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Abstract

State-space or latent-variable models for stock prices specify a process for expected returns
and expected and unexpected dividend growth, and then derive dividend yields and returns
from a present value relations. They are a useful structure for understanding and interpreting
forecasting relations. In this note, I connect state-space representations with their observable
counterparts, and VAR/ARMA representations recovered by forecasting regressions.

1 Introduction

This paper connects return forecasting regressions with “state-space” representations. In a “state-
space” or latent variable representation, we start with a process for expected returns and expected
dividend growth. We then derive the dividend yield as the present value of the dividend growth
process. This is a nice system for interpreting forecasting regressions in terms of expected return
variation and expected dividend growth variation.

As a simple and useful example of a “structural state-space representation”, define gt =
Et(∆dt+1) and μt = Et(rt+1), where both expectations are with respect to investors’ information
sets, and suppose these variables follow AR(1) processes,

μt+1 = φμμt + εμ,t+1

gt+1 = φggt + εg,t+1

∆dt+1 = gt + εd,t+1.

We can use the present value and return identities, derived below, to find dividend yields and
returns,

dpt = Et

∞X
j=1

ρj−1 (rt+j −∆dt+j) =
μt

1− ρφμ
− gt
1− ρφg

= kμμt − kggt

rt+1 = −ρdpt+1 + dpt +∆dt+1

= μt + εd,t+1 − ρ(kμεμ,t+1 − kgεg,t+1)
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We can think of the first three equations as a specification of the environment and the last two
as the result of asset pricing. The dividend yield and return shocks

εdp,t = kμεμ,t − kgεg,t

εr,t+1 = εd,t+1 − ρεdp,t+1

also follow from the “structural” shocks by identities. Thus, we only need specify the covariance
matrix of the “structural” shocks cov

¡£
εg εμ εd

¤¢
to complete the specification of this model.

I first connect this “structural” representation with an “observable state-space representation.”
Agents observe the ε shocks and the state variables μ, g, but we do not. The observable represen-
tation is of the same form, but can be estimated using data on dividend yields, dividend growth
and returns only. It is just a way to rewrite the Wold representation of dividend yields, dividend
growth and returns in a form that looks a lot like the underlying “structure.” It turns out that
the observable representation has exactly the same form, but the shocks have one less dimension.
In this example, the observable counterparts to the shocks εg, εμ, εd are driven by two regression
errors, shocks to dividend yields and dividend growth which I denote vdp, vd. This observable rep-
resentation allows us to assess what is and is not identified of the structure, and it is the simplest
form in which to estimate the structure by maximum likelihood or other full informaiton methods.

Then, I connect the state-space representations with the MA(∞) ARMA and VAR represen-
tations of the data. The latter question lets us ask, what does a model like the above imply for
forecasting regressions? How can we interpret the result of arbitrary forecasting regressions in the
context of a state-space structure? What do forecasting regressions say about variation in expected
dividend growth and expected returns? How can we form estimates of the state-space parameters
from forecasting regressions?

Of course, one can specify much more general models of this sort, in which expected returns
and dividend growth have more complex dynamics, feed back on each other, are driven by ex-post
dividend growth, and evolve jointly with other variables that we can measure. In fact, any arbitrary
VAR can be written in this form, and one task of these notes is to connect an arbitrary VAR to its
state-space representation. The last section of this paper tackles this general case.

The VAR implications of the above simple system show some forecasting promise. For example,
when φμ = φg, we can write the implied return forecasting regression (Equation (37) below)

rt+1 ≈
αμ,dp
k

dpt −
αr
k

∞X
j=0

³
φ− αr

k

´j
rt−j + vr,t+1 (1)

where α and k are parameters defined below. This regression says that in addition to the usual
coefficient on the dividend yield, a long moving average of dividend growth should help to forecast
returns. This specification would be easy for standard regressions to miss, as regression coefficients
can be insignificant when taken one at a time, but important when taken together. This expression
nicely sums the two sensible ways of learning about time varying expected returns.

The general analysis in the last section dampens one’s enthusiasm however. I show how to
translate any VAR in to a state-space model, and I show by example that a standard first order VAR
has a state space representation very like this simple example, enhanced only with cross effects by
which μt forecasts gt+1 and vice versa. Thus, adoption of a state space model is unlikely to believably
enhance forecasting ability. The only hope is to find some economic restriction for parameters in
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the state space formulation (rather than the essentially pedagogical restrictins embodied in my
example) that are not clear when translated to the VAR formulation.

