Problem Set 7 answers

Part I answers are included with this week's notes.
Part II:

1. The mean xs return is quite similar to Carhart 0.15 to 0.71 compare to 0.01 to 0.68 . The CAPM alphas, betas, etc. are also similar.

	loser	2	3	4	5	6	7	8	9	winner	w-l
Mean lag retx	-1.17	-0.43	-0.15	0.05	0.22	0.39	0.58	0.80	1.11	1.96	3.13
Mean xs return	0.15	0.33	0.34	0.38	0.35	0.42	0.44	0.48	0.56	0.71	0.56
std err Mean	0.20	0.19	0.18	0.18	0.18	0.18	0.18	0.19	0.20	0.23	0.15
CAPM alpha	-0.27	-0.09	-0.07	-0.03	-0.06	0.01	0.03	0.06	0.11	0.26	0.53
t (alpha)	-3.25	-1.69	-1.65	-0.72	-2.00	0.20	0.73	1.13	1.63	2.33	3.47
CAPM beta	0.97	0.96	0.95	0.93	0.95	0.96	0.96	0.98	1.02	1.05	0.07
CAPM R2	0.83	0.92	0.95	0.96	0.97	0.97	0.96	0.93	0.88	0.76	0.01
Mean prev return	-1.17	-0.43	-0.15	0.05	0.22	0.39	0.58	0.80	1.11	1.96	3.13
Avg frac > mkt	0.36	0.41	0.42	0.43	0.43	0.46	0.48	0.52	0.54	0.57	
Avg frac < mkt	0.64	0.59	0.58	0.57	0.57	0.54	0.52	0.48	0.46	0.43	

The first row is the mean lag of last year (formation year) returns. The worst funds lost 1.17% per month over the previous year; the best funds gained 1.96% per month in the previous year. I want to give you some sense of how strong the continuation of fund returns is in fact. The the portfolios over the next year show the attractive indicated "mean xs return" spread, but that is much less than the spread in their returns last year. A very small continuation multiplied by a very large return last year gives the 0.15-0.71 percent spread.

I ran a regression on the first two rows of the table and made the graph below. This is a regression with 10 data points, next year's return on the last year's return. The graph shows that the average return next year is almost a perfect linear function of average return last year, not portfolio number. That's why the portfolio mean returns have S-shaped patterns - the 1,10 portfolios have huge values of average return last year. The S shaped portfolio results are hiding an underlying linearity. (You've seen this many times before. A linear function of some characteristic gives a S shaped function of portfolio number since the extreme portfolios are extreme.)

Quantitatively, the persistence in portfolio returns is the same thing as an acutocorrelation of 0.17 (meaning R^{2} of $0.17^{2}=0.029$) in a forecasting regression. The portfolios correspond to very weak persistence in fund returns! A 10% return this year means a best guess of 1.7% return next year. Similarly, the $1-10$ portfolio has a 0.56% return next year and 3.13% return in the previous years, for $0.56 / 3.13=0.18$ regression coefficient.

The frac $>\mathrm{mkt}$ and $<\mathrm{mkt}$ lines present the risks in a different way - of the funds that were in the top decile last year, how many even beat the market next year? The best answer is 57%. Note also that we don't get half the funds beating the market until we're looking in the 8 or 9 portfolio! Again, I really want to disabuse you of the fallacy that Carhart results mean "funds that went up last year always go up a lot next year."

The four factor model. This looks a lot like Carhart. The alphas are mostly smaller, -0.05% per month rather than -1%. Fama-French umd may be the secret. The losers are still bad with -0.15% per month, but not the huge -0.63% Carhart found - umd does seem to have cleared up that issue. The pattern of betas is the same; not much market beta, u-shaped smb beta with a lot of smb for the winners. Momentum betas are doing the job. R^{2} are very high; portfolios of funds are very close to indices. Notice we're not rejecting the 4 factor model.

2. Here are the results sorting on 5 year returns. Interestingly there is almost no spread in mean returns! The mean returns only vary from 0.31 to 0.49 .5 year performance averages just don't see to

```
mean much!
```


3. Alphas

alpha t stat 5, 5095 percenties $-2.7748 \quad-0.5274 \quad 1.7544$

N 5, 50, 95, $-1.6449 \quad 0 \quad 1.6449$

```
t 5, 95, 24 degrees of freedom
    -1.7109 0 1.7109
```

alpha 5, 5095
$\begin{array}{lll}-0.6098 & -0.0749 & 0.3398\end{array}$

These look just like Fama and French. The median alpha t stat is -0.53 ; The lower 5% tail happens at -2.77 . The upper tail happens at 1.75 . We don't have the bootstrap distribution, but we can compare to a normal (first row above, figure below) or a t distribution (second row, figure). The problem with the t distribution is that the different funds last different amounts of time, so they have different degrees of freedom. I used 24 degrees of freedom (2 years) as a guess in the second figure. As you see, the normal and t distributions really give about the same answer here. The t (24) distributions says the 5% tails should happen at $+/-1.71$; the normal distribution says 1.64 , not that different. It looks like average skill is slightly negative, but there is some skill as the distribution is a bit spread out and just few more good funds than there should be.

The actual alpha distribution is not as impressively shifted - only 0.07% per month median underperformance. It's also quite wide. The upper and lower 5% values happen at -0.61 and +0.34 bp per month $--7 \%$ and $+4 \%$ per year! Making the transformation to t statistics was really important for reducing the influence of small, short-lived, high volatility funds.

