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Problem Set 4

1. In this problem we will contrast two approaches to optimal portfolios in an interesting example.

The question is, find the optimal portfolio for an investor with a habit, minimum subsistence level,

drawdown limit, leverage, etc.:
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In the portfolio readings, I solved this from the complete markets approach. A quick review: We

write the discount factor
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Then, we find the optimal wealth at time  by

( − )
−

= 
Λ

Λ0

 = −
1


µ
Λ

Λ0

¶ 1


+ 

Evaluating the wealth constraint to eliminate the Lagrange multiplier,
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and, taking the expectation in the denominator,
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This is a very sensible answer. First and foremost, the investor guarantees the payoff . Then, wealth

left over after buying a bond that guarantees ,
¡
0 − −

¢
is invested in a way that takes on more

risk the lower  and thus the higher , becoming more sensitive to  .
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Good, but how do I implement that answer? What do I actually buy? What is the dynamic trading

strategy that the habit investor should follow to get this payoff by a combination of stocks and bonds?

a) Implementation of a complete-markets answer. Our first approach to answering this question stays

in the complete markets tradition. Given  , we can find the dynamic strategy in two steps: First find

the value of the investor’s wealth at any date prior to  by

 = 

µ
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Λ
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¶
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Then, take  using Ito’s lemma, and match its terms to find  in
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− 

¶
This  is then the weight in the risky asset in the portfolio that gets you to  . Do it. Express your

answer in two, equivalent ways:

i) First, the investor puts − into bonds, to make sure he can cover the habit , and then he

invests 0− into a constantly rebalanced portfolio of stocks and bonds. By taking
[−−(−)]
[−−(−)]

you will be able to find the weight of that portfolio in the risky asset.

ii) Second, just think of the whole portfolio as a dynamically rebalanced portfolio of stocks and

bonds, with a “risk aversion” that rises as wealth declines. By taking 


you will be able to find the

shares of that portfolio.

Express both sets of weights i) and ii)  in terms of  (I.e. not in terms of . It’s possible to

express in terms of , but I didn’t do it, and the answer in terms of  is very intuitive.)

b) Implementation by value function. The “standard” way to set up this problem is to write the

value function, as a reminder,
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Well great, now we have to solve this partial differential equation backward from the boundary

condition

 (   ;) =
( − )

1−

1− 


The usual method is, guess the form, then find the undetermined coefficients. So, you have two

choices
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i) Guess the form of the value function. The final value

 ( ) =
( − )

1−

1− 

is a place to start. Guess what it looks like for    up to undetermined coefficients. (Hint: put (−)

in the right place.) Put your guess into (2) to find the undetermined coefficients. If it doesn’t work,

refine your guess.

ii) Guessing the form isn’t easy. We can find the value function from the complete market answer,

however, which will let us guess what form to use. The value function is, after all,

 () =  [ ( )] = 
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We derived above
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So by taking the expectation in (3) you can find the actual value function. Take the expectation in (3),

and then check that your value function does in fact satisfy (2).

By either method i) or ii), find the value function. Then use (1) to find the portfolio weights rule 

as a function of  etc., which is what we’re looking for.

c) Implementation by options. Rather than dynamically trade, find a portfolio of stock, bond, and

European call options, bought or written at date 0, expiring at date  , that generate the optimal portfolio

without any intermediate trading. This problem involves some technical issues if   1, so you need

only solve the case   1.

Hint: Suppose you bought 1 (well, really 1) call option at each strike . What would the payoff

from this strategy be as a function of  ? Now, go back and figure out how many options at each

, (), you need to buy to get a general payoff ( ). The restriction   1 means you have

(0) = lim→0 

 = 0 and  0(0) = lim→0 

−1
 = 0, which will come in handy. If then you want

to tackle the case 0    1, and thus (0) 6= 0,  0(0) 6= 0, you’ll be ready, but you don’t have to do
this case. I did it by thinking of a limit in which each element of the sequence was well behaved.

Make a plot of () and the corresponding  for  = 25 2 15 and 11, and explain the pattern

of options across strikes intuitively. Hint: The first hint gave you the answer for  = 2.