Cochrane (1991, 2004,2008) presents a one-state-variable version of this model, in which ex-
pected returns vary but expected dividend growth does not, in order to interpret regressions of
returns and dividend growth on dividend yields. Van Binsbergen and Koijen (2008) present a two
state variable nonlinear model of the above form, estimate it by maximum likelihood, and find it
is able to increase the return forecast R2 over simple dividend yield regressions. Essentially, they
find that the second term in (1) matters.

1.1 Identities

The Campbell-Shiller (1988) linearized identities linking prices, dividends and returns give a struc-
ture that helps to digest stock return predictability. Returns are, to a very good approximation

rt+1 = −ρdpt+1 + dpt +∆dt+1. (2)

As a result, in any forecasting regression of the form

rt+1 = br,dpdpt + br,xxt + vr,t+1

dpt+1 = bdp,dpdpt + bdp,xxt + vdp,t+1

∆dt+1 = bd,dpdpt + bd,xxt + vd,t+1

(x can be a vector) the regression coefficients must be related by

br,dp = 1− ρbdp,dp + bd,dp (3)

br,x = bd,x − ρbdp,x, (4)

and the errors must obey
vr,t+1 = −ρvdp,t+1 + vx,t+1.

These identities mean that that given dividend yields, we can drop either returns or dividend
growth forecasts from the analysis. If we predict {dp, r} or {dp,∆d}, we can recover the missing
variable. Equivalently, they mean that return, dividend growth, and dividend yield forecasts are
mechanically linked, so that any behavior of one has implications for the other. Since the return
identity (2) holds for each data point, these identities hold for each sample as well as for the
underlying population coefficients.

The identity (2) is accurate, but it is only approximate. Thus, it is important either to work
out its consequences for empirical work, as the computer will not automatically detect redundant
variables. Alternatively, one can work with data that imposes the approximate identity. When
I do that, I use exact measures of returns and imply dividend growth. Fundamentally we are
interested in returns, and making inferences about returns from data that is not exactly a return
is a dangerous pastime.

Iterating the return identity forward, we obtain the Campbell-Shiller (1988) linearized present
value identity,

dpt = Et

∞X
j=1

ρj−1rt+j −Et

∞X
j=1

ρj−1∆dt+j . (5)
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Since this is an identity, Et can refer to any information set that includes dpt, and the investor’s
information set in particular. The price-dividend ratio reveals a slice of investor’s information
about expected returns and expected dividend growth, which is why it is so central to forecasting.

This identity admits additional forecasting variables of course. First, other variables may help
to predict returns if they also help to predict dividend growth. Second, other variables may help
to predict one-period returns if they predict a different time-path of returns. A variable may help
to predict a higher rt+1 with no ability to predict dividends if it also predicts lower rt+j , i.e. if its
variation holds Et

P∞
j=1 ρ

jrt+j constant. We will see these effects in understanding how dividend
growth or returns, and lags of dividend yields, can help to forecast one-period returns.

The identity and logic can help us to assess the plausibility of additional variables. A variable
may appear help to forecast one-year returns, but its implied dividend-growth or long-term return
forecast may be implausible.

1.2 One state variable model reminder

A one-state variable model has been very useful in digesting dividend-yield forecasts. The two-state
model is a straightforward generalization, so it’s worth remembering the one-state-variable model
first.

Facts

Consider dividend-yield forecasts of returns and dividend growth that use only current dividend
yields,

rt+1 = brdpt + vr,t+1; br ≈ 0.1; σ(vr) ≈ 0.16 (6)

∆dt+1 = bddpt + vd,t+1; bd ≈ 0; σ(vd) ≈ 0.14 (7)

dpt+1 = bdpdpt + vdp,t+1; bdp ≈ 0.94; σ(vdp) ≈ 0.08 (8)

cov(vd, vdp) ≈ 0 (9)

By the identity
rt+1 = −ρdpt+1 + dpt +∆dt+1 (10)

one of the return or dividend growth forecasts follows from the other; we have therefore

br = 1− ρbdp + bd

and the numbers quoted above reflect this identity

0.1 ≈ 1− 0.96× 0.94 + 0.

