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1 Introduction

Now we turn to one of the classic questions of finance—portfolio theory. Given a set of
available assets, i.e. given their prices and the (subjective) distribution of their payoffs,
what is the optimal portfolio? This is obviously an interesting problem, to Wall Street as
well as to academics.

We can also view this problem as an alternative approach to the asset pricing question.
So far, we have modeled the consumption process, and then found prices from marginal
utility, following Lucas’ (1978) “endowment economy” logic. If you correctly model the
consumption process resulting from the actual general equilibrium economy, you get the
right answer for the joint distribution of consumption and asset prices from this simplified
method. We could instead model the price process, implicitly specifying linear technologies,
and derive the optimal quantities, i.e. optimal portfolio holdings and the consumption stream
they support. This is in fact the way asset pricing was originally developed. If you correctly
model the price process, you again derive the correct joint distribution of prices and quantities
in this way.

I start by developing portfolio theory by the choice of final payoff. This is often a very
easy way to approach the problem, and it ties portfolio theory directly into the p = E(mx)
framework of the rest of the book. Dynamic portfolio choice is, unsurprisingly, the same
thing as static portfolio choice of managed portfolios, or contingent claims. I then develop
the “standard approach” to portfolio theory, in which we choose the weights in a given set
of assets, and I compare the two approaches.
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2 Choosing payoffs in one-period portfolio problems

2.1 Complete markets

The investor invests, and then values consumption at a later period. We sum-
marize prices and payoffs by a discount factor m. We solve first order conditions
u0(c) = λm for the optimal portfolio c = u0−1(λm). If consumption is driven by
an asset payoff x̂ and outside income e, then x̂ = u0−1(λm)−e. The investor sells
off outside income, then invests in a portfolio driven by contingent claims prices.

Complete markets are the simplest case. Given the absence of arbitrage opportunities
there is a unique, positive stochastic discount factor or contingent claims price m such that
p = E(mx) for any payoff x. This is a key step: rather than face the investors with prices
and payoffs, we summarize the information in prices and payoff by a discount factor, and
we restate the problem as the choice of how many contingent claims to buy. That summary
makes the portfolio problem much easier.

Now, consider an investor with utility function over terminal consumption E [u(c)] , initial
wealth W to invest, and random labor or business income e. The last ingredient is not
common in portfolio problems, but I think it’s really important, and it’s easy to put it in.
The business or labor income e is not directly tradeable, though there may be traded assets
with similar payoffs that can be used to hedge it. In a complete market, of course, there are
assets that can perfectly replicate the payoff e.

The investor’s problem is to choose a portfolio. Let’s call the payoff of his portfolio x̂, so
its price or value is p(x̂) = E(mx̂). He will eat c = x̂+ e. Thus, his problem is

max
{x̂}

E [u(x̂+ e)] s.t. E(mx̂) =W (1)

Max{x̂} means “choose the payoff in every state of nature. In a discrete state space, this
means

max
{x̂i}

X
i

πiu (x̂i + e) s.t.
X
i

πimix̂i =W

This is an easy problem to solve. The first order conditions are

u0(c) = λm (2)

u0 (x̂+ e) = λm. (3)

The optimal portfolio sets marginal utility proportional to the discount factor. The optimal
portfolio itself is then

x̂ = u0−1(λm)− e. (4)
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We find the Lagrange multiplier λ by satisfying the initial wealth constraint. Actually
doing this is not very interesting at this stage, as we are more interested in how the optimal
portfolio distributes across states of nature than we are in the overall level of the optimal
portfolio.

Condition (4) is an old friend. The discount factor represents contingent claims prices, so
condition (2) says that marginal rates of substitution should be proportional to contingent
claim price ratios. The investor will consume less in high price states of nature, and consume
more in low price states of nature. Risk aversion, or curvature of the utility function, deter-
mines how much the investor is willing to substitute consumption across states. Equation
(4) says that the optimal asset portfolio x̂ first sells off, hedges or otherwise accommodates
labor income e one for one and then makes up the difference.

Condition (2) is the same first order condition we have been exploiting all along. If the
investor values first period consumption c0 as well, then the marginal utility of first period
consumption equals the shadow value of wealth, λ = u0(c0). Adding a discount factor β for
future utility, so (2) becomes our old friend

β
u0 (c)

u0(c0)
= m.

We didn’t really need a new derivation. We are merely taking the same first order condition,
and rather than fix consumption and solve for prices (and returns, etc.), we are fixing prices
and payoffs, and solving for consumption and the portfolio that supports that consumption.

2.1.1 Power utility and the demand for options

For power utility u0(c) = c−γand no outside income, the return on the optimal
portfolio is R̂ = m− 1

γ /E(m1− 1
γ ) Using a lognormal iid stock return, this result

specializes to R̂ = e(1−α)(r+
1
2
ασ2) Rα

T where is the stock return and α ≡ 1
γ
μ−r
σ2

.
The investor wants a payoff which is a nonlinear, power function of the stock
return, giving rise to demands for options.
The same method quickly extends to a utility function with a “habit” or

“subsistence level”, u0(c) = (c − h)−γ. This example gives a strong demand for
put options.

Let’s try this idea out on our workhorse example, power utility. Ignoring labor income,
the first order condition, equation (2), is

x̂−γ = λm

so the optimal portfolio (4) is
x̂ = λ−

1
γm− 1

γ
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Using the budget constraint W = E(mx̂) to find the multiplier,

W = E(mλ−
1
γm− 1

γ )

λ−
1
γ =

W

E
³
m1− 1

γ

´ ,
the optimal portfolio is

x̂ =W
m− 1

γ

E(m1− 1
γ )
. (5)

The m− 1
γ term is the important one — it tells us how the portfolio x̂ varies across states of

nature. The rest just makes sure the scale is right, given this investor’s initial wealth W .

In this problem, payoffs scale with wealth. This is a special property of the power utility
function — richer people just buy more of the same thing. Therefore, the return on the
optimal portfolio

R̂ =
x̂

W
=

m− 1
γ

E(m1− 1
γ )

(6)

is independent of initial wealth. We often summarize portfolio problems in this way by the
return on the optimal portfolio.

To apply this formula, we have to specify an interesting set of payoffs and their prices, and
hence an interesting discount factor. Let’s consider the classic Black-Scholes environment:
there is a risk free bond and a single lognormally distributed stock. By allowing dynamic
trading or a complete set of options, the market is “complete,” at least enough for this
exercise. (The next section discusses just how “complete” the market has to be.)

The stock, bond, and discount factor follow

dS

S
= μdt+ σdz (7)

dB

B
= rdt (8)

dΛ

Λ
= −rdt− μ− r

σ
dz (9)

(These are also equations (17.2) from Chapter 17, which discusses the environment in more
detail. You can check quickly that this is a valid discount factor, i.e. E(dΛ/Λ) = −rdt and
E(dS/S) − rdt = −E(dΛ/Λ dS/S)). The discrete-time discount factor for time T payoffs
is mT = ΛT/Λ0. Solving these equations forward and with a bit of algebra below, we can
evaluate Equation (6),

R̂ = e(1−α)(r+
1
2
ασ2) Rα

T (10)

where RT = ST/S0 denotes the stock return, and

α ≡ 1
γ

μ− r

σ2
.
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(α will turn out to be the fraction of wealth invested in stocks, if the portfolio is implemented
by dynamic stock and bond trading.)

The optimal payoff is power function of the stock return. Figure 1 plots this function
using standard values μ − r = 8% and σ = 16% for a few values of risk aversion γ. For
γ = 0.09−0.01

0.162
= 3.125, the function is linear — the investor just puts all his wealth in the

stock. At lower levels of risk aversion, the investor exploits the strong risk-return tradeoff,
taking a position that is much more sensitive to the stock return at RT = 1. He gains
enormous wealth if stocks go up (vertical distance past RT = 1), and the cost of somewhat
less consumption if stocks go down. At higher levels of risk aversion, the investor accepts
drastically lower payoffs in the good states (on the right) in order to get a somewhat better
payoff in the more expensive (high m) bad states on the left.

The optimal payoffs in Figure 1 are nonlinear. The investor does not just passively hold
a stock and bond portfolio. Instead, he buys a complex set of contingent claims, trades
dynamically, or buys a set of options, in order to create the nonlinear payoffs shown in
the Figure. Fundamentally, this behavior derives from the nonlinearity of marginal utility,
combined with the nonlinearity of the state-prices implied by the discount factor.
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Figure 1: Return of an optimal portfolio. The investor has power utility u0(c) = c−γ. He
chooses an optimal portfolio in a complete market generated by a lognormal stock return
with 9% mean and 16% standard deviation, and a 1% risk free rate.

Algebra. The solutions of the pair (7)-(9) are (see (17.5) for more detail),

lnST = lnS0 +

µ
μ− σ2

2

¶
T + σ

√
Tε (11)
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lnΛT = lnΛ0 −
"
r +

1

2

µ
μ− r

σ

¶2#
T − μ− r

σ

√
Tε (12)

with ε˜N(0, 1). We thus have

mT = exp

(
−
"
r +

1

2

µ
μ− r

σ

¶2#
T − μ− r

σ

√
Tε

)

E

µ
m
1− 1

γ

T

¶
= exp

"
−
µ
1− 1

γ

¶"
r +

1

2

µ
μ− r

σ

¶2#
T +

1

2

µ
1− 1

γ

¶2µμ− r

σ

¶2
T

#

= exp

(
−
µ
1− 1

γ

¶"
r +

1

2

µ
μ− r

σ

¶2
− 1
2

µ
1− 1

γ

¶µ
μ− r

σ

¶2#
T

)

= exp

(
−
µ
1− 1

γ

¶"
r +

1

2

µ
1

γ

¶µ
μ− r

σ

¶2#
T

)
.

Using RT = ST/S0 to substitute out ε in (12)

m
− 1
γ

T = exp

(
1

γ

"
r +

1

2

µ
μ− r

σ

¶2#
T +

1

γ

μ− r

σ2

∙
lnRT −

µ
μ− σ2

2

¶
T

¸)

= exp

(
1

γ

"
r +

1

2

µ
μ− r

σ

¶2
− μ− r

σ2

µ
μ− σ2

2

¶#
T +

1

γ

μ− r

σ2
lnRT

)

= exp

(
1

γ

"
r − 1

2

µ
μ− r

σ

¶2
+

µ
μ− r

σ

¶2
− μ− r

σ2

µ
μ− σ2

2

¶#
T +

1

γ

μ− r

σ2
lnRT

)

= exp

(
1

γ

"
r − 1

2

µ
μ− r

σ

¶2
+

μ− r

σ2

∙
μ− r −

µ
μ− σ2

2

¶¸#
T +

1

γ

μ− r

σ2
lnRT

)

= exp

(
1

γ

"
r − 1

2

µ
μ− r

σ

¶2
− μ− r

σ2

µ
r − σ2

2

¶#
T +

1

γ

μ− r

σ2
lnRT

)
Then

R̂ = exp

(
1

γ

"
r − 1

2

µ
μ− r

σ

¶2
− μ− r

σ2

µ
r − σ2

2

¶#
T +

µ
1− 1

γ

¶"
r +

1

2

µ
1

γ

¶µ
μ− r

σ

¶2#
T

)

× exp
½
1

γ

μ− r

σ2
lnRT

¾
= exp

(
r − 1

γ

μ− r

σ2

µ
r − σ2

2

¶
− 1
2

1

γ2

µ
μ− r

σ

¶2)
T exp

½
1

γ

μ− r

σ2
lnRT

¾
= exp

∙
r − 1

2
σ2α2 − α

µ
r − σ2

2

¶¸
T × exp {α lnRT}

= exp

∙
(1− α)

µ
r +

1

2
ασ2

¶
T

¸
×Rα

T
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Implementation

This example will still feel empty to someone who knows standard portfolio theory, in
which the maximization is stated over portfolio shares of specific assets rather than over the
final payoff. Sure, we have characterized the optimal payoffs, but weren’t we supposed to be
finding optimal portfolios? What stocks, bonds or options does this investor actually hold?

Figure 1 does give portfolios. We are in a complete market. Figure 1 gives the number of
contingent claims to each state, indexed by the stock return, that the investor should buy.
In a sense, we have made the portfolio problem very easy by cleverly choosing a simple basis
— contingent claims — for our complete market.

There remains a largely technical question: suppose you wanted to implement this pattern
of contingent claims by explicitly buying standard put and call options, or by dynamic trading
in a stock or bond, or any of the infinite number of equivalent repackaging of securities that
span the complete market, rather than by explicitly buying contingent claims. How would
you do it? I’ll return to these questions below, and you’ll see that they involve a lot more
algebra. But really, they are technical questions. We’ve solved the important economic
question, what the optimal payoff should be. Ideally, in fact, an intermediary (investment
bank) would handle the financial engineering of generating most cheaply the payoff shown
in Figure 1, and simply sell the optimal payoff directly as a retail product.

That said, there are two obvious ways to approximate payoffs like those Figure 1. First,
we can approximate nonlinear functions by a series of linear functions. The low risk aversion
(γ = 1, γ = 2) payoffs can be replicated by buying a series of call options, or by holding the
stock and writing puts. The high risk aversion (γ = 5, γ = 10) payoffs can be replicated
by writing call options, or by holding the stock and buying put options. The put options
provide “portfolio insurance.” Thus we see the demand and supply for options emerge from
different attitudes towards risk. In fact many investors do explicitly buy put options to
protect against “downside risk,” while many hedge funds do, explicitly or implicitly, write
put options.

Second, one can trade dynamically. In fact, as I will show below, the standard approach to
this portfolio problem does not mention options at all, so one may wonder how I got options
in here. But the standard approach leads to portfolios that are continually rebalanced. As it
turns out, this payoff can be achieved by continually rebalancing a portfolio with α fraction
of wealth held in stock. If you hold, say α = 60% stocks and 40% bonds, then as the market
goes up you will sell some stocks. This action leaves you less exposed to further stock market
increases than you would otherwise be, and leads to the concave (γ > 3.125) discrete-period
behavior shown in the graph.

Habits

A second example is useful to show some of the power of the method, and that it really
can be applied past standard toy examples. Suppose the utility function is changed to have
a subsistence or minimum level of consumption h,

u(c) = (c− h)1−γ.

9



Now, the optimal payoff is

(x̂− h)−γ = λm

x̂ = λ−
1
γm− 1

γ + h

Evaluating the wealth constraint,

W0 = E(mx̂) = λ−
1
γE
³
m1− 1

γ

´
+ he−rT

λ−
1
γ =

W0 − he−rT

E
³
m1− 1

γ

´
x̂ =

¡
W0 − he−rT

¢ m− 1
γ

E
³
m1− 1

γ

´ + h

The discount factor has not changed, so we can use the discount factor terms from the last
example unchanged. In the lognormal Black-Scholes example we have been carrying along,
this result gives us, corresponding to (10),

x̂ =
¡
W0 − he−rT

¢
e(1−α)(r+

1
2
ασ2)TRα

T + h

This is a very sensible answer. First and foremost, the investor guarantees the payoff h.
Then, wealth left over after buying a bond that guarantees h,

¡
W0 − he−rT

¢
is invested in

the usual power utility manner. Figure 2 plots the payoffs of the optimal portfolios. You can
see the left end is higher and the right end is lower. The investor sells off some performance
in good states of the world to make sure his portfolio never pays off less than h no matter
how bad the state of the world.

2.2 Incomplete markets

Most of the complete markets approach goes through in incomplete markets as
well. The first order condition x̂ = u0−1(λm)− e still gives the optimal portfolio,
but in general there are many m and we don’t know which one lands x̂ ∈ X, the
space available to the investor.

Well, what if markets are not complete? This is the case in the real world. Market
incompleteness is also what makes portfolio theory challenging. So, let’s generalize the ideas
of the last section to incomplete markets.

When markets are incomplete, we have to be more careful about what actually is available
to the investor. I start with a quick review of the setup and central results from Chapter

10
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Figure 2: Portfolio problem with habit utility

4. The payoffs available to the investor are a space X. For each payoff x ∈ X the investor
knows the price p(x). Returns have price 1, excess returns have price zero. The investor can
form arbitrary portfolios without short-sale constraints or transactions costs (that’s another
interesting extension), so the space X of payoffs is closed under linear transformations:

x ∈ X, y ∈ X ⇒ ax+ by ∈ X

I assume that the law of one price holds, so the price of a portfolio is the same as the price
of its constituent elements.

p(ax+ by) = ap(x) + bp(y).

As before, let’s follow the insight that summarizing prices and payoffs with a discount
factor makes the portfolio theory problem easier. From Chapter 4, we know that the law of
one price implies that there is a unique discount x∗ ∈ X such that

p(x) = E(x∗x) (13)

for all x ∈ X. The discount factor x∗ is often easy to construct. For example, if the payoff
space is generated as all portfolios of a finite vector of basis payoffs x with price vector p,
X = {c0x}, then x∗ = p0E(xx0)−1x satisfies p = E(x∗x) and x∗ ∈ X. Equation (9) is a
continuous-time version of this equation.

If markets are complete, this is the unique discount factor. If markets are not complete,
then there are many discount factors and any m = x∗ + ε, with E(εx) = 0 ∀x ∈ X is

11



a discount factor. Therefore, x∗ = proj(m|X) for any discount factor m. The return
corresponding to the payoff x∗is R∗ = x∗/p(x∗) = x∗/E(x∗2). R∗ is the global minimum
second moment return, and so it is on the lower portion of the mean-variance frontier. x∗

and R∗ need not be positive in every state of nature. Absence of arbitrage means there exists
a positive discount factor m = x∗ + ε, but the positive m may not lie in X, and there are
many non-positive discount factors as well.

The canonical one-period portfolio problem is now

max
{x̂∈X}

E [u(c)] s.t. (14)

c = x̂+ e; W = p(x̂).

This is different from our first problem (1) only by the restriction x̂ ∈ X: markets are
incomplete, and the investor can only choose a tradeable payoff.

The first order conditions are the same as before. We can see this most transparently in
the common case of a finite set of basis payoffs X = {c0x}. Then, the constrained portfolio
choice is x̂ = α0x and we can choose the portfolio weights α, respecting in this way x̂ ∈ X.
The portfolio problem is

max
{αi}

E

"
u

ÃX
i

αixi + e

!#
s.t. W =

X
i

αipi.

The first order conditions are

∂

∂αi
: piλ = E [u0(x̂+ e)xi] (15)

for each asset i, where λ is the Lagrange multiplier on the wealth constraint.

Equation (15) is our old friend p = E(mx). It holds for each asset in X if and only if
u0(x̂+e)/λ is a discount factor for all payoffs x̂ ∈ X. We conclude that marginal utility must
be proportional to a discount factor,

u0(x̂+ e) = λm (16)

where m satisfies p = E(mx) for all x ∈ X.

