
Business 35150 John H. Cochrane

Problem Set 4 Solutions

Part I readings. Give one-sentence answers.

1. Novy-Marx, The Profitability Premium. Preview: We see that gross profitability forecasts returns,

a lot; its power is not explained by hml slopes (in fact, hml goes the wrong way.) A “profitability

factor” digests a long list of anomalies, just as FF found for HML.

(a)  −  = 

P
−1 (∆+ − +). Does this sort of identity suggest that variables, such as

current gross profitability, which have strong power to predict future dividends (or earnings;

“good company” variables) should forecast returns better alone, or better in combination with

book/market or similar valuation ratios? (If you run a regression +1 = +  + +1 and

a regression +1 = +  +  + +1, sometimes including  improves x’s forecast power

(raises b), and sometimes including  lowers 
0 forecast power (lowers b). Which is it in this

case?)

A: That’s the whole idea really. Novy-Marx is enchanted with the power of profitability by

itself, but both profitability and B/M are mixing two things seen best when they are included

together. Higher ∆ by itself can mean just higher p. Higher ∆ controlling for p must mean

higher returns. Abstract.

(b) p.5. Fama and French found that profitability did not help to forecast returns. In a one-

sentence nutshell (and inspired by the identity), why does Novy-Marx’s measure work so

much better?. (Start with, why is it different? Note, this “true economic profitability” stuff

seems farfetched to me. There is something deeper at work.)

A: Gross profitability is a better forecast of future earnings. For example, if you’re investing

a lot in R&D, that’s a great sign of future earnings, but bad for earnings today.

(c) Table 1 Panel A. Are returns here regressed on contemporaneous values of the right hand

variable,  = + + , or lagged,  = + −1+ ?What’s the punchline of Panel A?

A: =  + −1 + ?, the punchline is that gross profitability helps to forecast returns,

controlling for B/M.

(d) What danger does Novy-Marx worry about with Fama-MacBeth regressions, which motivates

looking at portfolios? (A little graph might help.)

A: p.9 “because they weight each observation equally, put tremendous weight on the nano-

and micro-cap stocks, which make up roughly two-thirds of the market by name but less

than 6% of the market by capitalization. The Fama-MacBeth regressions are also sensitive

to outliers, and impose a potentially misspecified parametric relation between the variables,

making the economic significance of the results difficult to judge. ”

(e) Table 2. More profitable firms will have higher prices, so just sorting on profitability can isolate

low-return growth firms. If you sort just based on gross profitability, without controlling for

B/M, do expected returns still rise with profitability, or do they go the other way? Do HML

loadings explain the variation in expected returns?

A: Even not controlling for B/M, higher profitability means higher expected returns. HML

loadings go the wrong way.

(f) Table 4. Does the power of profit - to asset sorts evaporate in the biggest firms, as “dissecting

anomalies” suggested? (Where do we look?)

A: Bottom row, top left box panel A. It’s weaker (0.30-0.55) than the top row (0.40-1.07) but

still there.
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(g) Table 6 (Important!) Is the profit effect in average returns strong while controlling for

book/market? Is the value effect strong in average returns controlling for profits? Do hml

betas (and alphas) explain the value dimension of average returns, controlling for profits? Do

hml betas (and alphas) or other Fama French betas explain the profit dimension of returns

controlling for book to market?

A: Top left block, yes and yes. Each effect is stronger controlling for the others, as you

would expect.  column (far right) and row (lower block, panel A) yes for value, no for

profitability where hml betas are all the same.

(h) Table 10 (Important). Like Fama and French, Novy-Marx wants to know if a factor formed

on his anomaly, PMU, can explain a zoo of other anomalies. How many anomalies in Table

10 are left unexplained by the FF+momentum model, that Novy-Marx model captures? Hint:

What’s the central column of Table 10?) (For counting purposes, we can use t statistics greater

or less than two, despite my sermons about t statistics)

A: I.e. how many 4 are above 2 with  less than 2. I count 11 cases, but the principle

and getting you to look at the table is the main thing.

2. Fama and French Five Factor model. Reading notes. Fama and French spend a lot of time on

showing you various different ways of doing things to show how it comes out the same. Don’t

get lost in the variations, first get the basic idea and figure out their point with one way of doing

things. In particular, get the general idea of “factor definitions” section III but don’t get too deep

in the different versions. Section V sems the most important to me. I focused on the 32 portfolios

and 2x2x2x2 factors.