Taking innovations, we have
vr,t+1 = −ρvdpt+1 + vd,t+1

and hence
σ2(vr) = ρ2σ2(vdp) + σ2(vd)− 2ρcov(vd, vdp).

The numbers quoted above also reflect this identity,

0.162 ≈ 0.962 × 0.082 + 0.142
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It’s an interesting fact in the data that dividend yield innovations and dividend growth inno-
vations are essentially uncorrelated. This fact implies that return innovations and dividend yield
innovations are highly negatively correlated.

cov(vdp, vr) = cov(vdp, vd − ρvdp) = −ρvar(vdp)
cov(vd, vr) = cov(vd, vd − ρvdp) = var(vd)

This correlation is easiest to digest in regression coefficients

βvr,vd = cov(vr, vd)/var(vd) = 1

βvr,vdp = cov(vr, vdp)/var(vdp) ≈ −ρ

One state variable model

These results are nicely digested with the following standard one-state-variable model. Let
μt ≡ Et(rt+1) denote expected return, and suppose it follows an AR(1),

μt = φμμt−1 + εμ,t (11)

Suppose expected dividend growth is a constant, so actual dividend growth follows

∆dt = εd,t (12)

All variables are demeaned. We can find the dividend yield by the Campbell-Shiller linearized
present value relation

dpt = Et

∞X
j=1

ρj−1 (rt+j −∆dt+j) =
μt

1− ρφμ
= kμμt (13)

Thus, the dividend yield reveals the expected return. Actual returns follow from the identity (10)

rt+1 = −ρdpt+1 + dpt +∆dt+1

rt+1 = μt + (vd,t+1 − ρvdpt+1)

rt+1 = (1− ρφμ)dpt + (vd,t+1 − ρvdpt+1)

In sum, if the world follows the “structural” model of dividend growth and expected returns
given by (11)-(12), and prices are generated by (13), then we will observe a VAR representation

dpt+1 = φμdpt + εdp,t+1; εdp,t+1 = kμμt+1

∆dt+1 = εd,t+1

rt+1 = (1− ρφμ)dpt + εr,t+1; εr,t+1 = εd,t+1 − ρεdp,t+1 = εd,t+1 − ρkμεμ,t+1

Deliciously, the regression and “structural” model match perfectly. We can interpret the divi-
dend yield forecast error as a pure “expected return shock.” We can interpret the dividend growth
realization and forecast error as a pure “cashflow shock.” The empirical fact that these two shocks
are essentially uncorrelated frees us from orthogonalization worries.

Dividend yields reveal expected returns. Actual return shocks are a combination of current
dividend growth shocks εd and dividend yield or expected return shocks. Returns are high if there

5



is good cash flow news (expected to last forever) or if there is “good” (lower) expected return news.
A change in prices with no contemporaneous change in dividends isolates a completely transitory
price movement. All variation in dividend yields comes from varying expected returns. Since

var(εr) = var(εd) + ρ2var(εdp)

0.162 = 0.142 + 0.962 × 0.082

roughly 0.142/0.162 = 0.77% of the variance of returns comes from current cashflow news, none
from future cashflow news, and the rest from expected return news. Though many authors have
confused the calculation, the statement “all variation in dividend yields comes from discount rates”
and “discount rate and cashflow news each account for about half of the variation of returns” are
in fact completely consistent. Returns are affected by current cashflows and dividend yields are
only affected by expected future cashflows.

Additional variables

This model makes one dramatically wrong prediction. If we interpret expectations to include
all available information, it says that no other variable may predict returns in addition to the
dividend yield, and no other variable may predict dividend growth at all. This prediction is false,
and integrating this fact into our understanding is the point of this article.

The one-state variable model is not wrong. If we accept the estimates in which lagged returns
and lagged dividend growth do not help to predict returns or dividend growth, we can interpret both
the VAR and the structural model to reflect expectations given an information set consisting of past
returns, dividends, and dividend yields, Et(·) = E(·|It), It = {dpt, rt,∆dt, dpt−1, rt−1∆dt−1, ...}.
The fact that agents may see more variables, and those additional variables may forecast returns,
does not invalidate the VAR as a statement of the Wold representation of dividend yields, dividend
growth and returns, nor does it invalidate our “model” as a representation of expectations based on
that information set. Nor does it invalidate our decomposition of variables into “expected returns”
and “expected cashflow” effects, so long as we understand “expected” to be respect to It and not
investor information sets.