We can also apply the same derivation as before. It’s prettier, but the logic is a little
trickier. We know from the law of one price that there exists anm such that p = E(mx)∀x ∈
X, in fact there are lots of them. Thus, we can state the constraint as W = E(mx̂) using
any such m. Now the problem (14) is exactly the same as the original problem, so we can
find the first order condition by choosing x̂ in each state directly, with no mention of the
original prices and payoffs.

The solution to the portfolio problem is thus once again

x̂ = u0−1(λm)− e.

12



If markets are complete, as above, the discount factor m = x∗ is unique and in X. Every
payoff is traded, so both λm and u0−1(λm)− e are in X. Hence, all we have to do is find the
Lagrange multiplier to satisfy the initial wealth constraint.

If markets are not complete, we also have to pay attention to the constraint x̂ ∈ X. We
have derived necessary condition for an optimal portfolio, but not yet a sufficient condition.
There are many discount factors that price assets, and for only one of them is the inverse
marginal utility in the space of traded assets. While it’s easy to construct x∗ ∈ X, for
example, that may be the wrong discount factor.

X

ε+= *xm

*x

a

b

)(' 1 mu −

x̂

Figure 3: Portfolio problem in incomplete markets.

Figure 3 illustrates the problem for the case e = 0. X is the space of traded payoffs. x∗

is the unique discount factor in X. m = x∗ + ε gives the space of all discount factors. It
is drawn at right angles to X since E(εx) = 0 ∀x ∈ X. The optimal portfolio x∗ satisfies
u0−1(λm) = x∗ for some m. Case a shows what can go wrong if you pick the wrong m:
u0−1(λm) is not in the payoff space X, so it can’t be the optimal portfolio. Case b shows the
optimal portfolio: we have chosen the right m so that u0−1(λm) is in the payoff space X. x∗

is the wrong choice as well, since u0−1(λx∗) takes you out of the payoff space.

As the figure suggests, markets don’t have to be completely “complete” for x̂ = u0−1 (λx∗)
to work. It is enough that the payoff space X is closed under (some) nonlinear transforma-
tions. If for every x ∈ X, we also have u0−1(x) ∈ X, then x̂ = u0−1 (λx∗) will be tradeable,
and we can again find the optimal portfolio by inverting marginal utility from the easy-
to-compute unique discount factor x∗ ∈ X. A full set of options gives closure under all
nonlinear transformations and this situation is often referred to as “complete markets,” even
though many shocks are not traded assets. Obviously, even less “completeness” than this
can work in many applications.

13



What can we do? How can we pick the rightm? In general, there are two ways to proceed.
First, we can search over all possible m, i.e. slide up and down the m hyperplane and look
for the one that sends u0−1(λm) ∈ X. This isn’t necessarily hard, since we can set up the
search as a minimization, minimizing the distance between u0−1(m) and X. Equivalently,
we can invent prices for the missing securities, solve the (now unique) complete markets
problem, and search over those prices until the optimal portfolio just happens to lie in the
original space X. Equivalently again, we can attach Lagrange multipliers to the constraint
x̂ ∈ X and find “shadow prices” that satisfy the constraints.

Second, we can start all over again by explicitly choosing portfolio weights directly in the
limited set of assets at hand. This approach also leads to a lot of complexity. In addition,
in most applications there are a lot more assets at hand than can conveniently be put in
a maximization. For example, we often do portfolio problems with a stock and a bond,
ignoring the presence of options and futures. In almost all cases of practical importance, we
have to result to numerical answers, which means some approximation scheme.

Third, we can simplify or approximate the problem, so that u0−1(·) is an easy function.

2.3 Linear-quadratic approximation and mean-variance analysis

If marginal utility is linear, u0(c) = cb−c, then we can easily solve for portfolios
in incomplete markets. I derive x̂ = ĉb− ê−

£
p(ĉb)− p(ê)−W

¤
R∗, where ĉb and

ê are mimicking payoffs for a stochastic bliss point and outside income, W is
initial wealth, and R∗ is the minimum second moment return. The portfolio gets
the investor as close as possible to bliss point consumption, after hedging outside
income risk, and then accepting lower consumption in the high contingent claims
price states.

We know how to find a discount factor in the payoff space X, namely x∗. The problem
is that marginal utility is nonlinear, while the payoff space X is only closed under linear
combinations. This suggests a classic approximation: With quadratic utility, marginal utility
is linear. Then we know that the inverse image of x∗ ∈ X is also in the space X of payoffs,
and this is the optimal portfolio.

Analytically, suppose utility is quadratic

u(c) = −1
2
(cb − c)2

where cb is a potentially stochastic bliss point. Then

u0(c) = cb − c.

14



The first order condition (16) now reads

cb − x̂− e = λm.

Now, we can project both sides onto the payoff space X, and solve for the optimal portfolio.
Since proj(m|X) = x∗, this operation yields

x̂ = −λx∗ + proj
¡
cb − e|X

¢
. (17)

To make the result clearer, we again solve for the Lagrange multiplier λ in terms of initial
wealth. Denote by ê and ĉb the mimicking portfolios for preference shocks and labor income
risk,

ê ≡ proj (e|X)
ĉb ≡ proj

¡
cb|X

¢
(Projection means linear regression. These are the portfolios of asset payoffs that are closest,
in mean square sense, to the labor income and bliss points.) The wealth constraint then states

W = p(x̂) = −λp(x∗) + p(ĉb)− p(ê)

p(ĉb)− p(ê)−W

p(x∗)
= λ

Thus, the optimal portfolio is

x̂ = ĉb − ê−
£
p(ĉb)− p(ê)−W

¤
R∗, (18)

where again R∗ = x∗/p(x∗) = x∗/E(x∗2) is the return corresponding to the discount-factor
payoff x∗.

The investor starts by hedging as much of his preference shock and labor income risk as
possible. If these risks are traded, he will buy a portfolio that gets rid of all labor income risk
e and then buys bliss point consumption cb. If they are not traded, he will buy a portfolio
that is closest to this ideal — a mimicking portfolio for labor income and preference shock risk.
Then, depending on initial wealth and hence risk aversion (risk aversion depends on wealth
for quadratic utility), he invests in the minimum second moment return R∗. Typically (for all
interesting cases) wealth is not sufficient to buy bliss point consumption, W + p(ê) < p(ĉb).
Therefore, the investment in R∗ is negative. R∗ is on the lower portion of the mean-variance
frontier, so when you short R∗, you obtain a portfolio on the upper portion of the frontier.
The investment in the risky portfolio is larger (in absolute value) for lower wealth. Quadratic
utility has the perverse feature that risk aversion increases with wealth to infinity at the bliss
point. Given that the investor cannot buy enough assets to consume ĉb, R∗ tells him which
states have the highest contingent claims prices. Obviously, sell what you have at the highest
price.

In sum, each investor’s optimal portfolio is a combination of a mimicking portfolio to
hedge labor income and preference shock risk, plus an investment in the (mean-variance
efficient) minimum second moment return, whose size depends on risk aversion or initial
wealth.
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2.3.1 The mean-variance frontier

With no outside income e = 0, we can express the quadratic utility portfolio
problem in terms of local risk aversion,

R̂ = Rf +
1

γ

¡
Rf −R∗

¢
.

This expression makes it clear that the investor holds a mean-variance efficient
portfolio, further away from the risk free rate as risk aversion declines.

Traditional mean-variance analysis focuses on a special case: the investor has no job, so
labor income is zero, the bliss point is nonstochastic, and a riskfree rate is traded. This
special case leads to a very simple characterization of the optimal portfolio. Equation (18)
specializes to

x̂ = cb −
µ
cb

Rf
−W

¶
R∗ (19)

R̂ =
x̂

W
= R∗ +

cb

RfW

¡
Rf −R∗

¢
(20)

In Chapter 5, we showed that the mean-variance frontier is composed of all portfolios of the
form R∗ + α(Rf − R∗). Therefore, investors with quadratic utility and no labor income all
hold mean-variance efficient portfolios. As W rises or cb declines, the investor becomes more
risk averse. When W can finance bliss-point consumption for sure, WRf = cb, the investor
becomes infinitely risk averse and holds only the riskfree rate Rf .

Obviously, these global implications — rising risk aversion with wealth — are perverse
features of quadratic utility, which should be thought of as a local approximation. For this
reason, it is interesting and useful to express the portfolio decision in terms of the local risk
aversion coefficient.

Write (20) as

R̂ = Rf +

µ
cb

RfW
− 1
¶¡

Rf −R∗
¢

(21)

Local risk aversion for quadratic utility is

γ = −cu
00(c)

u0(c)
=

c

cb − c
=

µ
cb

c
− 1
¶−1

.

Now we can write the optimal portfolio

R̂ = Rf +
1

γ

¡
Rf −R∗

¢
. (22)
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where we evaluate local risk aversion γ at the point c = RfW .

The investor invests in a mean-variance efficient portfolio, with larger investment in the
risky asset the lower his risk aversion coefficient. Again, R∗ is on the lower part of the
mean-variance frontier, thus a short position in R∗ generates portfolios on the upper portion
of the frontier. RfW is the amount of consumption the investor would have in period 2 if he
invested everything in the risk free asset. This is the sensible place at which to evaluate risk
aversion. For example, if you had enough wealth to buy bliss point consumption RfW = cb,
you would do it and be infinitely risk averse.

2.3.2 Formulas

I evaluate the mean-variance formula R̂ = Rf + 1
γ

¡
Rf −R∗

¢
for the common

case of a riskfree rate Rf and vector of excess returns Re with mean μ and
covariance matrix Σ. The result is

Rf −R∗ =

µ
Rf

1 + μ0Σ−1μ

¶
μ0Σ−1Re

The terms are familiar from simple mean-variance maximization: finding the
mean-variance frontier directly we find that mean-variance efficient weights are
all of the form w = λμ0Σ−1 and the maximum Sharpe ratio is μ0Σ−1μ.

Formula (22) is a little dry, so it’s worth evaluating a common instance. Suppose the
payoff space consists of a riskfree rate Rf and N assets with excess returns Re, so that
portfolio returns are all of the form Rp = Rf + w0Re. Denote μ = E(Re) and Σ = cov(Re).
Let’s find R∗ and hence (22) in this environment.

Repeating briefly the analysis of Chapter 5, we can find

x∗ =
1

Rf
− 1

Rf
μ0Σ−1(Re − μ).

(Check that x∗ ∈ X, E(x∗Rf) = 1 and E(x∗Re) = 0, or derive it from x∗ = αRf +
w0 [Re − μ].) Then

p(x∗) = E(x∗2) =
1

Rf2
+

1

Rf2
μ0Σ−1μ

so

R∗ =
x∗

E(x∗2)
= Rf 1− μ0Σ−1(Re − μ)

1 + μ0Σ−1μ

and

Rf −R∗ = Rf − Rf

1 + μ0Σ−1μ
+

Rf

1 + μ0Σ−1μ
μ0Σ−1(Re − μ)

Rf −R∗ =
Rf

1 + μ0Σ−1μ
μ0Σ−1Re (23)
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To give a reference for these formulas, consider the standard approach to finding the
mean-variance frontier. Let Rep be the excess return on a portfolio. Then we want to find

minσ2(Rep) s.t. E(Rep) = E

min
{w}

w0Σw s.t. w0μ = E

The first order conditions give
w = λΣ−1μ

where λ scales up and down the investment to give larger or smaller mean. Thus, the
portfolios on the mean-variance frontier have excess returns of the form

Rep = λμ0Σ−1Re

This is a great formula to remember: μ0Σ−1 gives the weights for a mean-variance efficient
investment. You can see that (23) is of this form.

The Sharpe ratio or slope of the mean-variance frontier is

E(Rep)

σ(Rep)
=

μ0Σ−1μp
μ0Σ−1μ

=
p
μ0Σ−1μ

Thus, you can see that the term scaling Rf −R∗ scales with the market Sharpe ratio.

We could of course generate the mean-variance frontier from the risk free rate and any
efficient return. For example, just using μ0Σ−1Re might seem simpler than using (23), and
it is simpler when making computations. The particular mean-variance efficient portfolio
Rf − R∗ in (23) has the delicious property that it is the optimal portfolio for risk aversion
equal to one, and the units of any investment have directly the interpretation as a risk
aversion coefficient.

2.3.3 The market portfolio and two-fund theorem

In a market of quadratic utility, e = 0 investors, we can aggregate across
people and express the optimal portfolio as

R̂i = Rf +
γm

γi
¡
Rm −Rf

¢
This is a “two-fund” theorem — the optimal portfolio for every investor is a
combination of the risk free rate and the market portfolio. Investors hold more
or less of the market portfolio according to whether they are less or more risk
averse than the average investor.
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I have used R∗ so far as the risky portfolio. If you read Chapter 5, this will be natural.
However, conventional mean-variance analysis uses the “market portfolio” on the top of the
mean variance frontier as the reference risky return. It’s worth developing this representation
and the intuition that goes with it.

Write the portfolio choice of individual i from (21) as

R̂i = Rf +
1

γi
¡
Rf −R∗

¢
. (24)

The market portfolio R̂m is the wealth-weighted average of individual portfolios, or the return
on the sum of individual payoffs,

R̂m ≡
PN

i=1 x̂
iPN

j=1W
j
=

PN
i=1W

iR̂iPN
j=1W

j

Summing (24) over individuals, then,

R̂m = Rf +

PN
i=1W

i 1
γiPN

j=1W
j

¡
Rf −R∗

¢
.

We can define an “average risk aversion coefficient” as the wealth-weighted average of (in-
verse) risk aversion coefficients1,

1

γm
≡
PN

i=1W
i 1
γiPN

j=1W
j

so
R̂m = Rf +

1

γm
¡
Rf −R∗

¢
.

Using this relation to substitute Rm −Rf in place of Rf −R∗ in (24), we obtain

R̂i = Rf +
γm

γi
¡
Rm −Rf

¢
(25)

The optimal portfolio is split between the risk free rate and the market portfolio. The
weight on the market portfolio return depends on individual relative to average risk aversion.

The “market portfolio” here is the average of all assets held. If there are bonds in “net
supply” then they are included in the market portfolio, and the remaining riskfree rate is in
“zero net supply.” Since xi = ci, the market portfolio is also the claim to total consumption.

1“Market risk aversion” is also the local risk aversion of an investor with the average blisspoint and
average wealth,

1

γm
=

1
N

PN
i=1 c

bi

Rf 1
N

PN
i=1W

i
− 1.
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Since any two mean-variance efficient portfolios span the frontier, Rm andRf for example,
we see that optimal portfolios follow a two-fund theorem. This is very famous in the history
of finance. It was once taken for granted that each individual needed a tailored portfolio,
riskier stocks for less risk averse investors. Investment companies still advertise how well they
listen. In this theory, the only way people differ is by their risk aversion, so all investors’
portfolios can be provided by two funds, a “market portfolio” and a risk free security.

This is all illustrated in the classic mean-variance frontier diagram, Figure 4.

s (R)

E(R)

More risk averse

Market Rm

Less risk averse

Frontier

Rf

Figure 4: Mean-variance efficient portfolios.

2.4 Nontradeable income

I introduce two ways of expressing mean-variance portfolio theory with outside
income. First, the overall portfolio, including the hedge portfolio for outside
income, is still on the mean-variance frontier. Thus, we could use classic analysis
to determine the right overall portfolio — keeping in mind that the overall market
portfolio includes hedge portfolios for the average investors outside income too —
and then subtract off the hedge portfolio for individual outside income in order to
arrive at the individual’s asset portfolio. Second, we can express the individual’s
portfolio as 1) the market asset portfolio, adjusted for risk aversion and the
composition of wealth, 2) the average outside income hedge portfolio for all other
investors, adjusted again for risk aversion and wealth and finally 3) the hedge
portfolio for the individual’s idiosyncratic outside income.
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The mean-variance frontier is a beautiful and classic result, but most investors do in
fact have jobs, business income or real estate. Here, I attempt some restatements of the
more interesting case with labor income and preference shocks to bring them closer to mean-
variance intuition.

One way to do this is to think of labor or business income as part of a “total portfolio”.
Then, the total portfolio is still mean-variance efficient, but we have to adjust the asset
portfolio for the presence of outside income.

To keep it simple, keep a nonstochastic bliss point, cb. Then, equation (18) becomes

x̂ = cb − ê−
£
p(cb)− p(ê)−W

¤
R∗

We can rewrite this as
ê+ x̂ = cb −

£
p(cb)− (W + p(ê))

¤
R∗

The left hand side is the “total payoff”, consisting of the asset payoff x̂ and the labor income
hedge portfolio ê (Consumption is this payoff plus residual labor income, c = x̂ + e =
x̂+ (e− ê) + ê.)

We define a rate of return on the “total portfolio” as the total payoff — asset portfolio
plus human capital — divided by total value, and proceed as before,

R̂tp =
ê+ x̂

W + p(ê)
=

cb

W + p(ê)
−
∙

cb

Rf [W + p(ê)]
− 1
¸
R∗

R̂tp = Rf +
1

γ

¡
Rf −R∗

¢
Now

1

γ
=

cb

Rf [W + p(ê)]
− 1

is defined as the local risk aversion coefficient given cb and using the value of initial wealth
and the tradeable portfolio closest to labor income, invested at the risk free rate. Thus, we
can say that the total portfolio is mean-variance efficient. We can also aggregate just as
before, to express

R̂tp,i = Rf +
γm

γi
¡
Rtp,m −Rf

¢
(26)

where Rm is now the total wealth portfolio including the outside income portfolios,

This representation makes it seem like nothing much has changed. However the asset
portfolio — the thing the investor actually buys — changes dramatically. ê is a payoff the
investor already owns. Thus, to figure out the asset market payoff, you have to subtract the
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labor income hedge portfolio from the appropriate mean-variance efficient portfolio.

R̂i =
x̂i

W i
=

p(êi) +W i

W i

µ
êi + x̂i

p(êi) +W i
− êi

p(êi) +W i

¶
(27)

=

µ
1 +

p(êi)

W i

¶
R̂tp,i −

µ
p(êi)

W i

¶
êi

p(êi)
(28)

=

µ
1 +

p(êi)

W i

¶
R̂tp,i −

µ
p(êi)

W i

¶
R̂z,i (29)

where I use

R̂z,i =
êi

p(êi)

to denote the return on the mimicking portfolio for outside income. (I can’t use the natural
notation R̂e,i since Re stands for excess return.) This can be a large correction. Also, in
this representation the corresponding “market portfolio” R̂tp,m includes everyone else’s hedge
portfolio. It is not the average of actual asset market portfolios.

For that reason, I prefer a slightly more complex representation. We can break up the
“total” return to the two components, a “mimicking portfolio return” and the asset portfolio
return,

R̂tp,i =
êi + x̂i

p(êi) +W i

=
p(êi)

p(êi) +W i

êi

p(êi)
+

W i

p(êi) +W i

x̂i

W i

= (1− wi)R̂z,i + wiR̂i

Here

R̂z,i =
êi

p(êi)
; wi =

W i

p(êi) +W i
; 1− wi =

p(êi)

p(êi) +W i
.

