
Business 35150 John H. Cochrane

Problem Set 5 Answers

Part I A simple very short readings questions
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2. Yes, like temperature. See the plot of utility in the notes. Marginal utility should be positive.
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=  [+1] If people are risk neutral, prices are just a constant times

expected payoffs.
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That’s a problem, since the market Sharpe ratio is about 8/16=0.5. This is called the equity

premium puzzle.

Part I B

1. The plot is below.

(a)
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I set up a grid for , a couple of different  chosen artistically, and set matlab to work on it.

(b) The slope is in general

 [( +1)− ] = 0
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The third to last equation is important — indifference curve slope = ratio of marginal utilities

= marginal rate of substitution. At +1 =  the slope is 1/0.95 ≈ -1.05. So the slope is a
bit steeper than -1.
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(c) My solution is a little more general; I wait until the end to plug () = ln() and the numbers

in to the answer. You probably got there quicker by specializing earlier. You also might have

avoided the Lagrangian by substituting, e.g. +1 =  − .

max
{+1}

() + (+1)
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From the first two,

0() = 0(+1)

In the log case

1


= 

1

+1

+1 = 

Substituting into the budget constraint,

 +
1


() = 

 =


1 + 
=
1000

195
= $51282

+1 = 


1 + 
= 095× 110× 1000

195
= $53590

In order to plot the associated indifference curve, I found the  for this optimal choice

ln(∗ ) +  ln(∗+1) = ln(51282) + 095× ln(53590) = 1221

The budget constraint is of course

 +
1


+1 = 

+1 =  ( − ) = 110 (1000− )

Now we have all the ingredients for The Plot:
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(d) Notice that +1 = , the investor consumes  = 095 × 110 ≈ 5% more in the second

period. The attraction of the 10% interest rate outweighs the impatience of  = 095 and

the investor is induced to save.

2. The point here is that the relative risk aversion coefficient is a measure of how willing people are

to take a gamble.

(a)
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ii.
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Note 2() = 1
2
̄22 + 1

2
̄22;so 2(̄) = 2((− ̄) ̄) = 2. Meanwhile,  [(− ̄)̄] =

. So we can restate the answer, “how much extra mean do you need to compensate

you for taking on variance,” with both mean and variance expressed as percentages of

expected consumption
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That’s why we call  the risk aversion coefficient! The bribe is 12, but we usually leave out

the 1/2

Part II A

1. Here are my regressions.

Data sample

196301.00 201312.00

regression of mean xs return on mean log beme and mean log size

const size beme R2

b 0.616 -0.052 0.266 0.761

As expected, more size means less returns, more beme means higher returns. These are about the

same size coefficients as reported by FF Table 4. A 10% increase in size means a -5bp decrease in

monthly return; a 10 percent increase in beme (i.e. beme from 1.0 to 1.10) means a 27 bp increase in

monthly return.

2. Here’s the table.

actual mean return

0.28 0.79 0.84 1.01 1.16

0.48 0.72 0.92 0.95 1.03

0.49 0.78 0.79 0.88 1.08

0.60 0.57 0.71 0.86 0.87

0.46 0.51 0.49 0.57 0.64

regression on average log size and average log beme

0.61 0.80 0.89 0.97 1.13

0.53 0.71 0.80 0.88 1.02

0.48 0.66 0.75 0.83 0.97

0.43 0.62 0.71 0.79 0.92

0.31 0.52 0.62 0.71 0.82

As usual, it’s clearer in a plot:
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I also made another plot of fitted vs. actual means.
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As you can tell in the numbers and graph, the cross sectional regression is doing a pretty good job.

This plot looks very much like the mean return plot we started with. If the regression were perfect, we’d

see a 45 degree line. The major failing is, no surprise, s1v5, the small growth portfolio. This portfolio

does much worse than a linear extrapolation of “being small” and “being growth” suggests it should.

3. The regression with a cross term.

() = + ×() + × () + ×()× () + 

regression of mean xs return on mean log beme and mean log size and cross term

const size beme s x bm R2

b 0.480 -0.081 -0.039 -0.068 0.870
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One measure of success, the 2 has gone up to 0.87 from 0.75. You can see how with the cross term

the dark blue fitted value can go down for growth stocks and up for value stocks, and give therefore a

much better fit. One way to see what this does, is that it allows a greater size effect for value than for

growth stocks. I.e.