Still, investors do see more, and other variables do forecast returns and dividend growth. My
objective is to extend this lovely structure to accommodate that fact. We still will benchmark to
the basic facts presented above — one constraint on our thinking about other variables is that if we
condition down to dividend yields only, we must obtain the regressions above. But we will also be
able to incorporate additional facts.

1.3 An ARMA(1,1) reminder

Our first task will be to take the system outlined in the introduction and find its observable impli-
cations — what does it imply for the time series behavior of dividend yields, dividend growth, and
returns. The corresponding representation questions for a single variable are worth remembering,
as the concepts are the same for the larger system but the algebra is much worse. Start with the
“structural” system

μt = φμt−1 + εμ,t (14)

rt+1 = μt + εr,t+1
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We only observe the history of rt, so our information set is It = {rt, rt−1, ...}. Thus, our task is
connect an observable counterpart with this “structural” representation. Since the model is linear,
the observable counterpart is just the univariate Wold representation of returns.

The easiest way to write the univariate representation is in state-space form. I’ll call this the
“observable state-space representation.” Define

μ̂t = E(rt+1|It)

Then, we can write

μ̂t+1 = φμ̂t + αvr,t+1 (15)

rt+1 = μ̂t + vr,t+1.

where
vr,t+1 ≡ rt+1 −E(rt+1|It)

α is a messy function of the structural parameters, including the covariance matrix of εμ, εg, which
we can find by matching second moments. However, to every structural model there is an alpha
and for every alpha there are many structural models. Thus, for all observable questions we can
simply leave α as a parameter to be estimated.

The difference between the “structural” model and this observable model is only in the shocks.
Since in the end we are describing the univariate Wold representation of {rt}, there can only be a
single shock vt+1, and therefore we must write an observable state-space model in this form. The
shocks in (15)must be perfectly correlated. Equivalently, the correlation between shocks in (14) is
not identified.

It’s often convenient to express the model in AR(∞), MA(∞) or finite-order ARMA forms. In
particular, this exercise will let us estimate the model from simple regressions, and it will let us
connect restrictions on the “structural” form to their predictions for regressions. To derive these
representations, solve (15)

μ̂t =
1

1− φL
αvr,t

and substitute

rt+1 =
1

1− φL
αvr,t + vr,t+1 =

µ
1 +

αL

1− φL

¶
vr,t+1 =

µ
1 + (α− φ)L

1− φL

¶
vr,t+1.

This is the Wold moving average representation.

This model has a finite-order ARMA(1,1) representation,

(1− φL)rt+1 = [1 + (α− φ)L] vr,t+1.

The AR(∞) representation lets us connect to forecasting regressions,

(1− φL)

1 + (α− φ)L
rt+1 = vr,t+1µ

1− αL

1− (φ− α)L

¶
rt+1 = vr,t+1
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rt+1 = α
∞X
j=0

(φ− α)j rt−j + vr,t+1

This latter formula is quite sensible. To recover a slow-moving time-varying conditional mean from
this time series, filter it by applying a long moving average. If one had a good idea of φ (and we
will in the multivariate setting), then a regression of rt+1 on a weighted moving average could give
a first estimate of α, which of course governs the variation in the conditional mean.

The state-space representation (15) is exactly equivalent to this more familiar ARMA(1,1)
representation. For example, we could use either representation to produce a series of innovations
{vt} given a guess of the parameters, and then estimate parameters by maximum likelihood. They
each represent the data with one additional state variable, either μt or the additional lag of the
shock.

State-space or ARMA models are conventionally estimated by maximum likelihood. This is
convenient and efficient but not necessary. The ARMA(1,1) is identified by matching the variance
and first autocovariance. Thus one can find the observable parameters from those two moments, or
equivalently, from a first order VAR. Yes, the first order VAR is “misspecified” in that its forecasts
are not efficient. But it encodes the first two moments, and one can invert those moments to find
the ARMA(1,1) parameters.