The same decomposition works for Rtp,m. Then, substituting in (26),

(1− wi)R̂z,i + wiR̂i = Rf +
γm

γi

³
(1− wm) R̂z,m + wmR̂m −Rf

´
and hence

R̂i−Rf =
γm

γi
wm

wi

³
R̂m −Rf

´
+
γm

γi
wm

wi

(1− wm)

wm

³
R̂z,m −Rf

´
− (1− wi)

wi

³
R̂z,i −Rf

´
(30)

This representation emphasizes a deep point, you only deviate from the market portfolio
to the extent that you are different from everyone else. The first term says that an individ-
ual’s actual portfolio scales up or down the market portfolio according to the individual’s
risk aversion and the relative weight of asset wealth in total wealth. If you have more out-
side wealth relative to total, wi is lower, you hold a less risk averse position in your asset
portfolio. The second term is the hedge portfolio for the average investor’s labor income The
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next terms describe how you should change your portfolio if the character of your outside
income is different from everyone else’s.

A few examples will clarify the formula. First, suppose that outside income is nonsto-
chastic, so Rz = Rf . The second terms vanish, and we are left with

R̂i −Rf =
γm

γi
wm

wi

³
R̂m −Rf

´
This is the usual formula except that risk aversion is now multiplied by the share of asset
wealth in total wealth,

γiwi = γi
W i

W i + p(ei)
.

An individual with a lot of outside income p(ei) is sitting on a bond. Therefore, his asset
market portfolio should be shifted towards risky assets; his asset market portfolio is the same
as that of an investor with no outside income but a lot less risk aversion. This explains why
“effective risk aversion” for the asset market portfolio is in (30) multiplied by wealth.

Second, suppose that the investor has the same wealth and relative wealth as the market,
γi = γm and wi = wm, but outside income is stochastic. Then expression (30) simplifies to

R̂i −Rf =
³
R̂m −Rf

´
+
(1− w)

w

h
R̂z,m − R̂e,i

i
This investor holds the market portfolio (this time the actual, traded-asset market portfolio),
plus a hedge portfolio derived from the difference between his income and the average in-
vestor’s income. If the investor is just like the average investor in this respect as well, then he
just holds the market portfolio of traded assets. But suppose this investor’s outside income
is a bond, R̂ej = Rf , while the average investor has a stochastic outside income. Then, the
investor’s asset portfolio will include the hedge portfolio for aggregate outside income. He
will do better in a mean-variance sense by providing this “outside income insurance” to the
average investor.

2.5 The CAPM, multifactor models, and four fund theorem
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3 Choosing payoffs in intertemporal problems

One-period problems are fun and pedagogically attractive, but not realistic. People live a
long time. One-period problems would still be a useful guide if the world were i.i.d., so that
each day looked like the last. Alas, the overwhelming evidence from empirical work is that
the world is not i.i.d. Expected returns, variances and covariances all change through time.
Even if this were not the case, individual investors’ outside incomes vary with time, age
and the lifecycle. We need a portfolio theory that incorporates long-lived agents, and allows
for time-varying moments of asset returns. Furthermore, many dynamic setups give rise to
incomplete markets, since shocks to forecasting variables are not traded.

This seems like a lot of complexity, and it is. Fortunately, with a little reinterpretation of
symbols, we can apply everything we have done for one-period markets to this intertemporal
dynamic world.

I start with a few classic examples that should be in every financial economists’ toolkit,
and then draw the general point.

3.1 Portfolios and discount factors in intertemporal models

The same optimal portfolio formulas hold in an intertemporal model,

βtu0(x̂t + et) = λmt (31)

x̂t = u0−1(λmt/β
t)− et. (32)

where we now interpret x̂t to be the flow of dividends (payouts) of the optimal
portfolio, and et is the flow of outside income.

Start with an investor with no outside income; his utility function is

E
∞X
t=1

βtu(ct).

He has initial wealth W and he has a stream of outside income {et}. His problem is to pick
a stream of payoffs or dividends {x̂t}, which he will eat, ct = x̂t + et.

As before, we summarize the assets available to the investor by a discount factor m.
Thus, the problem is

max
{x̂t∈X}

E
∞X
t=1

βtu(x̂t + et) s.t. W = E
TX
t=1

mtx̂t
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Here mt represents a discount factor process, i.e. for every payoff xt, mt generates prices p
by

p = E
∞X
t=1

mtxt.

As before, absence of arbitrage and the law of one price guarantee that we can represent the
prices and payoffs facing the investor by such a discount factor process.

The first order conditions to this problem are (∂/∂x̂it in state i at time t)

βtu0(x̂t + et) = λmt (33)

Thus, once again the optimal payoff is characterized by

x̂t = u0−1(λmt/β
t)− et. (34)

The formula is only different because utility of consumption at time t is multiplied by βt. If
m is unique (complete markets), then we are done. If not, then again we have to choose the
right {mt} so that {x̂} ∈ X. (We have to think in some more detail what this payoff space
looks like when markets are not complete.)

As before, this condition characterizes the solution up to initial wealth. To match it to
a specific initial wealth (or to find what wealth corresponds to a choice of λ), we impose the
constraint,

E
X
t

mtu
0−1(λmt) =W.

The corresponding continuous time formulation is

maxE

Z ∞

t=0

e−ρtu(x̂t + et)dt s.t. W = E

Z ∞

t=0

mtx̂tdt

giving rise to the identical conditions

e−ρtu0(x̂t + et) = λmt (35)

x̂t = u0−1(λmt/e
−ρt)− et. (36)

3.2 The power-lognormal problem

We solve for the optimal infinite-horizon portfolio problem in the lognormal
iid setup. The answer is that optimal consumption or dividend is a power function
of the current stock value,

x̂t = (const.) ×
µ
St
S0

¶α

;
1

γ

μ− r

σ2
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To see this analysis more concretely, and for its own interest, let’s solve a classic problem.
The investor has no outside income, lives forever and wants intermediate consumption, and
has power utility

maxE

Z ∞

t=0

x̂1−γt

1− γ
dt.

He can dynamically trade, resulting in “complete” markets.

Once we have a discount factor mt that represents asset markets, the answer is simple.
From (36)

x̂t = λ−
1
γ
¡
eρtmt

¢− 1
γ

As before, we can solve for λ,

W = E

Z ∞

t=0

mtλ
− 1
γ
¡
eρtmt

¢− 1
γ dt

W = λ−
1
γE

Z ∞

t=0

e−
ρ
γ
t m

1− 1
γ

t dt

so the optimal payoff is

x̂t
W
=

e−
ρ
γ
t m

− 1
γ

t

E
R∞
t=0

e−
ρ
γ
t m

1− 1
γ

t dt
(37)

The analogy to the one-period result (6) is strong. However, the “return” is now a dividend
at time t divided by an initial value, an insight I follow up on below.

We might insist that the problem be stated in terms of a discount factor. But in practical
problems, we will first face the technical job of find the discount factor that represents a given
set of asset prices and payoffs, so to make the analysis concrete and to solve a classic problem,
let’s introduce some assets and find their discount factor. As before, a stock and bond follow

dS

S
= μdt+ σdz (38)

dB

B
= rdt. (39)

(Think of S and B as the cumulative value process with dividends reinvested, if you’re
worried about transversality conditions. What matters is a stock return dR = μdt + σdz
and bond return rdt.) This is the same setup as the iid lognormal environment of section
2.1.1, but the investor lives forever and values intermediate consumption rather than living
for one period and valuing terminal wealth.

Fortunately, we’ve already found the discount factor, both in chapter 17 and in equation
(9) above, mt = Λt/Λ0 where

dΛ

Λ
= −rdt− μ− r

σ
dz. (40)
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We can substitute d lnS for dz and solve (38)-(40), (algebra below) resulting in

Λt

Λ0
= e

1
2(

μ−r
σ2
−1)(μ+r)t ×

µ
St
S0

¶−μ−r
σ2

.

And thus, for power utility, (37) becomes

x̂t = (const.) ×
µ
St
S0

¶α

where again

α =
1

γ

μ− r

σ2

Optimal consumption at date t is a power function of the stock value at that date. As you
can guess, and as I’ll show below, one way to implement this rule is to invest a constantly
rebalanced fraction of wealth α in stocks, and to consume a constant fraction of wealth as
well. But this is a complete market, so there are lots of equivalent ways to implement this
rule.

Evaluating the constant — the denominator of (37) takes a little more algebra and is not
very revealing, but here is the final answer:

x̂t
W
=
1

γ

∙
ρ+ (γ − 1)

µ
r +

1

2
γα2σ2

¶¸
e−

1
γ [ρ+

1
2
(γα−1)(μ+r)]t

µ
St
S0

¶α

(41)

Algebra:

d lnΛ =
dΛ

Λ
− 1
2

dΛ2

Λ2
= −

"
r +

1

2

µ
μ− r

σ

¶2#
dt− μ− r

σ
dz

d lnS =
dS

S
− 1
2

dS2

S2
=

µ
μ− 1

2
σ2
¶
dt+ σdz

For the numerator, we want to express the answer in terms of St. Substituting d lnS
for dz,

d lnΛ = −
"
r +

1

2

µ
μ− r

σ

¶2#
dt− μ− r

σ2

∙
d lnS −

µ
μ− 1

2
σ2
¶
dt

¸

d lnΛ =

"
−r − 1

2

µ
μ− r

σ

¶2
+

μ(μ− r)

σ2
− 1
2
(μ− r)

#
dt− μ− r

σ2
d lnS

d lnΛ =

"
−r − 1

2

µ
μ− r

σ

¶2
+

μ(μ− r)

σ2
− 1
2
(μ− r)

#
dt− μ− r

σ2
d lnS

d lnΛ =
1

2

∙
μ− r

σ2
− 1
¸
(μ+ r)dt− μ− r

σ2
d lnS

lnΛt − lnΛ0 =
1

2

∙
μ− r

σ2
− 1
¸
(μ+ r)t− μ− r

σ2
(lnSt − lnS0)
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mt =
Λt
Λ0

= e
1
2

�
μ−r
σ2
−1
�
(μ+r)t

µ
St
S0

¶−μ−r
σ2

.

e−
ρ
γ
t m

− 1
γ

t = e
− ρ
γ
t− 1

γ
1
2

�
μ−r
σ2
−1
�
(μ+r)t

µ
St
S0

¶μ−r
γσ2

= e
− 1
γ

k
ρ+ 1

2

�
μ−r
σ2
−1
�
(μ+r)

l
t
µ
St
S0

¶μ−r
γσ2

For the denominator, it’s easier to express Λ in terms of a normal random variable.

lnΛt − lnΛ0 = −
"
r +

1

2

µ
μ− r

σ

¶2#
t− μ− r

σ

√
tε

m
1− 1

γ

t = e
−
�
1− 1

γ

�k
r+ 1

2(
μ−r
σ )

2
l
t−μ−r

σ

�
1− 1

γ

�√
tε

E

µ
m
1− 1

γ

t

¶
= e

�
−
�
1− 1

γ

�k
r+ 1

2(
μ−r
σ )

2
l
+ 1
2

k
μ−r
σ

�
1− 1

γ

�l2�
t

= e
−
�
1− 1

γ

�q
r+ 1

2
1
γ (

μ−r
σ )

2
r
t

Z ∞

0
e−

ρ
γ
tE

µ
m
1− 1

γ

t

¶
dt =

Z ∞

0
e−

ρ
γ
te
−
�
1− 1

γ

�q
r+ 1

2
1
γ (

μ−r
σ )

2
r
t
dt

=

Z ∞

0
e
− 1
γ

q
ρ+(γ−1)

k
r+ 1

2
1
γ (

μ−r
σ )

2
lr

t
dt

=
γ

ρ+ (γ − 1)
h
r + 1

2
1
γ

¡μ−r
σ

¢2i
Thus,

x̂t
W

=
ρ+ (γ − 1)

h
r + 1

2
1
γ

¡μ−r
σ

¢2i
γ

e
− 1
γ

k
ρ+ 1

2

�
μ−r
σ2
−1
�
(μ+r)

l
t
µ
St
S0

¶μ−r
γσ2

x̂t
W

=
1

γ

µ
ρ+ (γ − 1)

∙
r +

1

2
γα2σ2

¸¶
e−

1
γ [ρ+

1
2
(γα−1)(μ+r)]t

µ
St
S0

¶α

.

3.3 A mapping to one-period problems

I introduce a little notation that makes even clearer the analogy between
multipleriod and one-period problems. E(x) ≡ E

P∞
t=1 β

txt treats time and
states symmetrically. Then, we write p = E

¡P∞
t=1 β

tmtxt
¢
= E(mx). In this

notation, the infinite-period dynamic problem looks exactly the same as the one
period problem.
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The analogy in the above examples to the one-period analysis is striking. Obviously,
one-period and multiperiod models are the same in a deep sense.

To make the analogy closest, let us define an expectation operator that adds over time
using βt or e−ρt as it adds over states using probabilities. Thus, define

one period: E(x) ≡ E(x1) =
X
s

π(s)x1(s)

infinite period, discrete: E(x) ≡ E
∞X
t=1

βtxt =
∞X
t=1

X
st

βtπ(st)xt(st)

infinite period, continuous : E(x) ≡ E

Z ∞

0

e−ρtxtdt

It is convenient to take β as the investor’s discount factor, but not necessary.

With this definition, infinite horizon portfolio theory looks exactly like one period theory.
We write asset pricing as

p(x) = E
∞X
t=1

βtmtxt = E(mx).

Here it is convenient to start with a discount factor that is scaled by βt in order to then
multiply by βt. In the canonical example which was expressed mt = βtu0(ct)/u0(c0) we now
have mt = u0(ct)/u0(c0).

(One problem with this definition is that the weights over time do not add up to one,
E(1) = β/(1− β). One can define E(x) = (1−β)

β

P
βtE(xt) to restore this property, but then

we must write pricing as p(x) = β/(1− β)E(mx). I choose the simpler pricing equation, at
the cost that you have to be careful when taking long run means E of constants.)

The investor’s objective is

maxE
X
t

βtu(ct) = max E [u(c)]

ct = x̂t + et

The constraint is
W = E

X
t

βtmtx̂t = E(mx̂)

In sum, we are exactly back to

max E [u(x̂t + et)] s.t. W = E(mx̂)

The first order conditions are

u0(x̂+ e) = λm

x̂ = u0−1 (λm)− e

exactly as before. (We rescaled m, which is why it’s not m/βt as in (34).)

29



With power utility and no outside income, we can evaluate the constraint as

W = E(mλ−
1
γm− 1

γ )

so again the complete problem is

x̂t
W
=

m
− 1
γ

t

E(m1− 1
γ )

All the previous analysis goes through unchanged!

3.3.1 Units

Reinterpreting the symbols from one period problems, “Returns” x/p(x) are
now dividends at time t divided by initial price, and the “long-run mean-variance
frontier” values stability over time as well as states of nature.

We do, however, have to reinterpret the symbols. x̂/W is now a dividend stream divided
by its time-0 price. This, apparently is the right generalization of “return” to an infinite-
horizon model. More generally, for any payoff stream I think it is better to call the “return”
a “yield,”

yt =
xt

p({xt})
=

xt
E(mx)

.

Its typical size will be something like 0.04 not 1.04. Similarly, we can define“excess yields”,
which are the zero-price objects as

yet = y1t − y2t .

The risk free payoff is thus one in all states and dates, a perpetuity

xft = 1.

risk free yield is therefore

yft =
1

p({1})
This is, in fact, the coupon yield of the perpetuity.

I think this observation alone makes a good case for looking at prices and payoff streams
rather than one period returns. In the standard Merton-style or period to period analysis,
a long term bond is a security that is attractive because its price happens to go up a lot
when interest rates decline. Thus, it provides a good hedge for a long-term highly risk averse
investor. The fact that a 10 year bond is the riskless asset for an investor with a 10 year
horizon, or an indexed perpetuity is the riskless asset for an investor with an infinite horizon,
is a feature hidden deep in value functions. But once you look at prices and payoffs, it’s just
obvious that the indexed perpetuity is the riskless asset for a long-term investor.

30



In place of our usual portfolios and payoff spaces, we have spaces of yields,

Y ≡ {y ∈ X : p(y) = 1} ,

Y e ≡ {ye ∈ X : p(ye) = 0} .
It’s natural to define a long-run mean / long-run variance frontier which solves

min
{y∈Y }

E(y2) s.t. E(y) = μ.

“Long run variance” prizes stability over time as well as stability across states of nature. If
we redo exactly the same algebra as before, we find that the long-run frontier is generated
as

ymv = y∗ + wye∗. (42)

Here, y∗ is the discount-factor mimicking portfolio return,

y∗ =
x∗

p(x∗)
=

x∗

E(x∗2) . (43)

If a riskfree rate is traded, ye∗ is simply

ye∗ =
yf − y∗

yf
. (44)

The long-run mean-variance frontier of excess returns is

min
{ye∈Y e}

E(ye2) s.t. E(ye) = μ.

This frontier is generated simply by

yemv = wye∗ w ∈ <

Our payoff spaces need to include dynamic trading. For example, if you see a variable
zt (e.g. dividend yields, cay) that forecasts returns Rt+1, you want to include in your port-
folio dynamic trading strategies that depend on zt. One easy way to do this is simply to
include managed portfolios, as we did in Chapter 8. If a variable zt is useful for describing
time-variation in future returns or payoffs, and if xt+1 is a price-zero payoff, then we just
include payoffs of the form f (zt)xt+1 in the payoff space X, and inspired by a Taylor approx-
imation, ztxt+1, z2t xt+1, etc. This is equivalent to including payoffs (dividend streams) from
real managed portfolios, for example mutual funds or hedge funds that implement dynamic
trading. In the real world as well as in this formal sense, dynamic trading means that funds
or managed portfolios can synthesize payoffs not available from an original set of assets.
Therefore, a time-invariant choice of managed portfolios is exactly equivalent to a dynamic
strategy.

A particularly important kind of market incompleteness occurs with dynamic trading,
however. If a variable zt forecasts returns, the discount factor and hence optimal portfolios
will typically depend on shocks to zt, which may not be traded. For example, there is no
tradeable security that pays the innovation to dividend yields in a VAR. This observation in
particular motivates us to understand incomplete markets in a dynamic setting.
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3.3.2 Incomplete markets and the long-run mean long-run variance frontier

With quadratic utility and no outside income, a long-run investor in a dy-
namic, interetemporal, incomplete market wants a portfolio on the long-run
mean-variance frontier. All investors split their payoffs between an indexed per-
petuity and the market payoff, which is a claim to the aggregate consumption
stream. The representations derived before for portfolio theory with outside in-
come now apply as well, using outside income flows.

As before, with incomplete markets we face the same issue of finding the one of many
possible discount factors m which leads to a tradeable payoff. Again, however, we can use
the quadratic utility approximation

u(c) = −1
2

¡
cb − c

¢2
U = E

∙
−1
2

¡
cb − c

¢2¸
= E

X
t

βt
µ
−1
2

¶
(cbt − ct)

2

and the above analysis goes through exactly. Again, all we have to do is to reinterpret the
symbols.

