Problem Set 5

1. Suppose there is a single excess return R^{e}, and an information variable z_{t} which can take two values, $z_{t}=1,2$ with equal probability. Thus, $E_{t}\left(R_{t+1}^{e}\right)=E\left(R_{t+1}^{e} \mid z_{t}\right)$ and $\sigma_{t}\left(R_{t+1}^{e}\right)=\sigma\left(R_{t+1}^{e} \mid z_{t}\right)$ take on different values in each of the z_{t} states. We will also consider the unconditional moments, i.e. $E\left(R_{t+1}^{e}\right)=E\left[E\left(R_{t+1}^{e} \mid z_{t}\right)\right]$, etc.
(a) What is the payoff space generated by portfolios of R^{e} ? Complete and correct the following, $\underline{X}=\left\{c \times R_{t+1}^{e}, c \in \ldots\right\}$
(b) Find $R^{e *}$. Hint: $\underline{X}=\underline{R}^{e}$ so you're looking for an element of the set described in a that has the right properties. Verify that your $R^{e *} \in \underline{R}^{e}$, and that it satisfies the defining properties

$$
E\left(R^{e *} R^{e}\right)=E\left(R^{e}\right)
$$

for both conditional $E(\cdot \mid z)$ and unconditional $E(\cdot)$ moments. (I.e. you don't need a different $R^{e *}$ for the conditional vs. unconditional mean-variance frontier.)
(c) Suppose $E\left(R_{t+1}^{e} \mid z_{t}=1\right)=E\left(R_{t+1}^{e} \mid z_{t}=2\right)=8 \%$, but $\sigma\left(R_{t+1}^{e} \mid z_{t}=1\right)=16 \% ; E\left(R_{t+1}^{e} \mid z_{t}=\right.$ $2)=24 \%$. Is R_{t+1}^{e} on the conditional mean-variance frontier in state 1? In state 2 ? Is it on the unconditional mean-variance frontier?
(d) If not, exhibit a better return with $E\left(R^{e}\right)=8 \%$. (Hint: use the Hansen-Richard representation of the mean-variance frontier for excess returns). Express your return by its investments in R^{e} in each state of nature.
(e) Draw frontiers $E\left(R_{t+1}^{e} \mid z_{t}\right)$ vs. $\sigma\left(R_{t+1}^{e} \mid z_{t}\right)$ for $z_{t}=1,2$ and $E\left(R_{t+1}^{e}\right)$ vs. $\sigma\left(R_{t+1}^{e}\right)$. (The two conditional frontiers can fit on the same graph. Draw a separate graph for the unconditional frontier.) Locate $R_{t+1}^{e}, R_{t+1}^{e *}$ and, if you found a better return in part c, that return, on all three graphs. (It will help to start with a summary table of all the necessary means and standard deviations.)
(Note: most of the numbers come out easily, but you need a calculator for some of them.)
2. (a) The expected return- beta model is $E\left(R^{e i}\right)=\beta_{i} \lambda$. This is true by construction - pick any λ, then just define $\beta_{i}=E\left(R^{e i}\right) / \lambda$. What went wrong with this logic - how does the model have any testable content?
(b) The CAPM is

$$
E\left(R^{i}\right)=R^{f}+\beta_{i, m}\left[E\left(R^{m}\right)-R^{f}\right]
$$

You can difference the left hand variables, to produce a CAPM with excess returns defined as one risky asset return minus another rather than one risky asset return minus the risk free rate,

$$
E\left(R^{i}-R^{j}\right)=\beta_{i-j, m}\left[E\left(R^{m}\right)-R^{f}\right]
$$

(Covariance is a linear operator, so $\beta_{i, m}-\beta_{j, m}=\beta_{i-j, m}$.) Can we can do this on the right hand side too, or must the market premium really be relative to the riskfree rate? Can we write

$$
E\left(R^{e i}\right)=\beta_{i, R^{m}-R^{k}} E\left(R^{m}-R^{k}\right) ?
$$

(Hint: the answer is "maybe, but only if R^{k} has special properties.." For this problem, assume a risk free rate is traded.)
3. Do the problems 1-3, in Chapter 8, Asset Pricing, p. 146. Notes:
(a) Question 3: To make this question interesting, suppose that returns are not iid, that there are observable variables z_{t} so that $E\left(R \mid z_{t}\right)$ and $\sigma\left(R \mid z_{t}\right)$ vary over time.
4. Do problem 1 in Chapter 9 p 183.