To prove that the “reduced form” (15) does in fact correspond to the structure (14), and to
express the mapping between parameters, we can match second moments. (These are the “messy
formulas” for α.) From (14), we have

var(rt) = var(μt) + var(εr) =
var(εμ)

1− φ2
+ var(εr)

cov(rt, rt−1) = cov(φμt−1 + εμ,t, μt−1 + εr,t) =
φvar(εμ)

1− φ2
+ cov(εr, εμ)

cov(rt, rt−2) = cov(φ2μt−3 + φεμ,t−2 + εμ,t−1 + εr,t, μt−3 + εr,t−2) = φ

µ
φvar(εμ)

1− φ2
+ cov(εr, εμ)

¶
We see the familiar autocovariance function of the ARMA(1,1). The state-space observable model
(15) has the same form, so it produces

var(rt) =

µ
α2

1− φ2
+ 1

¶
var(vr)

cov(rt, rt−1) =

µ
φα2

1− φ2
+ α

¶
var(vr)

cov(rt, rt−2) = φ

µ
φα2

1− φ2
+ α

¶
var(vr)

The higher order autocorrelations die at the rate φ in both models, so the φ parameter is identified
and it is the same. (Knowing this in advance I avoided the use of distinct symbols.) The remaining
parameters then must satisfyµ

α2

1− φ2
+ 1

¶
var(vr) =

var(εμ)

1− φ2
+ var(εr)µ

φα2

1− φ2
+ α

¶
var(vr) =

φvar(εμ)

1− φ2
+ cov(εr, εμ)
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These equations identify α and var (vr).

Solving from structure to observable, we have

α2

1−φ2 + 1

φα2

1−φ2 + α
=

1
1−φ2

var(εμ)
var(εr)

+ 1

φ
1−φ2

var(εμ)
var(εr)

+
cov(εr ,εμ)
var(εr)

1
1−φ2α

2 + 1

φ
1−φ2α

2 + α
=

1
1−φ2

h
β2μ,r +

var(ε)
var(εr)

i
+ 1

φ
1−φ2

h
β2μ,r +

var(ε)
var(εr)

i
+ βμ,r

1
1−φ2α

2 + 1

1
1−φ2α

2 + α
φ

=

1
1−φ2

h
β2μ,r +

var(ε)
var(εr)

i
+ 1

1
1−φ2

h
β2μ,r +

var(ε)
var(εr)

i
+

βμ,r
φ

This equation identifies α, and then

var(vr)

var(εr)
=

β2μ,r+
var(ε)
var(εr)

1−φ2 + 1

α2

1−φ2 + 1

determines var (vr).

Thus, for any α, there is a structure with βrμ = α and var(ε) = 0. I.e., we could be looking
directly at the structure. However, many structures are compatible with a given α. As var(ε)
increases — as the “structural” shocks become less correlated, and as agents gain a larger information
advantage, α rises relative to βrμ. The general formula is a messy quadratic that is easy to solve
numerically, but gives no particular intuition.

The “structural” model has two ways to create a variance larger than the geometrically decaying
covariances would suggest: a larger βrμ and a larger var(ε). The observable model only has one such
mechanism, a large α. Thus, for example, a structural model with uncorrelated shocks βrμ = 0must
still produce an observable model with perfectly correlated shocks and thus a large α. Correlation
of the observable shocks does not imply correlation of the structural shocks. This lesson is important
in evaluating the multivariate observable models that follow.

2 A simple two-state-variable model

So, it is useful to interpret return forecasting regressions involving the dividend yield in terms of
a simple “structural” model in which expected returns and expected and actual dividend growth
vary over time; prices are generated as present values of dividends and returns are generated from
the price and dividend process. We have to generalize the model to allow for variation in expected
dividend growth, and to allow for other variables.