The optimal portfolio with a nonstochastic bliss point and no labor income is

ŷ = yf +
1

γ

¡
yf − y∗

¢
.

We recognize a long-run mean/long-run variance efficient portfolio on the right hand side.
Aggregating across identical individuals we have

ŷi = yf +
γa

γi
¡
ŷm − yf

¢
.

Thus, the classic propositions have straightforward reinterpretations:

1. Each investor holds a portfolio on the long-run mean/ long-run variance frontier.

2. The market portfolio is also on the long-run mean / long-run variance frontier.

3. Each investor’s portfolio can be spanned by a real perpetuity yf and a claim to aggregate
consumption ŷm

In the absence of outside income, a “long-run” version of the CAPMholds in this economy,
since the market is “long-run” efficient.
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Keep in mind that all of this applies with arbitrary return dynamics — we are not as-
suming iid returns — and it holds with incomplete markets, in particular that innovations to
state variables are not traded.

As conventional mean-variance theory gave a useful approximate characterization of opti-
mal portfolios without actually calculating them — finding the mean-variance frontier is hard
— so here we give an approximate characterization of optimal portfolios in a fully dynamic,
intertemporal, incomplete markets context. Calculating them — finding x∗, y∗, the long run
mean-long run variance frontier, or supporting a payoff x̂ with dynamic trading in specific
assets — will also be hard.
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4 Portfolio theory by choosing portfolio weights

The standard approach to portfolio problems is quite different. Rather than summarize
assets by a discount factor and choose the final payoff, you specify the assets explicitly and
choose the portfolio weights.

For example, we can solve a one-period problem in which the investor chooses among
returns Rf and R

max
{α}

Eu
£
W0

¡
Rf + α0Re

¢¤
The first order condition is our old friend,

E [u0(WT )R
e] = 0

E
£
u0
¡
W0

¡
Rf + α0Re

¢¢¤
= 0

The obvious easy case to solve will be quadratic utility,

E
£
(cb −W0

¡
Rf + α0Re

¢
)Re
¤
= 0

0 =
¡
cb −W0R

f
¢
E (Re)−W0α

0E [ReRe0] = 0

α =

µ
cb

W0
−Rf

¶
E [ReRe0]

−1
E (Re)

α =
1

γ
RfE [ReRe0]

−1
E (Re)

This is the same mean-variance efficient portfolio we’ve seen before.

Solving interetemporal problems this way is a little harder because the set of portfolios
explodes. For example, suppose there is a signal, zt that predicts returns Re

t+1 = a+bzt+εt+1,
and suppose we want to maximize E(U(WT )) Now, the weights change each period, as
functions of zt and time.

One still can attack a problem like this using a static approach, using the equivalence
I stressed in Chapter 8 between managed portfolios and conditioning information. We can
form a few sensible but reasonable ad-hoc trading rules, for example α = a+ bzt (portfolios
will give us arbitrary linear functions of these rules, thus changing the intercept and slope
as needed), and then expand the return space to include returns of these trading rules. The
static choice between managed portfolios is, in principle, equivalent to the fully dynamic
portfolio theory, just as in Chapter 8 unconditional moments with managed portfolios could,
in principle, deliver all the testable implications of a fully dynamic model.

As in Chapter 8, the limitation of this approach is that we don’t know for sure that
a finite set of ad-hoc trading rules will encompass the truly optimal portfolio. As in that
context, we can appeal to the universal practice in static problems: We do not include all
individual stocks, bonds, currencies, etc., but first reduce the problem to a small number
of portfolios that we feel capture the interesting cross section of returns. If a few cleverly
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chosen portfolios of assets are enough to capture the cross-section, then surely a few cleverly
chosen trading strategies are enough to capture the dynamic portfolio problem.

However, if one really wants the exact optimum, there is no substitute for searching over
the infinite-dimensional space of potential trading strategies. This is the traditional approach
to the problem, which I present here along with the classic results of that investigation.

4.1 One period, power-lognormal

I re-solve the one period, power utility, lognormal example by explicitly choos-
ing portfolio weights. The answer is the same, but we learn how to implement
the answer by dynamically trading the stock and bond. The portfolio holds a
constantly-rebalanced share αt =

1
γ
μ−r
σ2
in the risky asset.

This is a classic theorem: the fraction invested in the risky asset is independent
of investment horizon. It challenges conventional wisdom that young people
should hold more stocks since they can afford to wait out any market declines.

This approach is easiest to illustrate in a canonical example, the power-lognormal case
we have already studies. At each point in time, the investor puts a fraction αt of his wealth
in the risky asset. Thus the problem is

max
{αt}

Eu(cT ). s.t.

dWt = Wt

∙
αt
dSt
St
+ (1− αt)rdt

¸
cT = WT ; W0 given

I start with the canonical lognormal iid environment,

dSt
St

= μdt+ σdzt

dB

B
= rdt.

Substituting, wealth evolves as

dWt

Wt
= [r + αt(μ− r)] dt+ αtσdz. (45)

We find the optimal weights αt by dynamic programming. The value function satisfies

V (W, t) = max
{αt}

EtV (Wt+dt, t+ dt)
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and hence, using Ito’s lemma,

0 = max
{αt}

Et

½
VWdW +

1

2
VWWdW 2 + Vtdt

¾
0 = max

{αt}
WVW [r + αt(μ− r)] +

1

2
W 2VWWα2tσ

2 + Vt (46)

The first order condition for portfolio choice αt leads directly to

αt = −
VW

WVWW

μ− r

σ2
(47)

We will end up proving
V (W, t) = k(t)W 1−γ

t

and thus
αt =

1

γ

μ− r

σ2
. (48)

The proportion invested in the risky asset is a constant, independent of wealth and invest-
ment horizon. It is larger, the higher the stock excess return, lower variance, and lower risk
aversion. Conventional wisdom says you should invest more in stocks if you have a longer
horizon; the young should invest in stocks, while the old should invest in bonds. The data
paint an interesting converse puzzle: many young people invest in bonds until they build up
a safe “nest egg,” and the bulk of stock investment is done by people in their mid 50s and
later. In this model, the conventional wisdom is wrong.

Of course, models are built on assumptions. A lot of modern portfolio theory is devoted
to changing the assumptions so that the conventional wisdom is right, or so that the “safety-
first” stylized fact is optimal. For example, time-varying expected returns can raise the
Sharpe ratio of long-horizon investments, and so can make it optimal to hold more in stocks
for longer investment horizons.

(Actually, the quantity − VW
WVWW

is the risk aversion coefficient. Risk aversion is often
measured by people’s resistance to taking bets. Bets affect your wealth, not your consump-
tion, so aversion to wealth bets measures this quantity. The special results are that in this
model, risk aversion is also equal to the local curvature of the utility function γ, and therefore
risk aversion is independent of time and wealth, even though V (W, t).)

With the optimal portfolio weights in hand, invested wealth W follows

WT =W0e
(1−α)(r+ 1

2
σ2α)T

µ
S

S0

¶α

(49)

This is exactly the result we derived above. If α = 1, we obtain W = W0 (ST/S0), and if
a = 0 we obtain WT =W0e

rT , sensibly enough.
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Algebra The algebra for (49) is straightforward if uninspiring.

dWt

Wt
= (1− α) rdt+ α

dS

S

d lnWt =
dWt

Wt
− 1
2

dW 2

W 2
= (1− α) rdt+ α

dSt
St
− 1
2
α2σ2dt

d lnSt =
dSt
St
− 1
2

dS2

S2
=

dSt
St
− 1
2
σ2dt

d lnWt = (1− α) rdt+ α

µ
d lnSt +

1

2
σ2dt

¶
− 1
2
α2σ2dt

d lnWt =

∙
(1− α) r +

1

2
σ2α(1− α)

¸
dt+ αd lnSt

d lnWt = (1− α)

µ
r +

1

2
σ2α

¶
dt+ αd lnSt

lnWT − lnW0 = (1− α)

µ
r +

1

2
σ2α

¶
T + α (lnST − lnS0)

WT = W0e
(1−α)(r+ 1

2
σ2α)T

µ
ST
S0

¶α

The value function

It remains to prove that the value function V really does have the formV (W, t) =
k(t)W 1−γ

t /(1− γ), and to find k(t).

Substituting the optimal portfolio αt into (88), the value function solves the differential
equation

0 = WVW [r + αt(μ− r)] +
1

2
W 2VWWα2σ2 + Vt

0 =

∙
r − VW

WVWW

(μ− r)

σ2
(μ− r)

¸
+
1

2

W 2VWW

WVW

µ
VW

WVWW

(μ− r)

σ2

¶2
σ2 +

Vt
WVW

0 = r − VW
WVWW

(μ− r)

σ2
(μ− r) +

1

2

VW
WVWW

(μ− r)

σ2

2

+
Vt

WVW

0 = r − 1
2

VW
WVWW

(μ− r)2

σ2
+

Vt
WVW

, (50)

subject to the terminal condition

u(WT ) = V (WT ).

The usual method for solving such equations is to guess the solution up to undertermined
parameters or simple functions, and then figure out what those parameters have to be in
order for the guess to work. In this case, guess a solution of the form

V (W, t) = eη(T−t)W 1−γ
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Hence,

Vt = −ηeη(T−t)W 1−γ

VW = (1− γ)eη(T−t)W−γ

VWW = −γ(1− γ)eη(T−t)W−γ−1

− VW
WVWW

=
1

γ
Vt

WVW
= − η

1− γ

Plugging in to the PDE (90), that equation holds if the undetermined coefficient η solves

0 = r +
1

2

1

γ

(μ− r)2

σ2
− η

1− γ

Hence,

η = (1− γ)

∙
r +

1

2

1

γ

(μ− r)2

σ2

¸
and

V (W, t) = e
(1−γ)

�
r+ 1

2
1
γ
(μ−r)2
σ2

�
(T−t)

W 1−γ

Since our guess works, the portfolio weights are in fact as given by equation (48). You might
have guessed just W 1−γ, but having more time to trade and asset to grow makes success
more likely.

In a complete-market problem, we don’t have to guess the value function. We’ve already
solved the problem and found the final payoffs, so we can compute the value function from
the previous contingent-claim solution.

4.2 Comparison with the payoff approach

Having both the discount factor approach and the portfolio weight approach in hand, you
can see the appeal of the discount factor-complete markets approach. It took us two lines
to get to x̂ = (const) × Rα

T , and only a few more lines to evaluate the constant in terms
of initial wealth. The portfolio weight approach, by contrast took a lot of algebra. One
reason it did so, is that we solved for a lot of stuff we didn’t really need. We found not
only the optimal payoff, but we found a specific dynamic trading strategy to support that
payoff. That might be useful. On the other hand, you might want to implement the optimal
payoff with a portfolio of call and put options at time zero and not have to spend the entire
time dynamically trading. Or you might want to use 2 or 3 call options and then limit your
amount of dynamic trading. The advantage of the portfolio choice approach is that you
really know the answer is in the payoff space. The disadvantage is that if you make a slight
change in the payoff space, you have to start the problem all over again.

Sometimes problems cannot be easily solved by choosing portfolio weights, yet we can
easily characterize the payoffs. The habit example with u0(c) = (c− h)−γ above is one such
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example. We solved very quickly for final payoffs. You can try to solve this problem by
choosing portfolio weights, but you will fail, in a revealing manner. Equation (89) will still
describe portfolio weights. We had not used the form of the objective function in getting
to this point. Now, however, the risk aversion coefficient will depend on wealth and time.
If you are near W = h, you become much more risk averse! We need to solve the value
function to see how much so. The differential equation for the value function (90) is also
unchanged. The only thing that changes is the terminal condition. Now, we have a terminal
condition

V (W,T ) = (W − h)1−γ.

Of course, our original guess V (W, t) = eη(T−t)W 1−γ won’t match this terminal condition. A
natural guess V (W, t) = eη(T−t)(W −f(t)h)1−γ, alas, does not solve the differential equation.
The only way I know to proceed analytically is to use the general solution of the differential
equation

V (W, t) =

Z
a(ξ)e

(1−ξ)
�
r+ 1

2
1
γ
(μ−r)2
σ2

�
(T−t)

W 1−ξ
t dξ

and then find a(ξ) to match the terminal condition. Not fun.

You can see the trouble. We have complicated the problem by asking not just for the
answer — the time T payoff or the number of contingent claims to buy —but also by asking for
a trading strategy to synthesize those contingent claims from stock and bond trading. We
achieved success by being able to stop and declare victory before the hard part. Certainly
in this complete market model, it is simpler first to characterize the optimal payoff x̂, and
then to choose how to implement that payoff by a specific choice of assets, i.e. put and call
options, dynamic trading, pure contingent claims, digital options, etc.

On the other hand, in general incomplete markets problems, choosing portfolio weights
means you know you always stay in the asset space x̂ ∈ X.
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5 Dynamic intertemporal problems

Now we remove the iid assumption and allow mean returns, variance of returns and outside
income to vary over time. I also introduce intermediate consumption in the objective.

5.1 A single-variable Merton problem

We allow mean returns, return volatility and labor income to vary over time.
This section simplifies by treating a single risky return and a single state variable.
The optimal portfolio weight on the risky asset becomes

αt =
1

γt

μt − rt
σ2t

+ ηtβdy,dR

where γt and ηt are risk aversion and aversion to the risk that the state variable
changes, defined by corresponding derivatives of the value function, and βdy,dR is
the regression coefficient of state-variable innovations on the risky return.
We see two new effects: 1) “Market timing.” The allocation to the risky asset

may rise and fall over time, for example if the mean excess return μt − rt varies
and γt and σt do not. 2) “Hedging” demand. If the return is good for “bad”
realizations of the state variable, this raises the desirability and thus overall
allocation to the risky asset.
These results simply characterize the optimal portfolio problem without solv-

ing for the actual value function. That step is much harder in general.

Here’s the kind of portfolio problem we want to solve. We want utility over consumption,
not terminal wealth; and we want to allow for time-varying expected returns and volatilities.

maxE

Z ∞

0

e−ρtu(ct)dt s.t. (51)

dRt = μ(yt)dt+ σ(yt)dzt (52)

dyt = μy(yt)dt+ σy(yt)dzt (53)

The objective can also be or include terminal wealth,

maxE

Z T

0

e−ρtu(ct)dt+EU(WT ).

In the traditional Merton setup, the y variables are considered only as state variables for
investment opportunities. However, we can easily extend the model to think of them as state
variables for labor or proprietary income et and include ct = xt + et as well. I start in this
section by specializing to a single state variable y, which simplifies the algebra and gives
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one set of classic results. The next section uses a vector of state variables and generates a
different set of classic results.

If the investor puts weights α in the risky asset, wealth evolves as

dW = WαdR+W (1− α)rdt+ (e− c) dt

dW = [Wr +Wα (μ− r) + (e− c)] dt+Wασdz

e (really e(yt)) is outside income.

The value function must include the state variable y, so the Bellman equation is

V (W, y, t) = max
{c,α}

u(c)dt+Et

£
e−ρdtV (Wt+dt, yt+dt, t+ dt)

¤
,

using Ito’s lemma as usual,

0 = max
{c,α}

u(c)dt− ρV dt+ Vtdt+ VWEt (dW ) + VyEt(dy)

+
1

2
VWWdW 2 +

1

2
Vyydy

2 + VWydWdy.

Next we substitute for dW , dy. The result is

0 = max
{c,α}

u(c)− ρV (W, y, t) + Vt + VW [Wr +Wα (μ− r) + e− c] + Vyμy (54)

+
1

2
VWWW 2α2σ2 +

1

2
Vyyσ

2
y +WVWyασσy.

Now, the first order conditions. Differentiating (54),

∂

∂c
: u0(c) = VW

Marginal utility of consumption equals marginal value of wealth. A penny saved has the
same value as a penny consumed.

Next, we find the first order condition for portfolio choice:

∂

∂α
: WVW (μ− r) +W 2VWWσ2α+WσσyVWy = 0

α = − VW
WVWW

(μ− r)

σ2
− σy

σ

VWy

WVWW

This is the all-important answer we are looking for: the weights of the optimal portfolio.
σσy = cov(dR, dy) is the covariance of return innovations with state variable innovations, so
σσy/σ

2 = βdy,dR is the regression coefficient of state variable innovations on return innova-
tions. Thus, we can write the optimal portfolio weight in the risky asset as

α = − VW
WVWW

μt − rt
σ2t

− VWy

WVWW
βdy,dR (55)

=
1

γ

μt − rt
σ2t

+
η

γ
βdy,dR (56)
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In the second line, I have introduced the notation γ for risk aversion and η which measures
“aversion” to state variable risk.

γ ≡ −WVWW

VW
; η ≡ VWy

VW
.

The γ here is the local curvature of the value function at time t. It is not necessarily the
power of a utility function, nor is it necessarily constant over time.

The first term is the same as we had before. However, the mean and variance change
over time — that’s the point of the Merton model. Thus, Investors will “time the market,”
investing more in times of high mean or low variance. The second term is new: Investors
will increase their holding of the risky asset if it covaries negatively with state variables of
concern to the investor. “Of concern” is measured by VWy. This is the “hedging” motive.
A long term bond is a classic example. Bond prices go up when subsequent yields go down.
Thus a long-term bond is an excellent hedge for the risk that interest rates decline, meaning
your investment opportunities decline. Investors thus hold more long term bonds than they
otherwise would, which may account for low long-term bond returns. Since stocks now
mean-revert too, we should expect important quantitative results from the Merton model:
mean-reversion in stock prices will make stocks even more attractive.

(This last conclusion depends on risk aversion, i.e. whether substitution or wealth effects
dominate. Imagine that news comes along that expected returns are much higher. This has
two effects. First there is a “wealth effect.” The investor will be able to afford a lot more
consumption in the future. But there is also a “substitution effect.” At higher expected
returns, it pays the investor to consume less now, and then consume even more in the
future, having profited by high returns. If risk aversion, equal to intertemporal substitution,
is high, the investor will not pay attention to the latter incentive. Raising consumption in
the future means consumption rises now, so VW = u0(c) declines now, i.e. VWy < 0. However,
if risk aversion is very low, the substitution effect will dominate. The investor consumers
less now, so as to invest more. This means VW = u0(c) rises, and VWy > 0. Log utility is
the knife edge case in which substitution and wealth effects offset, so VWy = 0. We usually
think risk aversion is greater than log, so that case applies.)

Of course, risk aversion and state variable aversion are not constants, nor are they deter-
mined by preferences alone. This discussion presumes that risk aversion and state variable
aversion do not change. They may. Only by fully solving the Merton model can we really
see the portfolio implications.

