	p. 206
	p. 207
	p. 208
	p. 209
	p. 210
	p. 211
	p. 212
	p. 213
	p. 214
	p. 215
	p. 216
	p. 217
	p. 218
	p. 219
	p. 220
	p. 221
	p. 222
	p. 223

	Issue Table of Contents
	The Journal of Finance, Vol. 55, No. 1 (Feb., 2000), pp. i-vi+1-528
	Front Matter [pp.  i - v]
	Agency Problems and Dividend Policies around the World [pp.  1 - 33]
	The Cost of Diversity: The Diversification Discount and Inefficient Investment [pp.  35 - 80]
	Agency Costs and Ownership Structure [pp.  81 - 106]
	Financing Policy, Basis Risk, and Corporate Hedging: Evidence from Oil and Gas Producers [pp.  107 - 152]
	The Exploitation of Relationships in Financial Distress: The Case of Trade Credit [pp.  153 - 178]
	Portfolio Selection and Asset Pricing Models [pp.  179 - 223]
	Investing for the Long Run When Returns Are Predictable [pp.  225 - 264]
	Bad News Travels Slowly: Size, Analyst Coverage, and the Profitability of Momentum Strategies [pp.  265 - 295]
	Trading and Returns under Periodic Market Closures [pp.  297 - 354]
	Is the Short Rate Drift Actually Nonlinear? [pp.  355 - 388]
	Shorter Papers
	Characteristics, Covariances, and Average Returns: 1929 to 1997 [pp.  389 - 406]
	Sorting Out Sorts [pp.  407 - 427]
	Stock Splits, Tick Size, and Sponsorship [pp.  429 - 450]
	Effectiveness of Capital Regulation at U.S. Commercial Banks, 1985 to 1994 [pp.  451 - 468]
	Liquidity and Liquidation: Evidence from Real Estate Investment Trusts [pp.  469 - 485]
	The Effect of Options on Stock Prices: 1973 to 1995 [pp.  487 - 514]

	Book Reviews
	untitled [pp.  515 - 518]
	untitled [pp.  518 - 520]

	Back Matter [pp.  521 - 528]