(a) p.3 FF say “higher expected future earnings imply a higher expected return.” But in a present

value model, higher expected earnings can coexist with a constant expected return — it just

generates a higher stock price. How can FF say this?

A: This paragraph fixes  i.e the price. If the price doesn’t change, then higher earnings

must have come with higher expected returns. The point of the question is to review that FF

are making partial statements holding things — like M — constant. Also p.7 “ The valuation

model does not predict that B/M, OP, and Inv effects show up in average returns without

the appropriate controls.”

(b) What are RMW and CMA?

A: p.4 the difference between returns on diversified portfolios of stock with robust and weak

profitability and...low and high investment .. which we call conservative and aggressive.

(c) How do FF define and measure “profitability” and “investment?” Are these in dollars or ratios

somehow?

A: p.6. “profitability (measured with accounting data for the fiscal year ending in t-1) is annual

revenues minus cost of goods sold, interest expense, and selling, general, and administrative

expenses, all divided by book equity at the end of fiscal year t-1.” p.7; “ Inv is the growth of

total assets for the fiscal year ending in t-1 divided by total assets at the end of t-1.”

(d) p.8 “we would like to sort jointly on size, B/M, OP, and Inv”. How did “dissecting anomalies”

solve this problem? (Optional) Why don’t they use the same approach here?

A: by running cross sectional regressions, in which case multiple regression slopes tell you the

power of each variable. Why do they not use that approach here? Because in a second stage

they want to see if portfolio expected returns line up with factor betas.

(e) Table 1. For given size (ME), do expected returns rise for more profitable firms? Or does

the “good company/good stock” fallacy apply? Is there a difference between small and large

firms?
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A: Table 1, middle. Higher profits mean higher expected returns (moving to the right), a bit

more in small firms (30 bp not 20 bp).

(f) For given size, do firms that invest more have greater returns?

A: Table 1, bottom, It’s the other way around. Though most of the effect seems concentrated

in a few places.

(g) Table 2. Is there a value effect in returns, holding profits constant? Is there a profits effect

on returns, holding value constant?

A: Top panel, expected returns rise as we go to the right and down. p.8

(h) Table 4 C. (p.13-14) Are the factor returns pretty much uncorrelated?

A: FF say so on p.13-14, but I see a strong 0.6-0.7 correlation in each row between HML and

one of RMW and CMA. So the ability to drop HML later doesn’t seem so surprising to me.

Note: As suggested in Problem set 4, FF Table 5 focus on average absolute alphas and average

2. Ignore GRS statistics. To keep our job manageable, focus on the 2x2x2x2 factors and 32

portfolios (Table 5 page 2 right.)

(i) (Table 5 F) In portfolios formed on size, OP and inv, can we get by with just HML and one of

RMW and CMA, or does it look like we really need both RMW and CMA factors to explain

those sorts?

A: As I read it, to get 0.1 average alpha, we need both RMW and CMA. Table 5 Panel F.

(j) Note: As suggested in Problem set 4, the way to see if you can drop a factor for pricing (not for

2) is to run it on the other factors and see if there is an intercept. Reading Table 6 2x2x2x2,

are there any of the 5 factors that we can drop for our description of expected returns?

A: Look at the intercepts, both their size (%/mo) and t statistics. It looks like we can drop

HML! That’s because, as we saw in T4, HML is quite correlated with RMW and CMA. Why

does problem set 4 drop size and FF don’t? I think it is because they have RMW and CMA

in the regression

Note: See the last paragraph for FF’s bottom line. FF don’t say anything about economics.

If I were writing the article I would say that RMW captures earnings, and CMA captures

cost of capital. Given those, B/M itself is redundant.

3. Frazzini and Pedersen, Betting against Beta. Reading note: Skip the theory, let’s get to the facts

starting section III. (I think the theory is a bit silly anyway. Let them buy options. Let firms

leverage. But you can’t argue with facts.) Let’s also focus on US equities. Focus on Table III and

IV, and discussion on p. 21

(a) In Table III, the average returns are the same across portfolios. How can there be a puzzle?