2. We have sort of beat to death the standard continuous time-power portfolio theory, and shown how

it leads to a mean-variance efficient portfolio choice. In this problem you’ll explore the other standard

utility function specifications, each of which also leads to mean-variance portfolio choice in one-period

problems with no outside income.

Our investor starts with wealth 0 and considers investing in  stocks with excess return 
+1

( × 1)and a bond with return 

 . The investor consumes tomorrow only, so his objective is

max
{}

(+1) = (+1) = (

+10) = 

h
(


 + 0

+1)0)
i

a) Start by characterizing the mean variance efficient portfolio so you’ll know it when you find it.

(We’ve done this before, and you can go look up the formulas if you prefer. Or rederive them here.) Find

a formula for  and  = 0 in terms of the mean and covariance matrix of returns, min 2(0)

s.t. (0) = . Also prove that min 2 [0] + 2 = min 
£
(0)2

¤
s.t. (0) =  gives the
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same result, giving you a formula in terms of the second moment matrix of returns. It will also be useful

to remind yourself that ∗ = (0)(0)−1 is on the mean-variance efficient frontier.

b) Find the first-order condition for the portfolio maximization (take the derivative with respect to

) and relate it to our friend 0 = ()

c) Suppose utility is quadratic (+1) = −12 (∗ − +1)
2 . Show that the investor chooses a mean-

variance efficient portfolio.

d) Suppose utility is exponential

() = −−;0() = −

where  is the “coefficient of absolute risk aversion.” Assume that excess returns are normally distributed.

Show that the investor chooses a mean-variance efficient portfolio. To solve this case first take the

expectation of utility, using the fact that if  is normally distributed () = ()+
1
2
2(). Then take

the derivative with respect to  and set it to zero. Sometimes it’s easier to do it this way rather than

find the first-order condition 0 = 
£
0( + )

¤
then take expectations, and then take derivative

with respect to .

(Note: Pay attention. This functional form is very popular in trading models because it gives a linear

demand for stocks. Then adding up demands and intersecting supply and demand is very easy. Look

for it in lots of trading and microstructure models.)

3) In class, we talked in class about the intuition of whether risk premiums should be at the long

or short end of the yield curve. I offered two reasons why many models predict (counterfactually) a

downward-sloping risk premium. First, I argued that long term (real) bonds are riskfree assets for long

horizon investors. Fine, you said, but that doesn’t prove that short term bonds have positive or negative

risk premiums, and we need to see some equations. Second, I argued that () = (∆); when

interest rates go up long term bond prices go down. Since interest rates go up when the economy recovers,

that suggests that (∆)  0 for long term bonds, that they should have a negative excess return

relative to short term bonds. But then we realized that the covariance is also an endogenous variable

in bond pricing models, and we were hungry to link the expected return idea to the slope of the yield

curve.

Let’s figure this all out in the context of the single-factor Vasicek model.

If you recall, we posit a latent state variable which follows an AR(1),³

(1)
+1 − 

´
= 

³

(1)
 − 

´
+ +1

and then the discount factor follows

∆+1 = − ln+1 = 
(1)
 +

1

2
22 + +1

By adding the −∆+1 part, we will be able to think about the economic determinants of risk premiums
in this model.

We price assets as usual.


(1)
 =  (+11) = 

−(1) − 1
2
22−+1 = −

(1)


so the latent state variable is “revealed” by bond prices as 
(1)
 = −(1) .

Now we can see that +1 are interpreted as interest rate shocks. In this model, ex-post consumption

shocks are perfectly correlated with interest rate shocks, (+1 −)∆+1 = +1. And the only
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reason interest rates change is because expected consumption growth changes. So, we are going to

end up linking the slope of the term structure and risk premiums in bond returns to properties of the

consumption process.