5.1.1 Completing the Merton model

Actually finding the value function in the Merton problem is not easy, and
has only been accomplished in a few special cases. Most applied work uses
approximations or numerical methods.
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Conceptually this step is simple, as before: we just need to find the value function. We
plug optimal portfolio and consumption decisions into 54 and solve the resulting partial
differential equation. However, even a brief look at the problem will show you why so little
has been done on this crucial step, and thus why quantitative use of Merton portfolio theory
languished for 20 years until the recent revival of interest in approximate solutions. The
partial differential equation is, from (54) (algebra below)

0 = u
£
u0−1(VW )

¤
− ρV + Vt +WVW r − VWu0−1(VW ) + VWe+ Vyμy +

1

2
Vyyσ

2
y

−1
2

1

σ2VWW
[VW (μ− r) + σσyVWy]

2 .

This is not a pleasant partial differential equation to solve, and analytic solutions are usually
not available. The nonlinear terms u(u0−1(VW )) and u0−1 (VW ) are especially troublesome,
which accounts for the popularity of formulations involving the utility of terminal wealth,
for which these terms are absent.

There are analytical solutions for the following special cases:

1. Power utility, infinite horizon, no state variables. As you might imagine, V (W ) =W 1−γ

works again. This is a historically important result as it establishes that the CAPM
holds even with infinitely lived, power utility investors, so long as returns are i.i.d. over
time and there is no labor income. I solve it in the next subsection

2. Log utility, no labor income. In this case, VWy = 0, the investor does no intertemporal
hedging. Now we recover the log utility CAPM, even when there are state variables.

3. Power utility of terminal wealth (no consumption), AR(1) state variable, no labor
income, power (or more generally HARA) utility. (Kim and Omberg 1996). Here the
natural guess that V (W, y, t) = W 1−γ exp [a(T − t) + b(T − t)y + c(T − T )y2] works,
though solving the resulting differential equation is no piece of cake.

4. Approximations or numerical evaluation. This is the approach taken by most of the
huge literature that studies Merton problems in practice.

Algebra: Plugging optimal consumption c and portfolio α decisions into (54),

0 = u(c)− ρV + Vt + VW [Wr +Wα(μ− r) + e− c] + Vyμy

+
1

2
VWWW 2α2σ2 +

1

2
Vyyσ

2
y +WVWyασσy

0 = u(u0−1(VW ))− ρV + Vt +WVW r − VWu0−1(VW ) + VW e+ Vyμy +
1

2
Vyyσ

2
y

+
1

2
VWWW 2α2σ2 +W (VW (μ− r) + VWyσσy)α
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0 = u(u0−1(VW ))− ρV + Vt +WVW r − VWu0−1(VW ) + VW e+ Vyμy +
1

2
Vyyσ

2
y

+
1

2
VWWW 2σ2

∙
VW

WVWW

(μ− r)

σ2
+

σσy
σ2

VWy

WVWW

¸2
−W [VW (μ− r) + VWyσσy]

∙
VW

WVWW

(μ− r)

σ2
+

σσy
σ2

VWy

WVWW

¸

0 = u(u0−1(VW ))− ρV + Vt +WVW r − VWu0−1(VW ) + VW e+ Vyμy +
1

2
Vyyσ

2
y

+
1

2

1

σ2VWW
[VW (μ− r) + σσyVWy]

2

− 1

σ2VWW
[VW (μ− r) + VWyσσy] [VW (μ− r) + σσyVWy]

0 = u(u0−1(VW ))− ρV + Vt +WVW r − VWu0−1(VW ) + VW e+ Vyμy +
1

2
Vyyσ

2
y

−1
2

1

σ2VWW
[VW (μ− r) + σσyVWy]

2 .

5.2 The power-lognormal iid model with consumption

I solve the power utility infinite-horizon model with iid returns and no outside
income. The investor consumes a constant proportion of wealth, and invests a constant
share in the risky asset.

In the special case of power utility, no outside income and iid returns, the differential equation
(54) specializes to

0 =
V
− 1
γ
(1−γ)

W

1− γ
− ρV + Vt +WVW r − VWV

− 1
γ

W − 1
2

1

σ2VWW
[VW (μ− r)]2

To solve it, we guess a functional form

V = k
W 1−γ

1− γ
.

Plugging in, we find that the differential equation holds if

k−
1
γ =

ρ

γ
− 1− γ

γ

∙
r +

1

2

(μ− r)2

γσ2

¸
.

Hence, we can fully evaluate the policy: Optimal consumption follows

c = V
− 1
γ

W =
1

γ

∙
ρ− (1− γ)

µ
r +

1

2

(μ− r)2

γσ2

¶¸
W (57)
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The investor consumes a constant share of wealth W . For log utility (γ = 1) we have c = ρW .
The second term only holds for utility different than log. If γ > 1, higher returns (either a higher
risk free rate or the higher squared Sharpe ratio in the second term) lead you to raise consumption.
Income effects are greater than substitution effects (high γ resists substitution), so the higher
“wealth effect” means more consumption now. If γ < 1, the opposite is true; the investor takes
advantage of higher returns by consuming less now, building wealth up faster and then consuming
more later. The risky asset share is, from (55),

α =
1

γ

μ− r

σ2
. (58)

We already had the optimal consumption stream in (41). What we learn here is that we can
support that stream by the consumption rule (57) and portfolio rule (58).

The Algebra

V = k
W 1−γ

1− γ

VW = kW−γ

VWW = −γkW−γ−1

0 =
k
− 1
γ (1−γ)W (1−γ)

1− γ
− ρk

W 1−γ

1− γ
+WkW−γr −

¡
kW−γ¢1− 1

γ +
1

2

(kW−γ)2

γkW−γ−1
(μ− r)2

σ2

0 =
k
1− 1

γ

1− γ
W 1−γ − ρk

1− γ
W 1−γ + rkW 1−γ − k1−

1
γW 1−γ +

1

2

(μ− r)2

σ2
k

γ
W 1−γ

0 =
k
− 1
γ

1− γ
− ρ

1− γ
+ r − k−

1
γ +

1

2

(μ− r)2

γσ2

0 =

µ
γ

1− γ

¶
k−

1
γ − ρ

1− γ
+ r +

1

2

(μ− r)2

γσ2

k−
1
γ =

ρ

γ
− 1− γ

γ

∙
r +

1

2

(μ− r)2

γσ2

¸

5.3 Multivariate Merton problems and the ICAPM

I characterize the infinite-period portfolio problem with multiple assets and multiple
state variables. The optimal portfolio weights

α =
1

γ
Σ−1(μ− r) + β0dy,dR

η

γ

include a mean-variance efficient portfolio, but also include mimicking portfolios for
state-variable risks
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Now, let’s solve the same problem with a vector of asset returns and a vector of state variables.
This generalization allows us to think about how the investor’s choice among assets may be affected
by time-varying investment opportunities and by labor income and state variables for labor income.
We start as before,

maxE

Z ∞

0
e−ρtu(ct) s.t. (59)

dRt = μ(yt)dt+ σ(yt)dzt (60)

dyt = μy(yt)dt+ σy(yt)dzt (61)

det = μe(yt)dt+ σe(yt)dzt (62)

Now I use dR to denote the vector of N returns dSi/Si, so μ is an N dimensional vector. y is a K
dimensional vector of state variables. dz is an (at least) N +K dimensional vector of independent
shocks, Et(dzdz

0) = I. Thus, σ is an N × (N +K) dimensional matrix and σy is a K × (N +K)
dimensional matrix. I’ll examine the case in which one asset is a risk free rate, rt Since it varies
over time, it is one of the elements of yt. The conventional statement of the problem ignores outside
income and only thinks of state variables that drive the investment opportunity set, but since labor
income is important and all the results we will get to accommodate it easily, why not include it.

Now, if the investor puts weights α on the risky assets, wealth evolves as

dW = W
¡
α0dR

¢
+W (1− 10α)rdt+ (e− c) dt

dW =
£
Wr +Wα0 (μ− r) + (e− c)

¤
dt+Wα0σdz.

The Bellman equation is

V (W, y, t) = max
{c,α}

u(c)dt+Et

h
e−ρdtV (Wt+dt, yt+dt, t+ dt)

i
,

and using Ito’s lemma as usual,

0 = max
{c,α}

u(c)dt− ρV dt+ Vtdt+ VWEt (dW ) + Vy0Et(dy)

+
1

2
VWWdW 2 +

1

2
dy0Vyy0dy + dWVWy0dy.

I use the notation Vy0 to denote the row vector of derivatives of V with respect to y. Vy would be
a corresponding column vector. Vyy0 is a matrix of second partial derivatives.

Next we substitute for dW , dy. The result is

0 = max
{c,α}

u(c)− ρV (W, y, t) + Vt + VW
£
Wr +Wα0 (μ− r)− c

¤
+ Vy0μy (63)

+
1

2
VWWW 2α0σσ0α+

1

2
Tr(σ0yVyy0σy) +Wα0σσ0yVWy

This is easy except for the second derivative terms. To derive them

E(dz0Adz) =
X
i,j

dziAijdzj =
X
i

Aii = Tr(A).
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Then,
dy0Vyy0dy = (σydz)

0Vyy0(σydz) = dz0σ0yVyy0σydz = Tr(σ0yVyy0σy).

We can do the other terms similarly,

dWVWy0dy = (Wα0σdz)0VWy0(σydz) =Wdz0σ0αVWy0σydz

= WTr(σ0αVWy0σy) =WTr(α0σσ0yVWy) =Wα0σσ0yVWy

VWWdW 2 = VWW (Wα0σdz)0(Wα0σdz) =W 2VWWdz0σ0αα0σdz

= W 2VWWTr
¡
σ0αα0σ

¢
=W 2VWWTr

¡
α0σσ0α

¢
=W 2VWWα0σσ0α

(I used Tr(AA0) = Tr(A0A) and Tr(AB) = Tr(A0B0). These facts about traces let me condense a
(N +K) × (N +K) matrix to a 1 × 1 quadratic form in the last line, and let me transform from
an expression for which it would be hard to take α derivatives, Tr(σ0αα0σ), to one that is easy,
α0σσ0α).

Now, the first order conditions. Differentiating (63), we obtain again

∂

∂c
: u0(c) = VW

Differentiating with respect to α,

∂

∂α
: WVW (μ− r) +W 2VWWσσ0α+Wσσ0yVWy = 0

α = − VW
WVWW

¡
σσ0
¢−1

(μ− r)−
¡
σσ0
¢−1

σσ0y
VWy

WVWW

This is the all-important answer we are looking for: the weights of the optimal portfolio. It remains
to make it more intuitive. σσ0 = cov(dR, dR0) = Σ is the return innovation covariance matrix. σσ0y
= cov(dR, dy0) = σdR,y0 is the covariance of return innovations with state variable innovations, and
(σσ0)−1 σσ0y = Σ

−1σdR,y0 = β0dy,dR is a matrix of multiple regression coefficients of state variable
innovations on return innovations. Thus, we can write the optimal portfolio weights as

α = − VW
WVWW

Σ−1(μ− r)− β0dy,dR
VWy

WVWW
(64)

The first term is exactly the same as we had before, generalized to multiple assets. We recognize
in Σ−1(μ−r) the weights of a mean-variance efficient portfolio. Thus we obtain an important result:
In an iid world, investors will hold an instantaneously mean-variance efficient portfolio. Since we’re
using diffusion processes which are locally normal, this is the proof behind the statement that
normal distributions result in mean-variance portfolios. Mean variance portfolios do not require
quadratic utility, which I used above to start thinking about mean-variance efficiency. However,
note that even if α is constant over time, this means dynamically trading and rebalancing, so
that portfolios will not be mean-variance efficient at discrete horizons. In addition, the risky asset
share α will generally change over time, giving even more interesting and mean-variance inefficient
discrete-horizon returns.

The second term is new: Investors will shift their portfolio weights towards assets that covary
with, and hence can hedge, outside income or changes in the investment opportunity set. Investors
will differ in their degree of risk aversion and “aversion to state variable risk” so we can write the
optimal portfolio as

α =
1

γ
Σ−1(μ− r) + β0dy,dR

η

γ
(65)
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where again

γ ≡ −WVWW

VW
; η ≡ VWy

VW
.

If a positive return on an asset is associated with an increase in the state variable y, and if this
increase is associated with an increase in the marginal value of wealth, i.e. VWy < 0, then this
tendency leads to a greater average return. Increasing the marginal value of wealth indirectly, by
changing a state variable, is as important as increasing it directly, by lowering consumption.

5.3.1 Multifactor efficiency and K fund theorems.

The optimal portfolios solve a generalized mean-variance problem: minimize the
variance of portfolio returns for given values of portfolio mean return and for given
values of covariance with state variable innovations. This is the multifactor efficient
frontier.

We can nicely interpret this result as a generalization of mean-variance portfolio theory, follow-
ing Fama (1996).The Merton investor minimizes the variance of return subject to mean return, and
subject to the constraint that returns have specified covariance with innovations to state variables.
Let’s form portfolios

dRp = α0dR+ (1− α01)rdt

The suggested mean, variance, covariance problem is

min vart(dR
p) s.t. EtdR

p = E; covt(dR
p, dy) = ξ

min
{α}

α0σσ0α s.t.r + α0 (μ− r) = E ; α0σσ0y = ξ

Introducing Lagrange multipliers λ1, λ2, the first order conditions are

σσ0α = λ1 (μ− r) + σσ0yλ2

α = λ1
¡
σσ0
¢−1

(μ− r) +
¡
σσ0
¢−1

σσ0yλ2 (66)

α = λ1Σ
−1 (μ− r) + β0dy,dRλ2 (67)

This is exactly the same answer as (64)!

Figure 5 illustrates. As the mean-variance frontier is a hyperbola, the mean-variance-covariance
frontier is a revolution of a hyperbola. Fama calls this frontier the set of multifactor efficient
portfolios. (Covariance with a state variable is a linear constraint on returns, as is the mean. Thus,
the frontier is the revolution of a parabola in mean-variance-covariance space, and the revolution
of hyperbola in mean-standard deviation-covariance space as shown. I draw the prettier case with
no risk free rate. With a risk free rate, the frontier is a cone.) As shown in the picture, we can
think of the investor as maximizing preferences defined over mean, variance and covariance of the
portfolio, just as previously we could think of the investor as maximizing preferences defined over
mean and variance of the portfolio.
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Figure 5: Multifactor effcient portfolio and “indifference curve.”

The first term in (64) and (67) is the mean-variance frontier, or a tangency portfolio. (Set
λ2 = 0 and equation (67) derives this result.) Thus, we see that typical investors do not hold mean-
variance efficient portfolios. They are willing to give up some mean-variance efficiency in return
for a portfolio that hedges the state variable innovations dy.

What do they hold? Mean-variance portfolio theory led to the famous “two fund” theorem.
This generalization leads naturally to a K + 2 fund theorem. Investors splits their wealth between
the tangency portfolio and K mimicking portfolios for state variable innovation risk. To see this,
let’s write the investor’s optimal portfolio return, not just its weights.

dRi = αi0dR+ (1− αi01)rdt;

= rdt+ αi0(dR− rdt)

In the latter expression, I split up the investor’s portfolio into a risk free investment and an invest-
ment in a zero cost portfolio. Following (65), we can split up this portfolio return

dRi = rdt+
1

γi
dRT +

ηi0

γi
dRz

dRT = (μ− r)0Σ−1 (dR− rdt) (68)

dRz = βdy,dR (dR− rdt) (69)

We recognize dRT as a zero-cost investment in a mean-variance efficient or tangency portfo-
lio. The dRz portfolios are zero-cost portfolios formed from the fitted values of regressions of
state variable innovations on the set of asset returns. They are mimicking portfolios for the
state variable innovations, projection of the state variable innovations on the payoff space. They
are also “maximum correlation” portfolios, as regression coefficients minimize residual variance,
min{βdy,dR} var

¡
dy − βdy,dRdR

¢
. Of course, any two K+2 independent multifactor-efficient port-

folios will span the multifactor efficient frontier, so you may see other expressions. In particular,
I will in a moment express portfolios relative to the market portfolio rather than the tangency
portfolio. The key is to find an interesting set of portfolios that span the frontier.
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5.3.2 The ICAPM

The ICAPM states that expected returns are proportional to covariances with the
market return, but also to covariances with state variables, or mimicking portfolio
returns

μ− r = cov(dR, dRm)γm − cov(dR, dy0)ηm

μ− r = cov(dR, dRm)γm − cov(dR, dRz0)ηm

It’s always interesting to express portfolio theory with reference to the market portfolio. since
in the end we can only hold portfolios other than the market if we are different from every-
body else. The market portfolio is the average of individual portfolios, weighted by wealth αm =P

iW
iαi/

P
iW

i. Thus, summing (65) over investors,

αm =
1

γm
Σ−1(μ− r) + β0dR,dy

ηm

γm
(70)

Here,

1

γm
=

P
iW

i 1
γiP

j W
j
;
ηm

γm
=

P
iW

i ηi

γiP
j W

j

The ICAPM solves this expression for the mean excess return

μ− r = γmΣαm − σdR,dy0η
m (71)

(I used β0dR,dy = Σ
−1σdR,dy0 .) The market portfolio return is

dRm = rdt+ αm0 (dR− r) dt

Thus, we recognize
Σαm = cov(dR, dR0)αm = cov(dR, dRm)

and we have The ICAPM:

μ− r = cov(dR, dRm)γm − cov(dR, dy0)ηm.

Mean excess returns are driven by covariance with the market portfolio and covariance with each
of the state variables. The risk aversion and “state-variable aversion” coefficients give the slopes of
average return on covariances.

Since the mimicking portfolio returns dRz in (69) are the projections of state variables on the
space of excess returns, cov(dR, dy0) = cov(dR, dRz0). Directly,

dRz = βdy,dR (dR− rdt)

= cov(dy, dR0)cov(dR, dR0)−1 (dR− rdt)

cov(dR, dRz 0) = cov(dR, dR0)cov(dR, dR0)−1cov(dR, dy0)
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Thus, we can express the ICAPM in terms of covariances with mimicking portfolios,

μ− r = cov(dR, dRm)γm − cov(dR, dRz0)ηm.

Since the state variables are often nebulous or hard to measure, this form is used widely in practice.

(Historically, “ICAPM” only refers to models in which the other variables are state variables
for investment opportunities, not state variables for outside income, since Merton’s original paper
did not include outside income. “Multifactor models” encompasses the latter. However, since it’s
clearly so trivial to include state variables for outside income at least this far, I’ll use “ICAPM”
anyway.)

This expression with covariance on the right hand side is nice, since the slopes are related to
preference (well, value function) parameters. However, it’s traditional to express the right hand
side in terms of regression betas, and to forget about the economic interpretation of the λ slope
coefficients (especially because they are often embarrassingly large). This is easy to do:

μ− r = βdR,dRmλm − βdR,dy0λdy (72)

βdR,dRm =
cov(dR, dRm)

σ2dRm

;

βdR,dy0 = (cov(dy, dy0)−1cov(dy, dR0))0

λm =
σ2dRm

γm
;

λdy = cov(dy, dy0)ηm

Now we have expected returns as a linear function of market betas, and betas on state variable
innovations (or their mimicking portfolios).