A: Puzzles are joint puzzles of expected returns and betas. Beta without expected return is

just as much a puzzle as expected return without beta!

(b) If the average returns are the same in row 1, how can the BAB strategy have a high average

return in the last column. ( −) = ()−(), no?

A: It’s a zero-beta BAB factor. Notice the zero beta in the ex ante beta row. Intuitively,

they buy more of the low beta stocks and short fewer of the high beta stocks. The beta

of  is  (beta is linear). So if we weight a portfolio by the inverse of beta,  =

 then the beta of 
 is one. So the portfolio is  =  − . If

() = () = () then 
¡


¢
= ()(1 − 1), and 

¡


¢
= 0.

Any difference in beta with no difference in mean return generates a BAB portfolio mean.

(Note all these returns are excess returns, so I don’t have to have weights summing to one.)
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(c) How do we know that the betas will persist going forward? I.e. if we form a portfolio of betting

against beta, how do we know that the differences in beta don’t disappear going forward and

we lose all our money? (Hint: In table III why are there two rows of beta? )

A: The portfolios are evaluated using post-ranking betas. They are formed using pre-ranking

betas, but you can form portfolios any way you want. The two rows of beta show the

differences between pre and post ranking betas.

Part II Computer

I start with mean returns (FF Table 1A). Where FF found 0.31 to 1.18 (first row) I get 0.33 to 1.15.

Last row, 0.37 to 0.71 is now 0.34 to 0.69. The data changes do matter, but the pattern is the same

I start with the CAPM again in this sample (I didn’t ask you to do that.) The results are quite

similar to what you found last week in the 1963-today sample. Capm betas rise as you go from big to

small, but decline from growth to value so the CAPM is a disaster.

In the FF model, as in FF the market b are all about one. I get the same result as FF out to

the second decimal, but differences there. Note how these multiple regression betas are different from

the single regression CAPM betas. The market, hml, and smb are somewhat correlated, so multiple

regressions assign some of what seemed to be movement with the market to movement with hml.

The h coefficients rise as we go to the right and the s coefficients rise as we go up. The alphas are

about as in FF. Small growth stocks underperform dramatically. Note that this underperformace is not

so much bad mean returns — they are the same as other mean returns. It comes from the combination of

mean returns and betas. To take advantage of it, you don’t short small growth stocks, you have to short

small growth stocks and invest in hml. The 3F R2 are all above 90%, leading me to label the model

more APT.