() = + [+ × ()]×() + × () + 
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Though not perfect, you can see that the pattern of Table 1A is not really just a “size” effect and a

“beme” effect, but there is an important “interaction” as well. The betas will have to have the same

pattern if they are to explain these returns.
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4. Yes, you are allowed to do anything you want in these regressions Remember, we’re just “describing

returns,” we’re not “explaining” returns here.. The content of these regressions is simply whether the

pattern in Table 1 panel A can be matched by a linear function of suitably transformed B/M and size.

If so, that is a convenience, but no theory of anything hangs on the answer. Table 1A itself is a 25

parameter nonlinear fit. Is a linear function of transformed BM and size a good description of average

returns? Pretty much yes, except for the small growth anomaly. But unlike betas, there is no economic

reason why average returns should be linear functions of BM and size. We can use nonlinear functions,

or cross terms if we want.

By contrast you are not allowed to use cross terms or nonlinear functions in

() =  +  +  +  + ( × ) + ;  = 1 2 25

The factor model says average returns depend linearly on betas. Period. That’s because there is a deep

portfolio interpretation. We form the portfolio


 −  −  − 

You can’t do that with cross terms.

5. A reminder: the cross sectional regression

regression of mean xs return on mean log beme and mean log size

const size beme R2

b 0.616 -0.052 0.266 0.761

Now, the forecasting regressions

pooled forecasting regression of return on log beme and log size

const size beme R2

b 0.655 -0.060 0.451 0.003

You see roughly the same coefficient on size. The beme coefficient is the same sign but about twice

as big. Why?

pooled forecasting regression of sample mean x for each portfolio

b 0.616 -0.052 0.266

pooled forecasting regression of x - sample mean x for each portfolio

b 0.740 -1.028 1.465

Aha! The forecast regression using the sample mean gives exactly the same result as the cross sectional

regression! But we see in both coefficients that if portfolio A has an unusually high b/m, relative to

portfolio A’s long-term average, that is a signal that A will have a strong return the next year, and this

signal is even stronger than the signal that portfolio A has, on average, a higher b/m than portfolio B.

This is what FF left on the table. We can do better by looking at change in value over time, not just

across stocks.

This is a “pooled regression with portfolio dummes.” Taking out the portfolio averages — and thus

looking only at variation over time in the right hand variables


+1 = + × [ −()] + × [ − ()] + +1
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is mechanically the same as putting in portfolio dummies


+1 =  + ×  + ×  + +1

Additional discussion (not in the problem set)

You can also do the opposite. Let’s take out the average size and BM across portfolios at each

moment in time. This is the same thing as adding time dummies,


+1 =  + ×  + ×  + +1

Now the regression ignores variation over time, but only asks if portfolio i has more than portfolio j,

how does that affect returns

pooled forecasting regression, time means

b -14.038 -3.510 2.153

pooled forecasting regression, removing time means

b 0.740 -0.051 0.289

In this problem you have run a “cross-sectional regression” and a “pooled time-series cross-sectional

regression.”

Part B

1.

const size beme

Cross sectional regression, regress_jc t statistics

b 0.616 -0.052 0.266

se 0.068 0.014 0.037

t 9.021 -3.801 7.136

Conventional s,t statistics

conv se 0.065 0.013 0.036

t 9.422 -3.970 7.453

Corrected se, t statistics using Sigma/T

corr se 0.193 0.037 0.081

t 3.185 -1.424 3.286

Fama MacBeth coefficients, standard errors, t statistics

FMB b 0.587 -0.050 0.244

se 0.203 0.037 0.080

t 2.889 -1.346 3.055

We saw the regression above. The T statsitics are huge, boy these effects are strong.

The "conventional" statistics (0)−1 2() use the variance of the residual, where the regression

package uses 1/(N-k) in place of 1/N. As you see this makes a small difference in t statistics. I hope you

remembered to take a square root

The corrected t statistics are half or less of the uncorrected statistics! In cross-sectional regressions

with thousands of individual stocks, a factor of 10 is more common. Do not run cross sectional regressions
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with t statistics that are not corrected for cross-sectional correlation. It is one of the most common

mistakes even in published articles.

The FMB coefficients are just about the same as the cross-sectional coefficients! There is close to a

theorem here. If the x variables are the same over time (if we had used () not ) then FMB and

cross sectional coefficients would have been exactly the same. Variation of  over time gives rise to the

small difference.

The FMB standard errors and ts are just about the same as the corrected ones! You can see a great

similarity in the way its constructed. FMB was invented before this formula was invented, but survives

because everyone knows it so well.
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