As a reference, here are the bond pricing formulas. From 
()
 = log

³
+1+

(−1)
+1

´
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
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
(1)
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´
where

 = 1 + −1; or  = −1 + −1

1 = 1;2 = (1 + );3 = (1 + + 2);

 = (1 + + 2 + + −1) =
1− 

1− 

and

 = −1 +
∙
1

2
2
−1 +−1

¸
2; 1 = 0

Hence,


()
 = 

(−1)
 − 

()
 =  − ( −−1) + ( −−1)

³
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
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2
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³
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a) Use 1 = (+1+1) = +1++1 to find (+1) in terms of (+1 +1) and, separately,

in terms of (+1 (+1 −)∆+1) for a generic normally distributed log return +1 in this envi-

ronment. These will provide a useful intuitive formula. They look like formulas you’ve seen before, but

there is an extra 122 term. They also will help to clarify the role of .

b) Find the ex-post return 
()
+1 = 

(−1)
+1 −() = 

(1)
 +()+()+1. The two terms are expected excess

return and the sensitivity of return to the interest rate shock. If interest rates 
(1)
 rise unexpectedly, does

the ex-post return rise or fall? (The point — we are showing here how the model derives the covariance of

returns with +1, rather than taking that covariance as a primitive the way we usually do with equities.)

c) Verify that your formula for ex-post return satisfies the (+1) equation you derived in part a.

d) Now, let us look at the return risk premium defined as


()
+1 − 

(1)


and the forward rate risk premium defined as


()
 −

(1)
+−1

Find these two objects, and their relationship. Abstracting from the 122 term, does   0 imply

higher or lower expected returns on long term bonds? Does   0 imply that forward rates are higher

or lower than expected future spot rates (i.e. does the forward curve slope up or down for   0?)

e) So, now our job is to think about the economics of . Is it plausible that   0 or   0? In

class, I argued for   0, because I said when consumption growth rises, interest rates will rise too. I

meant that as a rough description of data. However, in this model, interest rates come from expected

consumption growth, so my supposition that   0 means I am saying that when consumption growth

rises +1, then expected consumption growth +1∆+2 also rises — consumption growth is positively
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serially correlated. (In the model there is no inflation. It’s possible that my view of the data means

that expected inflation rises when consumption growth rises, and we would need to add inflation and

an inflation risk premium to address that.) This observation is another nice one for using models, as

it ties down the covariance of consumption growth with interest rate shocks to the serial correlation

of consumption growth. Let’s explore this connection a little further, and incidentally learn something

about the time series model for consumption. Reparameterizing so things are clearer, our model is³

(1)
+1 − 

´
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= 

³
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´
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1
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∆+1 =
1



³
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 − 

´
+


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+
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22 +


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or, with

 =
1



³

(1)
 − 

´
+1 =




+1

 =



+
1

2
2

we can write

+1 =  +
1


+1 (4)

∆+1 = +  + +1 (5)

In this form you see the standard finance time-series model:  carries movements in ∆+1; then

∆+1 has an additional shock. That shock may be correlated with the shock to , in this (simple)

case it is perfectly correlated. I reparameterized it this way to focus on the consumption process and

consumption shocks. (We often write return processes this way, with a slow time-varying expected

return.)

In general, with the shocks to  and the shock to  imperfectly correlated, the history of  gives more

information than the history of . Since the shocks are perfectly correlated (and an invertibility condition

holds), however, consumption growth forecasts here are the same as in the univariate representation. So

let’s transform to the univariate representation to see what  does.

Finally, something for you to do: Find the univariate (Wold) representation for consumption corre-

sponding to (4)-(5). Hint: It’s an ARMA(1,1). Substitute  = (1− )
−1

 in (5) to find it.

f) Now, start by finding the case in which consumption growth is uncorrelated over time. You hold

2 constant and change . (An ARMA(1,1) (1 − )∆ =  + (1− )  reverts to iid when  = 

and the roots cancel.) Find the corresponding parameters of the original model, and find the return and

forward rate risk premium for this case (define "risk premium" to be the terms multiplying ). (It will

be easier to think of this in terms of a limit.)

g) Now, suppose ∞    0. Is consumption positively or negatively serially correlated? At all

horizons? Find the impulse-response function for this case. This is the assumption about consumption

implicit in the downward-sloping yield curve case.

Note: This problem brings up the issues, not the final answer! As you saw, this model tightly links

ex-post consumption changes (risk exposure) to expected consumption changes and hence real interest

rate changes. More general models loosen that up. This is the way to think about the economic intuition,

but not the final intuition itself.
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