Data sample

196301.00 199312.00

Time series regression results

As in FF all results are in boxes with size and book to market

mean return

0.33 0.71 0.76 0.97 1.15

0.39 0.69 0.90 0.98 1.11

0.44 0.75 0.71 0.91 1.05

0.47 0.42 0.67 0.84 0.95

0.34 0.38 0.39 0.56 0.69

CAPM betas

1.42 1.24 1.15 1.07 1.10

1.43 1.23 1.10 1.04 1.12

1.36 1.16 1.03 0.97 1.07

1.22 1.13 1.04 0.97 1.08

1.00 0.98 0.86 0.85 0.86

CAPM alphas

-0.30 0.16 0.26 0.50 0.66

-0.23 0.15 0.42 0.52 0.62

-0.15 0.24 0.26 0.49 0.58

-0.07 -0.07 0.22 0.41 0.48

8



-0.10 -0.05 0.02 0.19 0.32

T on CAPM alphas

-1.33 0.84 1.47 2.86 3.36

-1.37 1.06 3.11 4.02 3.81

-1.16 2.21 2.34 4.44 3.85

-0.71 -0.85 2.37 3.86 3.38

-1.07 -0.64 0.17 1.84 2.13

CAPM R2

0.68 0.69 0.70 0.67 0.62

0.79 0.80 0.78 0.77 0.72

0.85 0.86 0.83 0.81 0.73

0.89 0.90 0.87 0.81 0.76

0.87 0.91 0.81 0.79 0.65

3F model b

1.04 0.96 0.93 0.89 0.95

1.10 1.02 0.96 0.97 1.07

1.10 1.02 0.97 0.97 1.06

1.06 1.07 1.05 1.04 1.15

0.96 1.02 0.97 1.00 1.03

3F model h

-0.28 0.09 0.25 0.39 0.64

-0.48 0.02 0.22 0.47 0.70

-0.45 0.04 0.31 0.49 0.71

-0.45 0.03 0.31 0.55 0.72

-0.45 -0.02 0.21 0.55 0.80

3F model s

1.42 1.29 1.15 1.11 1.20

1.01 0.92 0.83 0.71 0.85

0.71 0.62 0.54 0.45 0.64

0.30 0.27 0.24 0.20 0.36

-0.20 -0.20 -0.28 -0.18 -0.04

3F model alphas

-0.39 -0.12 -0.09 0.07 0.08

-0.14 -0.02 0.14 0.12 0.06

-0.02 0.11 -0.02 0.12 0.06

0.14 -0.14 -0.00 0.06 -0.00

0.20 -0.00 -0.06 -0.10 -0.14

T on 3F alphas

-3.70 -1.55 -1.49 1.20 1.24

-1.71 -0.32 2.21 2.05 0.97

-0.27 1.53 -0.25 1.87 0.69

1.89 -1.76 -0.02 0.78 -0.01

2.99 -0.02 -0.65 -1.39 -1.22

3F R2

0.93 0.95 0.96 0.96 0.96

0.96 0.96 0.96 0.95 0.96

0.96 0.94 0.93 0.94 0.92

0.95 0.92 0.91 0.90 0.89

0.93 0.92 0.85 0.90 0.81
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The suggested graphical exposition:
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Here’s the actual vs. predicted plot, and the CAPM plot repeated in this data sample for comparison
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How are we doing better? The “predicted” has a much bigger range, which is good. Most of the

portfolios like pretty close to the line, and much closer than in the CAPM case. Sometimes models “do

better” because the standard errors get bigger. This one, the standard errors actually get smaller, but

the points move a lot closer to the line. Thee model is still not doing well on s2v5 and s1v5 — the small

growth firms. In fact, it isn’t improving at all there. So the big improvement is really in the better

spread along the line for all the other portfolios.

2)

Data sample
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199401.00 201311.00

Time series regression results

As in FF all results are in boxes with size and book to market

mean return

0.24 0.95 0.99 1.13 1.21

0.62 0.79 0.97 0.92 0.94

0.59 0.84 0.92 0.86 1.16

0.81 0.81 0.79 0.90 0.75

0.65 0.72 0.64 0.59 0.57

3F model b

1.14 0.96 0.87 0.85 0.98

1.12 0.96 0.93 0.95 1.08

1.07 1.02 0.98 0.99 1.02

1.05 1.04 1.07 0.99 1.09

0.96 0.94 0.98 0.95 1.08

3F model h

-0.36 -0.01 0.29 0.49 0.71

-0.30 0.23 0.54 0.67 0.91

-0.41 0.29 0.54 0.72 0.81

-0.36 0.38 0.57 0.62 0.85

-0.29 0.22 0.39 0.64 0.71

3F model s

1.31 1.30 1.05 0.97 0.99

0.98 0.87 0.77 0.77 0.91

0.77 0.48 0.37 0.37 0.45

0.50 0.22 0.15 0.25 0.14

-0.26 -0.21 -0.15 -0.22 -0.15

3F model alphas

-0.65 0.09 0.16 0.29 0.23

-0.20 -0.04 0.11 0.02 -0.13

-0.14 0.04 0.12 0.01 0.25

0.14 0.04 -0.04 0.10 -0.14

0.19 0.14 -0.02 -0.09 -0.23

T on 3F alphas

-3.67 0.70 1.65 2.87 2.25

-1.79 -0.39 1.19 0.20 -1.35

-1.26 0.30 0.96 0.05 1.86

1.31 0.33 -0.27 0.85 -1.07

3.12 1.55 -0.23 -0.88 -1.42

3F R2

0.90 0.93 0.94 0.92 0.93

0.95 0.93 0.93 0.93 0.94

0.94 0.87 0.86 0.86 0.86

0.93 0.87 0.85 0.86 0.87

0.96 0.89 0.87 0.89 0.80
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Here’s the actual vs. predicted plot
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FF3F model

Overall, this is amazingly consistent performance out of sample. The t statistics are smaller, but

that’s because the sample is smaller. (One more warning against watching t statistics too closely!) The

pattern of expected returns, alphas, b h, s, R2 are all quite consistent. Interestingly the small growth

puzzle got a lot worse.

