
Business 35150 John H. Cochrane

Problem set 9

Part I questions

1. Interest rates. What is a reasonable value for

(a) the log price of a one year pure discount bond, in the conventions of the readings 
(1)
 ?

(b) the log yield of a one year pure discount bond, 
(1)
 ?

(c) the actual price 
(1)
 ?

(d) the actual yield 
(1)
 ?

In each case, choose between 95.00, 0.95, 0.095, 5, 1.05, 0.05, -5, -1.05, -0.05.

The next set of problems give you some practice with the definitions, and derive some important

relationships between prices, forward rates, yields, etc.

2. Show that the price is the discounted value of a dollar, using forward rates to discount. Do

this in logs. You’re looking for 
()
 = −

³

(1)
 + 

(2)
 + + 

()


´
. Hint, start with −() =³

0− 
(1)


´
+ (

(1)
 − 

(2)
 ) + (this is an important point — you can always use forward rates to

discount certain payments)

3. Therefore, show that the yield = average of intervening forward rates (and express that form)

4. And conclude that if forward rates equal expected future spot rates, 
()
 = 

(1)
+−1 the expec-

tations hypothesis yields = average of expected future spot rates holds

5. Now, differencing in time, show that the current price is the negative of the sum of bond returns all

the way to maturity. Start with −() =
³
0− 

(1)
+−1

´
+
³

(1)
+−1 − 

(2)
+−2

´
+  and substitute

to get the relation between 
()
 and lots of 

()

+ getting all the  and  right. Does the fact that

you have a variable known at time  on the left and lots of variables known only in the future on

the right bother you? What does that tell you about bond returns?

6. Show that the two year forward spread mechanically equals the rise in the one year spot rate plus

the excess return on a two year bond


(2)
 − 

(1)
 =

³

(1)
+1 − 

(1)


´
+
³

(2)
+1 − 

(1)


´
(hint, just start with the definitions)

7. Do this one, its important Therefore, show that if you run regressions of one year interest rate

changes and returns on forward-spot spreads, the coefficients and errors add up just as we found

in week 2 with long-run return regressions on dp. In equations, if you run³

(1)
+1 − 

(1)


´
=  + 

³

(2)
 − 

(1)


´
+ 


+1³


(2)
+1 − 

(1)


´
= 

(2)
+1 =  + 

³

(2)
 − 

(1)


´
+ +1

Find the relationship between  , , and between  and . How is this like our dividend

yield regressions?
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Part II computer

The bootstrap and monte carlo are very useful techniques. To explore them, get the data from

problem set 1.

1. Start by running forecasting regressions of log returns and log dp on dp

+1 =  +  + +1 (1)

+1 =  +  + 

+1 (2)

Use the 1947-end of sample period. Tabulate the slope coefficients  , standard errors, and the

correlation of the errors. That’s important — the errors are quite correlated.

2. Now bootstrap. Resample the errors  , 

 from the regression residuals, with replacement,

keeping the errors at each date together to preserve their correlation. Then generate new data

by feeding it through the system (1)-(2). Rerun the regression in each artificial data set. Do this

many times (in a loop) and keep ̂ and ̂ from each trial.

Why? In any sampling experiment we have to decide what is correlated and what is not correlated.

If we resampled the actual variables  and , we would lose the correlation over time that is so

crucial to the whole business. By sampling the errors and reconstructing the variables, we preserve

the correlation over time of the variables. We also sample the errors together, so as to preserve

the correlation between the errors  and 

 . We are making assumptions here — we are assuming

that the errors  and  − 1 are not correlated. We are also forming a null hypothesis around our
sample estimates  and .

Tabulate the mean and standard deviation of the ̂ and ̂ across your trials. Compare the means

to the regression values Are the estimates biased? (Is the mean of the bootstrapped estimates close

to the assumed values  and ?) Did the OLS standard error formulas understate or overstate

the sampling uncertainty — standard deviation of ̂ across trials — revealed in the bootstrap?

3. Make a histogram of your ̂ ̂ estimates, and include the “true” (assumed null hypothesis) values

from the original regression. Are the distributions visibly different from a normal? (Note: who

cares? A: Hypothesis tests care. If you computed 5% values, they would be based on normal

distributions. “Fat tails” of the ̂ ̂ distributions mean these tests are wrong.)

4. Now, you will see that the distributions of ̂ ̂ are not normal. Does this come because the

errors  were not normal? Repeat, but this time in each simulation choose
n
  




o
to be normally

distributed with mean zero and covariance matrix equal to the covariance matrix of the residuals.

(See programming hints.) Simulate again, and tabulate as above. Do you get distributions of ̂

and ̂ that are less biased or more normally distributed?

5. Now, these simulations are centered around the regression values  ≈ 012 and  ≈ 094. A

“hypothesis test” asks the question, suppose the truth were  = 0,  = 094, how often would

we see a ̂ equal to or higher than the  ≈ 012 that we see in our data? Let’s find out.
Redo your bootstrap, resampling the errors

n
  




o
as before, but this time form your simulated

data   from a vector autoregression with  = 0 and  = 094. Run the regression in simulated

data, and tabulate again the mean and standard deviation of ̂ ̂. This time, also tabulate the

fraction of your simulations that produce a sample ̂ greater or equal to the value ̂ ≈ 012 that
we observed. This is the “hypothesis test” and the number is supposed to be less than 5%. Is it?

6. To gain insight, repeat your plots of the distribution of ̂ and ̂ including the sample values

 ≈ 012 and  ≈ 094 we found before.
7. You will conclude that it’s hard to reject  = 0 But also make a scatterplot of ̂  ̂, and

include our sample values  ≈ 012,  ≈ 094. Are samples in which ̂ is falsely high also
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samples in which ̂ is off in one way or another? Is it likely that we see both high  and high

?

Note: The last point is important in the return predictability papers. A bunch of papers noticed

the upward bias in  and claimed predictability is all spurious. Other papers, (including my “dog that

did not bark”) noticed the joint behavior of  and . All the samples with spuriously high  have

spuriously low  since the true  can’t be greater than one, and our  is so large, this means that

our world can’t come from one with much lower  than what we actually see.

Programming hints:

selectors = floor(rand(T,1)*(T)+1)

produces a vector T long of random integers, each between 1 and T. Then

error_trial = err(selectors,:)

takes a T x 2 vector of errors (return, dp) and selects from them randomly with replacement.

hist(betas,n)

produces histograms, with n bins

plot(betas(:,1),betas(:,2),’.’)

produces a scatterplot of the first simulated beta against the second one

sigma = cov(err);

D = chol(sigma);

error_trial = randn(T,2)*D;

If err is Tx2, sigma is 2x2 covariance matrix. this cool technique produces a Tx2 draw of random

normals with the same covariance matrix. Try

cov(error_trial)

and you should see that up to sampling error it is the same as the original sigma.
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