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Problem Set 4 Answers
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a) In the end, we’re looking for
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This suggests writing the portfolio as an investment − in the riskless asset, then investing

0 − − in the risky asset as if you were an investor with no wealth. The other answer is
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here, the investor has a “risk aversion” that rises as wealth approaches the habit.

 = 


 − −(−)

The derivation: This is a bit repetitive, because we are doing the same algebra at  that we did at

 = 0 to evaluate the  constraint. We should have done that once and for all to answer both questions.

But having been given the solution in terms of 0 we can somewhat kludgeily repeat the same algebra

to find  :
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Well, duh, you say. The investor puts
¡
0 − −

¢
into the usual stock/bond split, and lets it grow.

OK, but we’re here really to confirm that the method works.

Now, let’s follow through and find the actual portfolio by taking ,
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This suggests writing the portfolio as an investment − in the riskless asset, then investing

0−− in the risky asset as if you were an investor with no wealth. If you weren’t clever enough to
write it that way, however, you’d (after a lot of algebra) end up writing it as a dynamic trading strategy.
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so in this description, there is a time-varying decision rule where the investor changes weights as 

changes.

b) The central answers are
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The derivation. I’m not smart enough to guess, so I cranked out the value function.
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Now, we’re ready to take the expectation,
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As a quick check note  ( ) is what it should be.

Now, we can check that this “guess” works,
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And finally, does it satisfy the partial differential equation?
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Yes! Could you have guessed this? It would have been enough to guess
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The whole point of this was to find the portfolio weights, from the value function. We had them

before, but for completeness,
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c)The hint: suppose you hold one (well, 1× ) call option of each strike. What payoff do you get

at each  ? Answer: At each  you get  − from each option at    , so your payoff isZ 
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Now, for the question at hand. There are several ways to do this; my solution method is surely not

unique. First, of course, buy bonds − which provide . Now we are left with the question, how
to use the money left over
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One way to do it, following the hint: Let () denote the number of call options between strike 

and strike + that the investor buys (or, if   0writes.) Then for any  , the payoff of this strategy
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: ( ) =  00( )

That’s very intuitive, and recalls the result that 22 is the price of contingent claims to .

But,there are a lot of functions  with the same second derivative. ( ) +  +  (adding a bond

and stock position) gives the same answer. What’s going on? Let’s work backwards: Suppose we use
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So, we get back ( ) if (0) =  0(0) = 0. If not, we need to include the stock (a lump investment in a
call option with  = 0) and bond term as well as the options. So, now you know why I suggested you

start with the case   1 which has(0) =  0(0). (I presume most of you were pressed for time and just
plowed on from () =  00(), and you’ll be ok if you did.)
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yes, it works for   1. So, in sum,

For   1, to replicate the payoff
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with options, the investor at time 0 puts − in the riskfree asset, and then buys call options of strikes
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Here is my plot. 2.0 is the "hint" case — a portfolio of options constant across strikes gives rise to 2 .

In the 2.5 case, the payoff is more convex than 2 , so we need to buy more and more options at larger

and larger strikes to generate the convexity in ( ) The  = 15 case is the opposite. Now we need

call options with a declining function of strikes, because ( ) is less convex. The limit  = 1 is the

limit ( ) =  , which is a lump investment in a call at  = 0. As you can see () is headed in that

direction.
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α = 1.1

The cases for 0    1 pose a technical problem because not only do we have  0(0)  0 which

is pretty easy to solve (just add an investment in the stock to match  0(0), but also  0(0) = ∞. Since
options give a 45 degree payoff, you need a double infinity of options at  = 0, and then sell them off

gradually for larger . The technicalities of this case are not worth our time right now. (I worked on it

a bit by starting at  = , and then taking the limit as → 0.)

2.

a) This is old stuff.
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We know ∗ is on the mean-variance frontier. Note that relative risk aversion is
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as the local coefficient of risk aversion, evaluated at the point  that would be generated by putting it

all in the risk free rate,  = 0. So, investors who are less risk averse invest more in stocks. This is not
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formula that holds in continuous time, but it’s pretty close.

d) Normal-exponential.
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Now we have mean and variance, even closer to the “real” formula.

3)

a)

1 = (+1+1) = 
−(1) − 1

2
22−+1+1

0 = −(1) −
1

2
22 ++1 +

1

2
2(+1 − +1)

0 = −(1) ++1 +
1

2
2(+1)− (+1 +1)

+1 +
1

2
2(+1) = 

(1)
 + (+1 +1)

14



This is close to our friend. However, note the 122 term. Also  is not the risk aversion coefficient.

Substituting
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2
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 is the market price of interest rate risk, meaning how much an expected return must rise per unit of

covariance with a shock to interest rates.  is not the risk aversion coefficient.
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(Duh, but worth checking the sign.)
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d) The return risk premium is
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They are the same. This may remind you of the Fama-Bliss result, but be careful, it is something totally

different. We are looking at a constant risk premium, where FB were looking at the variation of the

risk premium through time. Everything we are doing here gets soaked up into the constant in the FB

regression. In both cases   0 implies a negative risk premium — expected returns are lower for long

term bonds, and forward rates are lower than expected future spot rates.

e)
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Thus, ∆+1 follows an ARMA(1,1) with roots − and  = 1

−. This is an important lesson models

of the form (??) have ARMA(1,1) univariate representations. Also this trick for finding the univariate

representation is useful. In Asset Pricing I needlessly wasted pages matching spectral densities.

f) Iid happens when  → ∞. Then 2() → 0, expected returns do not vary over time. In the

original model, 2 = constant and →∞ means
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2
2
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Thus, all the 2 terms go smoothly to zero. Risk premiums are zero in this case.

The original parameterization was not great to see this, because it held constant the variance of

interest rate innovations. If consumption growth becomes iid, there are no interest rate innovations.

I hope reparameterizing and translating was easier for you to see than taking this funky limit of the

original model.
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Thus, if   0,   , and the impulse-response function is positive throughout. It has a big spike

at 0, and then a slow decay at rate . The ARMA(1,1) captures the spike — the possibility for a big

unexpected return that does not move expected returns as dramatically as an AR(1).
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