3.

rmrf hml smb

mean (pct/mo) 0.51 0.39 0.26

Sharpe 0.11 0.14 0.08

t 2.80 3.35 2.04

alpha and beta of on rmrf

alpha 0.48 0.15

alpha sharpe 0.18 0.05

alpha t 4.34 1.23

beta -0.19 0.21

beta t -7.67 8.00

rmse(a) mean|a| R2

FF3F model 0.136 0.099 0.913

rmrf hml 0.189 0.162 0.801

rmrf only 0.325 0.273 0.746

1 factor ff 0.136 0.099 0.399

weights

3.27 6.89 2.66

1 factor mv 0.000 0.000 0.100
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weights

-13.81 -2.01 -5.02 11.75 2.89

5.27 -0.07 2.31 -9.33 -0.01

-1.54 4.85 -0.67 -3.03 1.47

10.38 -0.84 -0.81 4.65 -2.91

6.51 -5.30 5.83 -3.39 0.38

a) The market premium of 0.5% per month is 6% per year. OK, about right. hml and smb have

lower premiums — but everything here is a long-short portfolio, so the level of the premium isn’t really

that important.

Sharpe ratios are a better measure. (
£
2× ( −)

¤
= 2× £( −)

¤
but

£
2× ( −)

¤

£
2× ( −)

¤
=


£
( −)

¤

£
( −)

¤
. Sharpe ratios are invariant to leverage or position size.) All three port-

folios have about the same Sharpe ratio. So far they look about equivalent.

b) However, smb has a positive beta and hml has a negative beta. This means that smb’s alpha is

about half its premium, while hml’s alpha is more than its premium. We have already seen that small

stocks are priced by betas, and that the value effect betas go the wrong way. Here we see it again.

In the next row, I show the alpha sharpe ratio, (). This is the Sharpe you get from −

=  + . You see that the small alpha sharpe is worse even than the small sharpe itself.

The alpha t statistic is the statistical test for dropping a factor. It says that smb is not statistically

helping to account for expected returns of other assets. Beware statistics though, because longer samples

make the same number more “significant”

c) So let’s see how the models do. The FF model has about 10-13 bp alphas and 0.91 2, bottom line

evaluation of “average returns” and “returns” respectively. The two factor model, without smb, does

result in a somewhat higher alpha — 16-19 bp. The 2 drops substantially. Remember,  = 0 only tells

us that the model of average returns isn’t affected. “Unpriced” factors help 2.

Dropping hml is a much worse idea. the alphas rise to 27-35 bp, and the 2 drops to 0.75.

d) The one-factor version of FF gives exactly the same alphas as the FF model! That’s a theorem.

You can always coalesce a multifactor model into an equivalent single factor model of average returns.

The mean-variance efficient combination of multiple factors gives you that magic single factor.

Also, the weights spread out between market, a strong value tilt and a smaller size tilt, are pretty

reasonable.

But the 2 drops to 0.4! (And all the t-statistics, not shown, are much bigger.) The single factor

model is not just as good a model of return variance. So, why did FF not reexpress their model this

way? Because with the 2 at 0.4, it’s a much worse model of returns. And the t stats and standard

errors are needlessly large.

e) 0?? Really? Yes indeed. The ex-post mean-variance efficient portfolio prices all assets perfectly in

a single-beta model. This is the “Roll theorem” after UCLA’s Richard Roll who first proved it∗. It’s an
important point — factor fishing needs some rules of the game or you end up with perfection, even in a

single factor.

This isn’t a practical factor model, however. The weights are all over the place — and very unstable

across subsamples.

And 2 = 01. This is a horrible model of return variance.

* If you like looking at proofs, here is one.  is a  × 1 vector (i.e.  = 25), Σ = ( 0) is
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a  × matrix.

 = Σ−1 ()

 = 0 = ()0Σ−1

 =
( )

()
=


£
 0Σ−1()

¤
( ) =  [()0Σ−1 0Σ−1()]

 =
ΣΣ−1()

()0Σ−1ΣΣ−1()
=

()

()0Σ−1()

() = ()0Σ−1 ()

 =
()

()

() = ()
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