Don’t forget that all the moments are conditional! The whole point of the ICAPM is that at
least one of the conditional mean or conditional variance must vary through time.

This derivation may seem strange. Isn’t the ICAPM about “market equilibrium?” How do we
jump from a “demand curve” to an equilibrium without saying anything about supply? The answer
is that the implicit general equilibrium behind the ICAPM has linear technologies: investors can
change the aggregate amount in each security costlessly, without affecting its rate of return. If a
security rises in value, investors can and do collectively rebalance away from that security. It is not
a demand curve which one intersects with a fixed supply of shares to find market prices. In this
sense, in a dynamic model, the CAPM and ICAPM are models of the composition of the market
portfolio. They are not models of price determination.

This insight is important to understand the conundrum, if everybody is like this, how do time-
varying returns etc. survive? Suppose all investors have standard power preferences. One would
think that return dynamics would be driven out. The answer is that quantities adjust. The average
investor does, for example, buy more when μ− r is high; as a result he becomes more exposed to
risks.

5.3.3 Portfolios relative to the market portfolio
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Relative to the market portfolio, rather than the tangency portfolio,

dRi = rdt+
γm

γi
(dRm − rdt) +

1

γi
¡
ηi0 − ηm0

¢
dRz

An investor holds more or less of the market portfolio according to his risk aversion, and
then more or less of the mimicking portfolios for state variable risk, as his “aversion”
to these is greater or less than those of the market.
A mean-variance investor will thus shade his portfolio toward the mimicking port-

folio of average state variable risk, therefore providing insurance to other investors
for a fee. But for this to work, there must be other investors who hedge even more
than average, accepting portfolios with even worse mean-variance properties than the
market.
State variables for outside income risk will likely have an idiosyncratic component,

for which ηm = 0. Optimal portfolios thus will contain this individual-specific compo-
nent.

It’s always interesting to express portfolio theory with reference to the market portfolio. since
in the end we can only hold portfolios other than the market if we are different from everybody
else. The market portfolio is also easier to identify than the tangency portfolio. To this end, use
(71) to eliminate (μ− r) on the right hand side of the individual portfolio weights (65), to obtain

αi =
1

γi
Σ−1

£
γmΣαm − σdR,dy0η

m
¤
+ β0dy,dR

ηi

γi

αi =
γm

γi
αm + β0dy,dR

¡
ηi − ηm

¢
γi

If you like looking at the actual portfolio return rather than just the weights,

dRi = rdt+ αi0(dR− rdt)

dRi = rdt+
γm

γi
(dRm − rdt) +

1

γi
¡
ηi0 − ηm0

¢
dRz

where again dRz = βdy,dR (dR− rdt) are the returns on the mimicking portfolios for state-variable
risk.

The investor first holds more or less of the market portfolio according to risk aversion. Then,
he holds more or less of the mimicking portfolios for state variable risk according to whether the
investor “feels” differently about these risks than does the average investor.

Some special cases of this portfolio advice are particularly interesting. First, return to the
market portfolio in (70). The first term — and only the first term — gives the mean-variance efficient
portfolio. Thus, the market portfolio is no longer mean-variance efficient. Referring to Figure 5,
you can see that the optimal portfolio has slid down from the vertical axis of the nose-cone shaped
multifactor efficient frontier. The average investor, and hence the market portfolio, gives up some
mean-variance efficiency in order to gain a portfolio that better hedges the state variables.

This prediction is the source of much portfolio advice from multifactor models, for example,
why the ICAPM interpretation of the Fama-French 3 factor model, is used as a sales tool for value-
stock portfolios. If you find a mean-variance investor, an investor who does not fear the state
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variable changes and so has ηi = 0; this investors can now profit by deviating from market weights.
He should slide up the nose-cone shaped multifactor efficient frontier in Figure 5, in effect selling
state-variable insurance to other investors, and charging a fee to do so. His optimal portfolio is now

dRi = rdt+
γm

γi
(dRm − rdt)− ηm0

γi
dRz

he should sell the mimicking portfolio for aggregate state-variable risk. This expression tells us,
quantitatively, how the mean-variance investor should deviate from the market portfolio in order
to profit from the ICAPM. An estimate of the ICAPM will tell us the slope coefficients (of average
returns on covariances) γm, ηm.

On the other hand, for everyone who is long someone else must be short. For every investor
who wants to profit from, say, the value premium in this way, there must be an investor whose ηi

is for example twice ηm, thus his optimal portfolio return is

dRi = rdt+
γm

γi
(dRm − rdt) +

ηm0

γi
dRz

He sees the great news of the Sharpe ratio of value portfolios, but wants to sell not buy, since he
is already too exposed to that state variable risk.

Third, this formulation includes idiosyncratic state variable risk, perhaps the most important
(and overlooked) risk of all. η = VWy/WW is a vector and different for different y. We should
include in investor i’s problem state variables for his individual outside income risk, even though
ηm = 0 for such risks. If, for example, this investor is no different from everybody else about his
feelings towards aggregate state variables, then his optimal portfolio will be

dRi = rdt+
γm

γi
(dRm − rdt) +

1

γi
ηi0dRz

This investor holds the market portfolio, plus a portfolio of assets that best offsets his individual
outside income risks. (State variables for investment opportunities are by definition common to all
investors.)

The hedge portfolios for individual risks, with ηm = 0 obtain no extra premium; ηi does not
enter the ICAPM (71). Thus, unpriced mimicking portfolios are likely to be the most interesting
and important for the average investor. The K funds that span the multifactor frontier are not
likely to be the same for every individual when we incorporate idiosyncratic outside income risk
into the analysis.

5.4 Completing the Merton model

The parameters γ and η governing the optimal portfolio come from the value func-
tion. The value function does not have a closed-form solution for cases other than the
simple ones studied above, so, alas, this is where the analysis ends.
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Again, we still need to compute the levels of risk aversion and “state variable aversion” from
the primitives of the model, the utility function and formulas for the evolution of stock prices.
Conceptually this step is simple, as before: we just need to find the value function. Alas, the
resulting partial differential equation is so ugly that work on this multivariate model has pretty
much stopped at the above qualitative analysis. From (54), the equation is

0 = u
£
u0−1(VW )

¤
− ρV + Vt + VWWr − VWu0−1 (VW ) + Vy0μy +

1

2
Tr(σ0yVyy0σy)

+Wα∗0
£
(μ− r)VW + σσ0yVWy

¤
+
1

2
VWWW 2α∗0σσ0α∗

where

α∗ = − VW
WVWW

¡
σσ0
¢−1

(μ− r)−
¡
σσ0
¢−1

σσ0y
VWy

WVWW
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6 Portfolios with time-varying expected returns

Given that market returns are forecastable, e.g. from the dividend yield, let’s try to find the
optimal portfolio. This is a classic and interesting single-state variable Merton problem. How
much market timing should one do? How strong is the “hedging demand” that makes stocks more
attractive than they would be if returns were iid? This classic problem has been attacked by Kim
and Ohmberg (1996), who find an exact (but difficult) solution with no intermediate consumption,
Brennan, Schwartz and Lagnado (1997) who solve it numerically, Brandt (1999), Campbell and
Vicera (1999), Wachter (1999a), Barberis (1999), who shows how and many others. (Cochrane
1999 attempts a summary.)

6.1 Payoff approach

Let μt denote the conditional mean return. Then the portfolio problem has a return with a time-
varying mean, in which the state variable follows a continuous-time AR(1).

maxE

Z ∞

0
e−ρtu(ct)dt or maxEe−ρTu(cT ) s.t.

dR− rdt = μtdt+ σdzt

dμt = φ(μ̄− μ)dt+ σμzdzt + σμwdwt

and the usual budget constraint. The return and state-variable shocks are not in general perfectly
correlated. I express the state-variable shock as a sum of two orthogonal elements to express this
fact. This is a “complete-markets problem” when σμw = 0. In that case, shocks to μt can be
perfectly hedged using asset returns dR. If σμw 6= 0, then, as we will see, the investor might want
to hold a portfolio that loads on dw, and we have to impose the constraint that he cannot do that.

The optimal payoff is

e−ρtc−γt = λ
Λt
Λ0

ct =

∙
eρtλ

Λt
Λ0

¸− 1
γ

Again, portfolio theory is done, but we have to solve the financial-engineering issue of finding the
discount factor for this asset structure. Since there is an extra shock dw, the discount factor is

dΛ

Λ
= −rdt− (μ− r)

σ
dzt − ηdw

The constant η is undertermined, since the dw shock does not correspond to any traded asset. This
is the equivalent of adding an ε shock in Figure 3.

It’s easier to define the Sharpe ratio as the state variable

xt =
μt − r

σ
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d

µ
μ− r

σ

¶
= φ

∙
μ̄− r

σ
− μ− r

σ

¸
dt+

σμz
σ

dz +
σμw
σ

dw

dxt = −φ (xt − x̄) dt+ σxzdzt + σxwdwt

dΛt
Λt

= −rdt− xtdz − ηdw

Now we can express the current Sharpe ratio as an AR(1)

xt − x̄ = σxz

Z T

0
e−φsdzt−s + σxw

Z T

0
e−φsdwt−s + e−φT (x0 − x̄)

and then the discount factor is

d lnΛt =
dΛ

Λ
− 1
2

dΛ2

Λ2
= −

µ
r +

1

2
x2t

¶
dt− xtdz

lnΛt − lnΛ0 = −
Z t

0

µ
r +

1

2
x2s

¶
ds−

Z t

0
xsdzs

d lnΛt =
dΛ

Λ
− 1
2

dΛ2

Λ2
= −

µ
r +

1

2
x2t +

1

2
η2
¶
dt− xtdz − ηdw

lnΛt − lnΛ0 = −
Z t

0

µ
r +

1

2
x2s +

1

2
η2
¶
ds−

Z t

0
xsdzs − η(wT −w0) (73)

Now, the “complete” markets case requires that there is a single shock dz, so shocks to μ are
perfectly correlated with shocks to dR, and thus the investor can perfectly hedge them. Markets
are “incomplete” when this is not the case, because the investor would like to hedge risks to the
investment opportunity set. Complete markets may not be that bad an approximation, since espe-
cially at high frequency discount rate shocks dominate changes in market prices. In the “complete”
markets case, then, we have

xt − x̄ = σxz

Z T

0
e−φsdzt−s + e−φT (x0 − x̄)

lnΛt − lnΛ0 = −
Z t

0

µ
r +

1

2
x2s

¶
ds−

Z t

0
xsdzs (74)

ct =

∙
eρtλ

Λt
Λ0

¸− 1
γ

(75)

This system is not quite so pleasant, though it is a well-studied class. (It’s a “stochastic
volatility” model often used to describe stock prices.) Even in the absence of a closed-form solution,
however, you can straightforwardly simulate it and watch the discount factor and then optimal
payoffs respond to the state variables

In the “incomplete” markets case, we’re back to (73) together with (75). Our task is to pick the
choice of η so that the final ct is not driven by shocks dw, which is not so easy. It looks like η = 0
will do the trick, since then the explicit dependence of Λ on w in the last term of (73) vanishes.
This would be enough for a quadratic utility investor, but not for power utility.
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6.2 Portfolio approach

6.3 Quantitative evaluation
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7 Wacky weights and Bayesian portfolios

Portfolio maximization depends on parameters, and uncertainty about the parameters can change
the estimate of the optimal portfolio as well as provide some standard errors of that portfolio. The
basic idea is, rather than maximizing conditional on parameters θ,

max
{α}

Z
u(α0Rt+1W0)p(Rt+1|θ)dRt+1

We integrate over the uncertainty about parameters as well,

max
{α}

Z
u(α0Rt+1W0)

∙Z
p(Rt+1|θ)p(θ)dθ

¸
dRt+1 (76)

This approach can usefully tame the wild advice of most portfolio calculations, and it advises
you to place less weight on less well measured aspects of the data.

Warning: this section is even more preliminary than the rest of the chapter.

The parameters of any model of asset returns are uncertain. We don’t know exactly what the
equity premium is, we don’t know exactly what the regression of returns on dividend yields and
other predictor variables looks like, and we don’t know exactly what the cross section of mean
returns or the “alphas” in a factor model are. Now, in a statistical framework, we would suppose
that uncertainty in the inputs just translates into standard errors on the outputs. It’s interesting to
track down how much uncertainty we have about optimal portfolio weights, but that consideration
doesn’t change the optimal portfolio itself.

However, it makes intuitive sense that one will take less advantage of a poorly estimated model,
rather than just invest according to its point estimates. This intuition is correct, and Bayesian
portfolio theory is a way to formalize it and think about how much to take advantage of a poorly
estimated model. The central idea is that parameter uncertainty is also a risk faced by the investor.
When some assets or strategies returns are less well estimated than others, this source of uncertainty
can skew the portfolio weights as well as tilt the overall allocation towards less risky assets.

So far, when we have made a portfolio calculation, we maximized expected utility, treating the
parameters as known. In a one-period problem, we solved

max
{α}

Z
u(α0Rt+1W0)p(Rt+1|θ)dRt+1

where θ denotes the parameters of the return distribution. But it is a mistake to treat the para-
meters as fixed. Uncertainty about the parameters is real uncertainty to the investor. Instead, we
should integrate over all the parameter values as well, i.e.

max
{α}

Z
u(α0Rt+1W0)

∙Z
p(Rt+1|θ)p(θ)dθ

¸
dRt+1 (77)

The “predictive density”

p(Rt+1) =

Z
p(Rt+1|θ)p(θ)dθ

58



expresses the true probability density of returns faced by the investor. This is a very intuitive
formula. It says to generate the probability density of returns by integrating over all possible
values of the parameters, using the information one has about the chance that those parameters
are correct to weight the possibilities.

With these ideas in mind, Bayesian portfolio theory can capture three effects. First, it can
capture the effect of parameter uncertainty on asset allocation. Here, we take a “diffuse prior”, so
that p(θ) reflects sampling error in the parameters. Second, it can let us mix “prior” information
with “sample” information. Often, we have a new model or idea suggesting a portfolio strategy,
but we also have a wealth of experience that alphas are pretty small. p(θ) now weights our “prior”
information, really summing up all the other data we’ve looked at, relative to the statistical infor-
mation in a new model, to interpolate between the two views. Third, an investor keeps learning
as time goes by; each new data point is not only good and bad luck, but it also is extra informa-
tion that changes the investor’s probability assessments. Thus, the investor’s shifting probability
views become a “state variable.” I only consider the first two effects here, though the third is also
interesting.

7.1 Wacky weights

To motivate the Bayesian approach, let’s just construct some optimal portfolios. We will see that
implementing the portfolio formulas using sample statistics leads to dramatic overfitting of portfolio
advice. The examples suggest that we find a way to scale back the overfitting to produce more
sensible advice.

7.1.1 Optimal market timing

I calculate an approximate optimal portfolio that takes advantage of the predictability of returns
from dividend yields. We see that it recommends a very strong market timing strategy, too strong
really to be believed.

Given that variables such as the dividend yield forecast returns, how much should an optimal
portfolio market-time, i.e. invest more in stocks when expected returns are higher? The complete
solution to the Merton problem in this case, (55)

α = − VW
WVWW

μt − rt
σ2t

− VWy

WVWW
βdy,dR

is hard to calculate, especially if one wants the value function. However, we can evaluate the first,
“market timing” component for fixed values of risk aversion, to get an idea of the strength of
market-timing that a full solution will recommend.

Figures 7 and 6 present market timing rules based on a regression of returns on dividend
yields, using the CRSP value-weighted index 1926-2007. The optimal amount of market timing
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is suspiciously large, especially for the γ = 2 − 5 range that seems reasonable for generating the
overall allocation to stocks.

Re
t+1 = −7.20 + 3.75 D/Pt + εt+1
(t) (−1.20) (2.66) σ2ε = 19.81%

(78)
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Figure 6: Market timing portfolio allocation. The allocation to risky stocks is αt =
1
γ
Et(Re)
σ2

.Expected excess returns come from the fitted value of a regression of returns on dividend
yields, Re

t+1 = a+ b(Dt/Pt) + εt+1. The vertical lines mark E(D/P )± 2σ(D/P ).

In this case especially though, the statistical reliability of the regression gives one pause. The
t statistic of only 2.55 in 80 years of data is not that large. Since the original dividend yield
regressions which found coefficients of 5 or so in the mid 1980s, the boom of the 1990s despite low
dividend yields cut the coefficient and t statistics below 2 by the late 1990s. Anyone who took
the advice lost out on the 1990s boom. The market decline of the early 2000 made the strategy
look somewhat better, and the coefficient has risen to 3.5 and regained its significance. But the
literature on dividend yield predictability still worries about a “structural shift”, that the still
negative advice from this regression is too pessimistic. All of this just reflects natural hesitance to
adopt the portfolio advice, and motivates a Bayesian approach to formally shading back the strong
market timing of the figure.

This example is in fact a very mild one. I estimated parameters using data from 1926, which
is much longer than the 5-10 year samples that are considered “long” when hedge funds estimate
market timing strategies. I only considered one signal. You can imagine how quickly the overfitting
problem explodes if one includes multiple variables on the right hand side, generating much stronger
portfolio advice.
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Figure 7: Market timing portfolio allocation over time. The allocation to risky stocks is
αt =

1
γ
Et(Re)
σ2

.Expected excess returns come from the fitted value of a regression of returns
on dividend yields, Re

t+1 = a+ b(Dt/Pt) + εt+1.

7.1.2 A simple cross-section

I calculate a very simple mean-variance frontier, and we see that the maximizer recommends “wacky
weights” with very strong long and short positions.

To evaluate how a typical mean-variance problem might work in practice, I estimate the mean
and covariance matrix of the 25 Fama-French portfolios and 3 factors in 20 years of data. This too is
a small and well-behaved problem by real-world standards. 5 years is a long estimation period, and
hedge funds consider hundreds of assets, along with time-varying means and covariance matrices,
which all make the problems much worse. Figure 8 presents the results.

I transform all the returns to excess returns, so we are only considering the composition of the
risky portfolio. The weights w in the portfolio w0Re are

w =
1

γ
Σ−1μ

where μ and Σ are the mean and covariance matrix of excess returns. The composition of the
optimal portfolio is the same for all γ, I choose the scale to report so that the variance of the
resulting portfolio is the same as the variance of the market index,

w =
σ2(rmrf)

μ0Σ−1μ
Σ−1μ
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Figure 8: mean-variance optimization with excess returns of the Fama French 25 size and
book/market portfolios, together with the 3 Fama French factors. “Optimal” is the mean-
variance optimal portfolio, at the same variance as the market return. “FF3F” is the mean-
variance optimal combination of the 3 Fama-French factors. The stars are the means and
standard deviations of the individual portfolio returns. The squares are the means and
variances of the factors. The thin black line gives the mean-variance frontier when weights
sum to one. Min var is the minimum variance excess return with weights that sum to one.
Mean and covariance estimates based on 20 years of data.

With this choice, σ2(w0Re) = w0Σw = σ2(rmrf). This portfolio is graphed at the “optimal” point
in Figure 8. The “FF3F” point gives the mean-variance optimal combination of the 3 Fama-French
factors, and the “rmrf” point gives the market return, whose Sharpe ratio gives the equity premium
so much trouble.

The figure suggests that portfolio optimization can deliver huge gains in mean returns and
Sharpe ratios. Why earn the market’s measly 0.5%/month when 3.5%/month is available with no
increase in volatility? However, let’s take a look at the actual portfolio the optimizer is recommend-
ing, in Table 1 below:

62



low 2 3 4 high
small -149 51 69 96 52
2 -19 -57 190 -13 -60
3 29 -34 -31 -93 41
4 116 -39 -42 35 -2
large 87 -19 8 -22 2

rmrf hml smb
-94 77 -69

Table 1. Optimal percent portfolio weights w = σ2(rmrf)
μ0Σ−1μ Σ

−1μ in the Fama-French
25 size and book/market portfolios plus the 3 Fama French Factors.

These are “wacky weights!” 149% short position in small growth, then +190% in the (2,3)
portfolio, and -93% in the (3,4) portfolio, seem like awfully large numbers. A -99% investment in
the market portfolio seems awfully strong as well. One is very hard-pressed to take these numbers
seriously.

Figure 8 also shows the minimum variance portfolio. This is the portfolio with minimum
variance, subject to the constraint that all weights sum to one. It has weights

w =
Σ−11

10Σ−11

This portfolio is useful to see troubles with the covariance matrix by itself, since it does not involve
means. If we believe this portfolio, by clever long and short positions among the Fama French 25
returns and the 3 factors, one can synthesize a nearly riskfree portfolio!

A moment’s reflection shows the problem. The assets are highly correlated with each other.
Thus, small, and perhaps even insignificant, differences in average returns can show up as huge
differences in portfolio weights. Figure 9 illustrates the situation. Suppose even that securities A
and B are identical, in that they have the same true mean, standard deviation, and betas. They are
also highly correlated. In a sample, A may be lucky and B unlucky. Given the strong correlation
between A and B, the mean-variance frontier connecting them is very flat, resulting in an optimal
portfolio that is very long A and very short B.

The minimum-variance portfolio is an instance of the same problem, in which A and B don’t
have the same mean. Now the line connecting them passes very close to the riskfree rate.

7.1.3 Common “solutions”

Again, all these problems are much worse in real-world applications. One of the most frequent uses
of portfolio theory is to incorporate subjective views (“trader skill”) about individual securities into
an overall portfolio. You can imagine how the portfolio starts to jump around when a trader can
express views about individual alphas.

These problems have been with portfolio optimization for 50 years. Industry practice has
developed a lot of common-sense procedures to guard against them. For example, most portfolio
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Mean

Standard deviation

True (equal)

A in sample

B in sample
Risk free

Apparent optimal portfolio
Very long A, short B

Figure 9: Example that generates huge portfolio weights

optimization adopts short-sale constraints or at least limitations on the extent of short-selling.
Most professional portfolio managers also adopt (or are forced to adopt) a long list of additional,
seemingly arbitrary rules: don’t invest more than x percent in a single security, make sure the
quantities are diversified across industry categories, etc.

Figure 9 suggests that most of these ad-hoc solutions have their limits. In that example merely
going 100% long A and 0 B is better than the extreme long-short position, but it does not recover
the true answer 50% A and 50% B. Similarly, most portfolio rules must reflect doubt that the
portfolio maximization has done its job correctly. If so, it seems better to figure out why the
portfolio maximizer isn’t working than to use it but slap ad-hoc rules on the results.

Both examples derive ultimately from the fact that we don’t know the parameters generating
asset returns precisely. Small errors in those parameters give rise to nonsense portfolios. The right
answer, it seems, is to understand parameter uncertainty and to incorporate it into the portfolio
model.

7.2 Parameter uncertainty

With that motivation, let’s adapt the ideas surrounding equation (77) to some simpler portfolio
calculations.

7.2.1 Lognormal iid power allocation
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Parameter uncertainty acts like an additional risk to investors. With normal distributions, we
simply add the mean return standard error to the variance of returns; the investor acts as if returns
are Rt+1 ∼ N

£
μ̄, σ2 + σ2μ

¤
where μ̄ is the mean of his estimate of the mean returns, and σ2μ is the

variance of that estimate.

I solve a simple lognormal iid power allocation problem, and find that the allocation to the risky
asset is α = (μ̄− r) /γσ2 [1 + (γ − 1)h/T ] where h is the investor’s horizon and T is the data sample
used to estimate the mean return. Parameter uncertainty is more important for long run investors.
I present some evaluations of this formula, which suggest that the phenomenon is quantitatively
important.

In the classic lognormal, power, iid world, the allocation to stocks is

α =
1

γ

μt − rt
σ2t

For typical numbers μ− r = 8% and σ = 16%, with a market Sharpe ratio of 0.5,

0.08

0.162
=

0.08

0.0256
= 3.123

so an investor with risk aversion 3.125 should put all his portfolio in stocks. The conventional 60/40
allocation happens at a risk aversion of about 5.2. These seem like reasonable numbers, at least
so long as one ignores the implication that consumption growth should have the same volatility as
stock returns. This fraction is invariant to horizon if the investor desires terminal wealth.

Now, the equity premium is notoriously hard to estimate. σ = 16% means that in 50 years of
data, our uncertainty about the sample mean is σ/

√
T = 2.26 percentage points. At a standard

error level, this means, roughly, that the one-standard error band for our optimal allocation is
between

1

γ

0.08± 0.026
0.162

=
1

γ
(2.11− 4.14) .

For γ = 3.125, that is the range 66%-132%. This is a large band of uncertainty, which should
leave one uncomfortable with the calculation. (I have always marveled at the common practice of
carefully rebalancing when allocations are only a few percent off their targets.) Still, this calculation
does not capture the idea that uncertainty about the market premium might lead us to take less
market risk overall.

To do that, let’s implement a simple version of the Bayesian calculation. The parameter that
really matters here is μ. Let us then specify that R is normally distributed with mean μ and
variance σ2, and that our posterior about μ is also normally distributed with mean μ̄ and variance
σ2μ. For example, we could take p(μ) as a normal distribution centered around the point estimate
μ̄, using the standard error to calibrate the variance σ2μ. By collecting terms and expressing the
integral in normal form, one can show that

p(Rt+1) =

Z
p(Rt+1|μ)p(μ)dμ

=
1

√
2πσ2

q
2πσ2μ

Z
e−

1
2
(r−μ)2
σ2 e

− 1
2
(μ−μ̄)2

σ2μ dμ =
1q

2π
¡
σ2 + σ2μ

¢e− 1
2

(r−μ̄)2

(σ2+σ2μ) (79)
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Thus, we have
Rt+1 ∼ N

£
μ̄, σ2 + σ2μ

¤
= N

£
μ̄, σ2(1 + 1/T )

¤
(80)

This is an important and very intuitive result. Parameter uncertainty about the mean means we
add the parameter variance to our estimate of the return variance. Parameter uncertainty about
the mean return does not lower one’s estimate of the mean. Instead, that parameter uncertainty
raises the perceived riskiness of the return. Plugged into a mean-variance calculation, you can see
that the investor will act more risk averse than ignoring parameter uncertainty.

Equation (80) suggests that parameter uncertainty is more important for investors with longer
horizons. This makes sense. First of all, uncertainty about the mean is much more important than
uncertainty about variances, which in theory at least collapses to zero as you observe data at finer
intervals. Then, at short horizons, risk comes almost entirely from the variance of returns, while
at 10 year or longer horizons, uncertainty about the mean has more of a chance to compound.
For example, if the annualized mean market return has a 5 percentage point standard error, this
adds only 5/365 = 0.0137 percentage points to daily volatility, a tiny contribution compared to
a 20/

√
365 = 1.0 percentage point daily standard deviation of returns. However, at a 10 year

horizon, 10×5 = 50 percentage points is a much larger amount of risk compared to 20×10 = 200%
10 year volatility. Fundamentally, the fact that means scale with horizon but standard deviations
scale with the square root of horizon makes uncertainty about the mean more important for longer
horizons.

We can see this effect to some extent in (80). As we apply the formula to longer horizons, the
number of nonoverlapping intervals T that goes in the standard error formula shrinks. Thus, to a
good approximation, we can use

Rt+h ∼ N
£
μ̄, σ2(1 + h/T )

¤
. (81)

It’s more satisfying to be a bit more explicit both about the horizon and about the portfolio
optimization, so here is a concrete example. Let’s find the optimal portfolio for a power utility
investor in an iid world with horizon h. I’ll presume a constantly rebalanced fraction α in the
risky asset, which we know from above is the answer when we allow αt to be freely chosen. (I
am ignoring the learning effect that σ2μ declines over the investment horizon.) Given the portfolio
choice α, wealth evolves as

dW

W
= rdt+ α (μ− r) dt+ ασdz

d lnW =

∙
r + α(μ− r)− 1

2
α2σ2

¸
dt+ ασdz

Wh = W0e
[r+α(μ−r)− 1

2
α2σ2]h+σα

√
hε; ε˜N(0, 1)

The investor’s problem is

max
α

E

Ã
W 1−γ

T

1− γ

!

max
α

W 1−γ
0

1− γ
E
³
e(1−γ)[r+α(μ−r)−

1
2
α2σ2]h+(1−γ)ασ

√
hε
´

Now, the investor is unsure about the return shock ε (of course), but also about the mean μ.
You can see directly that μ and ε are sources of risk that act similarly in the objective. The two
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sources of risk are independent — uncertainty about the mean comes from the past sample, and
uncertainty about returns comes from the future. (Again, I am ignoring the fact that the investor
learns a bit more about the mean during the investment period.) Thus, the problem is

max
α

W 1−γ
0

1− γ

Z
e(1−γ)[r+α(μ−r)−

1
2
α2σ2]h+(1−γ)ασ

√
hεf(ε)f(μ)dεdμ

Doing the conventional ε integration first,

max
α

W 1−γ
0

1− γ

Z
e(1−γ)[r+α(μ−r)−

1
2
α2σ2]h+ 1

2
(1−γ)2α2σ2hf(μ)dμ

max
α

W 1−γ
0

1− γ

Z
e(1−γ)[r+α(μ−r)−

1
2
γα2σ2]hf(μ)dμ

Let’s model the investor’s uncertainty about μ also as normally distributed, with mean μ̄ (sample
mean) and standard deviation σμ (standard error). Then we have

max
α

W 1−γ
0

1− γ
e(1−γ)[r+α(μ̄−r)−

1
2
γα2σ2]h+ 1

2
(1−γ)2α2σ2μh2

The actual maximization is a little anticlimactic. Taking the derivative with respect to α, and
canceling W 1−γ

0 e(..) we have

(1− γ)
£
(μ̄− r)− γασ2

¤
h+ (1− γ)2ασ2μh

2 = 0£
γασ2

¤
− (1− γ)ασ2μh = (μ̄− r)

and thus finally

α =
μ̄− r

γσ2 + (γ − 1)σ2μh
.

If the variance of μ comes from a standard error σμ = σ/
√
T in a sample T , then

α =
μ̄− r

γσ2
h
1 + γ−1

γ
h
T

i (82)

You can see in these formulas the special case α = (μ− r) /
¡
γσ2

¢
we recovered above when

there is no parameter uncertainty. Again, parameter uncertainty adds to the risk that the agent
faces. The extra risk is worse as horizon increases, almost exactly2 as in the simple calculation
(81). You also can see that the effect disappears for log utility, γ = 1, one of the many special
properties of that utility function.

To give a quantitative evaluation, I reproduce the setup in Barberis’s (2000) Figure 1. Barberis
studies investors with horizons from 1 to 10 years, in a 43 year and a 11 year long data set, and
risk aversion of 5 and 10. Figure 10 presents the allocation to stocks for this case as a function
of horizon, calculated using (82) and using the mean and standard deviation of returns3 given in
Barberis’ Table 1. The figure is almost identical to Barberis’ figure 1. As in Barberis’ calculations,
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Figure 10: Portfolio allocation to stocks with parameter uncertainty. The solid lines present
the case with parameter uncertainty, and the dashed lines ignore parameter uncertainty.
The allocation to stocks is α = μ−r

σ2[γ+(γ−1)h/T )] .μ = 0.06, σ = 0.1428 for T = 43 and μ =
0.078, σ = 0.151 for T = 9 with r = 0.

this calculation challenges the standard result that the allocation to stocks is the same for all
horizons.

This calculation is tremendously simplified of course. Real Bayesian portfolio theorists will
derive the parameter density f(θ) from a prior and a likelihood function; they include estimation
uncertainty about variances as well as means, and they calculate.

7.2.2 Optimal market timing

Applying the rule Rt+1 ∼ N
£
μ̄, σ2 + σ2μ

¤
in a very back-of-the envelope manner, I show that para-

meter uncertainty substantially tames the strong market timing prediction from return forecastabil-

2I’m still not exactly sure why (81) and (82) differ at all, however, one reason for the “preliminary”
disclaimer.

3I don’t exactly match the results without learning, which is a bit of a puzzle since α = (μ− r)/
¡
γσ2

¢
is

uncontroversial. Also, I had to set r = 0 to get even a vaguely similar calculation when using the μ and σ
from Barberis’ Table 1.
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ity using dividend yields. Conditional mean returns that are much different from the unconditional
mean are less well measured, so an optimal portfolio takes less notice of them.

I implement a very simple and back-of-the-envelope calculation by applying the same formula
as above. At each date the conditional mean return is

Et

¡
Re
t+1

¢
= α̂+ b̂(Dt/Pt)

Therefore, the sampling uncertainty about the conditional mean return is

σ2
£
Et

¡
Re
t+1

¢¤
= σ2(â) + σ2(b̂) (Dt/Pt)

2 + 2cov(â, b̂)Dt/Pt (83)

Figure 11 shows the conditional mean return with one and two standard error bounds. The most
important point is that the standard error bounds widen as the dividend yield departs from its
mean. Since we are more uncertain about mean returns further away from the center, the optimal
allocation that includes parameter uncertainty will likely place less weight on those means, resulting
in a flatter optimal-allocation line.
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Figure 11: Expected excess returns as a function of dividend yield, with one and two stan-
dard error bands. Vertical lines are the mean dividend yield plus and minus two standard
deviations.

Figure 12 presents the optimal allocation. The line without parameter uncertainty, marked
“none” presents the standard allocation result for γ = 5, based on the regression (78)

α =
1

γ

E(Re
t+1|Dt/Pt)

σ2(ε)
=
1

γ

â+ b̂(Dt/Pt)

σ2(ε)
.
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This is the same as the γ = 5 line of Figure 7 and shows the same strong market-timing. The
remaining lines include parameter uncertainty. Each line graphs

α =
1

γ

â+ b̂(Dt/Pt)

σ2(ε) + h× σ2
£
Et

¡
Re
t+1

¢¤
using (83) to calculate the bottom variance for each investment horizon h, as indicated in the graph.
The results are visually quite similar to the much more complex calculation presented by Barberis
(2000). (In particular, compare it to the presentation of Barberis’ results in Figure 3 of Cochrane
(2000) “New facts in finance”)

In sum, Figure 12 says that investors with decently long horizons should substantially discount
the market timing advice of dividend yield regressions, because of parameter uncertainty, and in
particular because expected returns are more uncertain the further the dividend yield is from its
mean.

Of course, this calculation is much too simplified. I assumed a “buy and hold investor” who does
not change his allocation to stocks as the dividend yield varies through his investment life, I ignored
the “learning” effect, and my parameter uncertainty does not come from a properly specified prior
and likelihood.

Kandel and Stambaugh (1996) study a monthly horizon and come to the opposite conclusion:
the optimal allocation based on the dividend yield is almost completely independent of parameter
uncertainty. They conclude that the “economic” significance of dividend yield forecastability is
much larger than its statistical significance, because optimal portfolios market-time quite strongly
despite the poor statistical significance. As the figure shows, the apparent difference between
Kandel and Stambaugh and Barberis is just a matter of horizons.

7.3 Incorporating prior information

The second, and perhaps more important, use of Bayesian portfolio theory, is to incorporate prior
information into the analysis. When you see a new model, it often indicates aggressive portfolio
advice. But the new model does not capture the wealth of information one has that random walks
and the CAPM are decent approximations. Obviously, one wants to merge these two pieces of infor-
mation, creating a sensible compromise between the new model and ancient wisdom. Furthermore,
one should weight the new model more or less according to how well measured its recommendations
are. Bayesian portfolio theory allows one to do this.

7.3.1 A simple model

We can tame “wacky weights” by shading the inputs back to a “prior” that alphas (relative to any
chosen asset pricing model” are not as large as an estimate may suggest. I develop the formula
E(α|α̂, αp) =

³
α̂

σ2(α̂)
+

αp
σ2(αp)

´
/
³

1
σ2(α̂)

+ 1
σ2(αp)

´
where α̂ is an estimate, and αp is a prior (typically

zero) with confidence level expressed by σ2(αp). Sensibly, one weights evidence α̂ more strongly
the better measured it is.
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Figure 12: Optimal allocation to stocks given that returns are predictable from dividend
yields, and including parameter uncertainty, for γ = 5.

Here is a very simplified version of the calculation. Suppose you have two uncorrelated normally
distributed signals about the same quantity, α1, with standard error σ1 and α2 with standard error
σ2. You can call α1 the “prior” and σα1 your confidence in the prior, and α2 the “estimate, ”
with σ2 the standard error of the estimate. How do we combine these two signals to get the best
estimate of α? The answer is (algebra below)

E(α|α1, α2) =
α1
σ21
+ α2

σ22
1
σ21
+ 1

σ22

(84)

Sensibly, you create a linear combination of the two signals, weighting each in inverse proportion
to its variance. If α is a vector, the general case reads

E(α|α1, α2) =
¡
Σ−11 + Σ−12

¢−1 ¡
Σ−11 α1 + Σ

−1
2 α2

¢
.

A natural application of course is that the “prior” is α1 = 0, with a common confidence level,
Σ1 = σ1I. This specification further simplifies the formulas.

Derivation

An easy “frequentist” way to derive (84)is to think of the signals α1 and α2 as generated from
the true α,

α1 = α+ ε1

α2 = α+ ε2
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with ε1 and ε2 independent but having different variances σ1 and σ2. This is a simple instance of
GLS with two data points — estimate alpha with two data points α1 and α2. The GLS formula is¡

X 0Ω−1X
¢−1

X 0Ω−1YÃ£
1 1

¤ ∙ σ21 0
0 σ22

¸−1 ∙
1
1

¸!−1 £
1 1

¤ ∙ σ21 0
0 σ22

¸−1 ∙
α1
α2

¸
µ
1

σ21
+
1

σ22

¶−1µα1
σ21
+

α2
σ22

¶

If α, α1, α2 are N × 1 vectors, the same GLS formula with 2N data points isÃ£
1 1

¤ ∙ Σ1 0
0 Σ2

¸−1 ∙
1
1

¸!−1 £
1 1

¤ ∙ Σ1 0
0 Σ2

¸−1 ∙
α1
α2

¸
¡
Σ−11 + Σ−12

¢−1 ¡
Σ−11 α1 + Σ

−1
2 α2

¢
If you’re not familiar with GLS, it’s easy to find the scalar case directly by minimizing variance.

Choose w to

min
w

var(wα1 + (1− w)α2 − α)

min
λ

w2σ21 + (1−w)2σ22

wσ21 = (1− w)σ22

w =
σ22

σ21 + σ22
=

1
σ21

1
σ21
+ 1

σ22

Naturally, these formulas have more precise Bayesian derivations. Pastor (2000, p. 191, Eq
25-28) considers a standard factor model

Re
t = α+ βFt + ut

where Re is an excess return, and F is a factor (e.g. the market portfolio) which is also an excess
return. He shows that the posterior mean alpha is

α̃ = wαsample + (1−w)αprior

w =

1
(σ2u/T )

1
σ2α

³
1 + E(F )2

var(F )

´
+ 1

(σ2u/T )

Here, E(F ), var(F ) are sample moments of the factor, σ2u is the (prior expected value of the)
residual variance, and σ2α is the variance of the prior about α. You recognize the same formula
as in (84) but with a squared sharpe ratio of the factor adjustment, familiar from the Shanken
correction to standard errors. As with the Shanken correction, this will be small in typical monthly
data, but worth including. Pastor shows that betas also have a small Bayesian adjustment, basically
resulting from the question whether one should include an intercept in the regression.
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7.3.2 Covariances

Sample covariance matrices show spurious cross-correlation, especially for many assets and few
time periods. I review simple techniques for solving this problem, including enhancing the diagonal
elements, and using factor models of residual covariance.

Though in theory we learn covariances with arbitrary precision by looking at finely sampled
data, in practice covariance matrices are also hard to estimate. This is especially true with large
numbers of assets and small time spans. A covariance matrix can’t have more than T degrees of
freedom so a 200×200 covariance matrix estimated in anything less than 201 data points is singular
by construction, showing spurious risk-free arbitrages. Even when this limit is not reached, sample
covariance matrices tend to show “too much” correlation, weird-looking linear combinations of
assets that appear nearly riskfree.

A common “Bayesian” solution to this problem is to emphasize the diagonals, i.e. to use

Σ = Σ̂+ λD

where D is a diagonal matrix.

More generally, we usually estimate large covariance matrices by imposing a factor structure,

Rt = βft + ε

(N × 1) = (K ×N) (K × 1) + (N × 1) ; K << N

cov(RR0) = βΣfβ
0 + Σ

Then, more sensible return covariance matrices emerge by downweighting Σ, imposing Σ = D, etc.

7.4 Additional Literature and a paradox

Formula 80 is in Klein and Bawa 1976, Theorem 1. They use a more standard “noninformative
prior”, they consider variance estimation as well, with the result that the return distribution has a
t distribution with T−(number of assets) degrees of freedom rather than normal.

Parameter uncertainty still can affect portfolio choice because the investor will learn more
about the process as time goes by. This effect makes the parameter estimates a “state variable”
in a Mertonian context, if utility is not logarithmic. Breannan (1998) studies this effect in a static
context and Xia (2001)studies it in the classic single variable return forecasting context. In my
example, I turned this effect off by specifying that the investor “learns” only at the terminal date,
not as the investment proceeds.

The covariance matrix shrinkage literature is huge. Ledoit and Wolf (2003, 2004) is a good
recent contribution.
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7.5 Algebra

Algebra for (79) — though there must be an easier way!
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8 Bibliographical note

9 Comments on portfolio theory

Portfolio theory looks like a lot of fun, and of great practical importance. Fit your model to return
dynamics, compute the optimal portfolio, start your hedge fund. However, there are a number of
conceptual and practical limitations, in addition to the advice of Bayesian portfolio theory, that
dampen one’s enthusiasm.

The average investor holds the market

We tend quickly to forget that the average investor must hold the market portfolio. If everyone
should follow our portfolio advice, then the return dynamics on which it is built do not represent
an equilibrium. For every investor who should buy value or momentum stocks or invest more when
the dividend yield is high, there must be someone else out there whose constellation of outside
income, risk aversion, or state-variable sensitivity means he should sell value or momentum stocks
or invest less when the dividend yield is high. Portfolio advice cannot apply to everyone. Who are
the investors on the other side, generating the return anomaly? This is a great question to ask of
any portfolio exercise.

For that reason, I have emphasized expressions of optimal portfolios in terms of each investor’s
characteristics relative to those of the average investor. When deciding on an allocation for stocks
relative to bonds, the investor can ask “am I more or less risk averse than the average investor?”
and not just compare his risk aversion to the market premium. The two calculations are equivalent,
of course, but in practice investors may have a better sense of how risk averse they are relative to
the average than the absolute calculation. And, on reflection, many investors may realize “that
looked good, but I have no reason to really think I’m different than average,” which brings us right
back to the market portfolio.

Almost all portfolio theory is devoted to telling the (locally) mean-variance investor (i.e. power
or recursive utility, no outside income) how to profit from “anomalies”, patterns in expected returns
and covariances that drive optimal portfolios away from just holding the market. The entire active
management and hedge fund industry sells “alpha” to such investors, and they are buying it. So
where are all the investors on the other side?

Really, there are only three logical possibilities. First, the investors might be there, in which case
a new industry needs to start marketing the opposite strategies: identifying investors with state-
variable our outside-income exposure that means they should take portfolios that do even worse
than the market on mean-variance grounds, but insure these investors against their state-variable
or outside-income risks. Second, the investors might not be there, in which case the anomaly
and resulting portfolio advice will die out quickly. Third, we might have deeply mis-modeled the
average investors’ utility function and state-variable risks, so the advice being spun out by portfolio
calculations and implemented by hedge funds is inappropriate to the average investor to which it
is being sold. In which case, we should just go back to the market portfolio and understand why
the average investor should hold it.

Catch 22
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This conundrum illustrates a deeper Catch-22: portfolio theory only really works if you can’t
use it. If more than measure zero agents should change their portfolios based on your advice, then
prices and returns will change when they do so, changing the optimal portfolio.

Of course, it is possible that the “anomalies” do not represent “equilibrium compensation for
risk.” They might represent “mispricing.” If so though, that mispricing will quickly be eliminated
once investors learn about it. The resulting optimal portfolio exercise will only be useful for the
fleeting moment before the mispricing is wiped away.

The anomalies might instead represent “mispricing” that is not easy to arbitrage because market
frictions or institutional constraints make it difficult to trade on the anomaly. But then by definition
one can’t trade on the anomalies, so an optimal portfolio calculation to take advantage of them
cannot work.

The anomalies may represent mispricings that need institutional changes to overcome trading
costs. This is a plausible story for the small - firm premium. That premium was stronger before
1979 when the small firm funds were founded. It was very hard before 1979 to hold a good diversified
portfolio of small - cap stocks. But finding such an anomaly requires invention of a new institution
(the small-cap fund) not simple portfolio calculations.

Of course, most investors think they are simply smarter than the average, like the children of
Lake Woebegone who are all above average. At least half of them are wrong.

Consumption

How did we escape the equity premium? We didn’t. Every portfolio calculation includes a
prescription for consumption, and such prescriptions almost always involve orders of magnitude
more consumption volatility, and much higher correlation of consumption growth with portfolio
returns, than we observe in practice for any individual investor.

For example our portfolio advice for the power utility investor in (58) sounds perfectly sensible:
α = (μ − r)/γσ2. For standard numbers μ − r = 8% and σ = 16%, 0.08/0.162 = 3.125 so
this value of risk aversion invests 100% in equities, while the standard 60/40 advice corresponds to
γ = 0.08/(0.6×0.162) = 5. 21. If, as I argued in the equity premium chapter, that mean is overstated
so perhaps μ − r = 4% , then the fully-invested investor has risk aversion γ = 0.04/0.162 = 1.56
and 60/40 corresponds to γ = 0.04/(0.6× 0.162) = 2.6.

That portfolio advice came together with consumption advice, however, in (57). The consump-
tion advice is to set consumption proportional to wealth, for any value of risk aversion. Thus
the volatility of log consumption growth is equal the volatility of wealth, and from dW/W =
rdt+ α(dR− rdt), the volatility of wealth is equal to α times the volatility of stock returns. If the
investor accepts portfolio advice to be fully invested in equities, he should also accept the advice
that consumption should vary by 16 percentage points per year! (This is the flow of consump-
tion services, not durables purchases.) If he accepts 60/40 advice, consumption should vary by 10
percentage points per year.

There is no logical reason to accept the portfolio advice but ignore the consumption advice.
Another good question to ask of any portfolio calculation is, “what does the optimal consumption
stream look like?” If we don’t accept the consumption advice, that means either the environment
is wrongly specified (perhaps there is a lot of mean-reversion in stock returns, so that it makes
sense for consumption to ignore “transitory variation in wealth”) or perhaps the utility function is
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wrongly specified (habits, for example). But if that is true, the portfolio advice changes as well,
and just as drastically.

Payoffs vs. portfolios

I have deliberately contrasted the “payoff” approach with the more traditional “portfolio”
approach. Obviously, the former has an attractive simplicity, elegance, and connection to the
rest of modern asset pricing.

The most obvious practical limitation of the “payoff” approach is that it leaves you with optimal
payoffs, but no strategy for implementing them. I think this limitation is a virtue. Much of the
success of the original mean-variance analysis consisted of stopping and declaring victory just
before the hard part began. Markowitz showed us that optimal portfolios were mean-variance
efficient, but we still really don’t know how to calculate a mean-variance efficient portfolio. Hedge
funds are basically selling different ideas for doing that, at very high prices. This is not a defect:
understanding the economic characterization of the optimal portfolio without having to solve the
engineering problem of its construction is a great success. The payoff strategy does the same
thing: it stops and characterizes the optimal payoffs without solving the engineering problem of
supporting those payoffs by a trading strategy in a particular set of markets.

This observation also suggests a natural organization of the money management industry. In-
vestors are, in the end, interested only in the payoffs. Perhaps the money-management industry
should provide the payoffs and not involve the investor too deeply in the portfolio that hedges them.

In some sense, this is what happens already. Why do stocks pay dividends, and why do bonds
pay coupons? Consumers could in principle synthesize such securities from dynamic trading of
non-dividend-paying stocks and zero-coupon bonds. But date- and state-contingent streams are
the securities consumers want in the end, it is less surprising that these are the basic marketed
securities. Similarly, swaps which provide desired date- and state-contingent flows are more popular
than duration hedges.

It’s also a convenience to solve problems in a way that does not require specifying an imple-
mentation. Often, there are lots of different ways to implement an optimal payoff, for example
purchases of explicit options vs. dynamic trading. If one chooses portfolio weights, one has to
start all over again for every implementation, solving both the economic and engineering questions
together. The portfolio approach solves for a lot of things we really aren’t always interested in
(dynamic trading strategies) on the way to giving the economic characterization of the payoffs.

Of course, this is all a matter of point of view rather than substance. The two solutions are
equivalent. One can always find an implementation for an optimal payoff. I know of no problem
that can be fully solved by one method but not by the other.

The other main limitation of the payoff approach is in dealing with incomplete markets. My
section on a mean-variance approximation is meant to advance this cause somewhat, by pointing
out a nice characterization that is valid in incomplete markets, just as conventional mean-variance
analysis is an important benchmark for one-period portfolio problems. No matter how dynamic, in-
tertemporal or incomplete the market, the investor splits his payoffs between the indexed perpetuity
and the market, i.e. the claim to the aggregate consumption stream.

Where did all the dynamic trading go? It’s in the market portfolio. Again, portfolio theory,
added up across people, is a theory of the composition of the market portfolio. If μ − r rises,
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each investor wants to invest more in risky assets, and collectively they can do so by the implicit
assumption of linear technologies. The market portfolio becomes more invested in risky assets. By
saying “buy the market portfolio” we are simply saying “do what everyone else does.” For example,
when μ− r rises in these models, there will be a wave of share issues; your “market index” will buy
these new shares, so you will end up doing the same “dynamic trading” as everyone else. You just
don’t have to solve any portfolio optimization to do it.

Outside income, tailored portfolios, and non-priced factors.

I have emphasized outside income in this treatment, even though it is rarely discussed in the
modern portfolio theory literature. I think it’s the most important and most overlooked component
of portfolio theory, and that paying attention to it could change academic theory and the practice
of the money management industry in important ways.

Almost all investors have substantial outside, i.e. fixed or nontradeable, labor or business
income. The first thing investors should do is hedge this income stream. If you can’t short your
own company stock, at least don’t buy more than you have to, or short an industry or correlated
portfolio. This is just simple insurance. Actually, the first thing investors should do is buy home
insurance, even though it’s a terrible mean-variance investment. Hedging labor income risk is the
same idea.

This fact reopens the door to a modern version of “tailored portfolios.” The famous two-fund
theorem of mean-variance analysis dealt a serious blow to the once-common idea that investors
needed professional advice to pick a stock portfolio appropriate for their individual characteristics
— and investors paid large fees for that advice. In the two-fund world, one only needse market
portfolio and the risk free rate. Low-cost stock index funds and money market mutual funds were
born, and we are all better off for them.

Once we reintroduce labor income or preference shocks, the famous two-fund theorem is not true.
There will be many additional “funds,” corresponding to typical outside income risks. Figuring out
what the funds should be, and matching investors to those funds is not a trivial task. Thus, we
have a need for academic research to identify portfolios that match typical outside income risks,
and an industry to help investors choose the right ones, and should be able to charge a fee for that
service. In this sense, portfolio theory with outside income resurrects tailored portfolios.

In fact, the natural industrial organization of the money management industry might split the
two functions. One set of advisers hedges outside income risk. A second set promises mean-variance
efficient investment or “alpha.” As the formulas separate these two functions, so can the industry
structure.

In constructing outside-income hedge portfolios, nonpriced factors are just as, or more inter-
esting than the priced (or pricing) factors on which most current research focuses. For example, a
set of low-cost easily shorted industry portfolios might be very useful for hedging outside income
risk, even though they may conform perfectly to the CAPM and provide no “alpha” whatsoever.
Buying insurance for no premium is just what you want to do. It’s interesting that academic re-
search has focused so exclusively on finding priced factors, which are only interesting to the one
remaining jobless mean-variance investor.

One impediment to doing all this is that we don’t observe the present value of labor income or
outside businesses, so the usual approach that focuses on returns and return covariances is hard
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to apply. We do observe labor income flows, however, so the payoff-focused approach highlighted
in the dynamic mean-variance approximation may prove a useful way to examine outside income
hedge portfolios.
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10 Problems

1. You can invest in a stock which currently has price $100. It will either go up to $130 or down
to $90, with probability 1/2 of each event. (Call the two states u and d.) You can also invest
in a bond, which pays zero interest—A $100 investment gives $100 for sure.

(a) Find a discount factor mt+1 that prices stock and bond.

(b) A one-period investor with log utility u(Wt+1) = ln(Wt+1) has initial wealth $100. Find
this investor’s optimal allocation to the stock and bond.

Hint: first find optimal wealth in the two states tomorrow. Then figure out how to obtain
this optimal wealth by investing in the h shares of stock and k bonds.

2. Take the payoff in the one period Black-Scholes example,

x̂ =
W

E(m1− 1
γ )
m−

1
γ =We(1−α)(r+

1
2
ασ2)Rα

T

Suppose instead of supporting this payoff by dynamic trading, you choose to support it by a
portfolio of put and call options at time zero.

(a) Find the number of put and call options to buy/sell as a function of strike price. Hint:
Graph the payoff of buying a call with strike k, selling a call with strike k +∆, selling
a put with strike k +∆, and buying a put with strike k + 2∆. Take the limit of this
payoff as ∆→ 0 in such a way that the integral of the payoff is one. First express your
payoff in terms of how many of these portfolios you buy at each k, and then in terms
of how many of the underlying put and call options you want to buy.

(b) Similarly, implement the payoff for habit utility (c− h)1−γ using put and call options.

3. CARA utility and normal. If utility is

U(WT ) = e−αWT

and xT and hence WT = w0xT are normally distributed, then

E [U(WT )] = e−αEWT+
α2

2
σ2(WT ) = e−αw

0E(xT )+
α2

2
w0V w

the first order condition gives

w =
1

α
V −1E(xT )

Again, the optimal portfolio is mean-variance efficient.

4. Suppose a quadratic utility investor with a one-year horizon (no intermediate consumption)
wakes up in the lognormal iid world.

(a) Mirroring what we did with power utility, find the return on his optimal portfolio in

terms of a discount factor m and its moments. Using the definition
³

cb

RfW
− 1
´
= 1

γ ,

you can express this return R̂ = x̂/W in terms of the local risk aversion at initial wealth,
without cb or W We are looking here for the analogue to

R̂ =
x̂

W
=

m−
1
γ

E(m1− 1
γ )
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(b) Adding the lognormal iid assumption, i.e. dS/S = μdt + σdz, dB/B = rdt, find the
return on the investor’s portfolio as a function of the stock return. We are looking here
for the analogue to

R̂ = e(1−α)(r+
1
2
ασ2) Rα

T

where RT = ST/S0 denotes the stock return, and

α ≡ 1

γ

μ− r

σ2
.

(c) For γ = 1, 3.125, 5, 20 and μ = 0.09, σ = 0.16, r = 1, make a plot to compare the
function R̂ = ...RT in the log and power utility cases. How good is the quadratic as an
approximation to power in the range RT = 1±2σ, where the stock is most likely to end
up? How good is the quadratic as an approximation to power in the full range, and in
particular for describing demands for out of the money options?

(d) Now, solve the portfolio weight problem for the quadratic utility investor by dynamic
programming, mirroring what we did with power utility.

(e) To solve the Bellman equation, you can either guess a quadratic form V (W, t) =

−12e2η(T−t)
¡
e−r(T−t)cb −W

¢2
and solve for η. There is a better way however. Since

you have solved for the optimal payoffs above, you know the distribution of WT = x̂T ,
so you can find the value function directly. Thus, first find the value function from the
above solution, then use this as a guess, i.e. verify that it solves the Bellman equation.
(This is a great idea, now that I think of it, and offers a constructive way to find value
functions for difficult portfolio problems. )

(f) Simulate the stock process using a daily interval. For each value of risk aversion, plot
the resulting wealth process for the power and quadratic utility investor, starting at
W0 = 1. For each value of risk aversion, also plot the optimal weight in the stock over
time for the quadratic and power utility investor. (The power utility investor puts a
constant weight in the risky asset, so that one is a horizontal line, but the quadratic
utility investor’s allocation to the risky asset varies over time.) Again, comment on the
dimensions for which the quadratic and power solutions seem similar for a given initial
risk aversion, and the dimensions for which the solutions seem quite different.
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