2.1 “Structural” state-space representation

Again, as a simple and useful example, define gt = Et(∆dt+1) and μt = Et(rt+1), where both
expectations are with respect to investors’ information sets, and suppose these variables follow
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AR(1) processes,

μt+1 = φμμt + εμ,t+1 (16)

gt+1 = φggt + εg,t+1 (17)

∆dt+1 = gt + εd,t+1. (18)

We can use the present value and return identities to find dividend yields and returns,

dpt = Et

∞X
j=1

ρj−1 (rt+j −∆dt+j) =
μt

1− ρφμ
− gt
1− ρφg

= kμμt − kggt (19)

rt+1 = −ρdpt+1 + dpt +∆dt+1 (20)

= μt + εd,t+1 − ρ(kμεμ,t+1 − kgεg,t+1)

We can think of the first three equations as a specification of the environment and the last two
as the result of asset pricing. From (19) and (20), the dividend yield and return shocks

εdp,t = kμεμ,t − kgεg,t (21)

εr,t+1 = εd,t+1 − ρεdp,t+1 (22)

also follow from the “structural” shocks by identities. Thus, we only need specify the covariance
matrix of the “structural” shocks cov

¡£
εg εμ εd

¤¢
to complete the specification of this model.

Remember that this is only an example, as it embodies many restrictions that have no economic
rationale. In (16)-(17), there is no reason that expected returns and expected dividend growth
should evolve independently, or in AR(1) fashion. In reality, other variables coevolve with expected
returns and expected dividend growth, and help us to recover their values. And, while tempting,
there is no economic reason to impose a particular correlation structure on the shocks.

2.2 Observable state-space representation

Agents see the state variables μ and g, but we do not. Hence, we have to ask what are the
observable implications of these “structures,” and thus conversely how much of the structures can
be identified from data and how much needs extra assumptions. The logic of this reduction from
structural to observable is exactly analogous to what we just did in the ARMA(1,1) case.

Our information set consists of returns, dividend growth, dividend yields, and additional z
variables. It = {dpt, rt,∆dt, zt, dpt−1, rt−1,∆dt−1, zt−1, ... } From the return identity (10), one of
r or ∆d is superfluous. For example, we might summarize what we can learn about the data by a
VAR involving {dpt,∆dt, zt}.

We can write the observable implications of the “structural” model is simply to project every-
thing on the information set It. Our best guesses of the unobserved state variables μ and g appear
in their place.

μ̂t ≡ E(rt+1|It) = E(μt|It)
ĝt ≡ E(∆dt+1|It) = E(gt|It).
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Observable regression residuals v, appear in the place of unobservable “structural” shocks ε,

vx,t+1 = xt+1 −E(xt+1|It).

Thus, the observable counterpart to the simple example (16)-(20) is

μ̂t+1 = φμμ̂t + vμ,t+1 (23a)

ĝt+1 = φgĝt + vg,t+1 (23b)

∆dt+1 = ĝt + vd,t+1. (23c)

and, either by projection or by applying the same present value and return identities,

dpt = kμμ̂t − kgĝt (24)

vdp,t+1 = kμvμ,t+1 − kgvg,t+1 (25)

rt+1 = μ̂t + vr,t+1 (26a)

vr,t+1 = vd,t+1 − ρvdp,t+1. (26b)

In the simple example structure (16)-(21) there are three potentially independent shocks {εμ, εg, εd},
since agents can see all the variables. In the end, this observable version is equivalent to the ARMA
Wold representation for {dpt,∆dt} (or {dpt, rt}), so the shocks {vg, vμ, vd} must be linear functions
of the two observable shocks {vdp, vd} only. In addition, the v shocks must obey (25). Hence, we
must be able to write the observable shocks vμ and vg in the form

vμ,t+1 = αμ,dpvdp,t+1 + αμ,dvd,t+1

vg,t+1 = αg,dpvdp,t+1 + αg,dvd,t+1

1 = kμαμ,dp − kgαg,dp; αμ,d − αg,d = 0

Imposing the constraints, we can parameterize the α by

vμ,t+1 =
αμ,dp
kμ

vdp,t+1 +
αd
kμ

vd,t+1 (27)

vg,t+1 =
αμ,dp − 1

kg
vdp,t+1 +

αd
kg

vd,t+1. (28)

(We could just as easily parameterize the second equation with αg,dp and then αμ,dp = αg,dp −
1 .) These expressions make clear how the vμ and vg shocks are observable — they are combinations
of the observable regression errors vdp and vd. Then μ̂ and ĝ are moving averages of past dividend
yield and dividend growth shocks, and thus moving averages of past dividend yield and dividend
growth, which shows how they are observed. Given (27)-(28), we can also regard (23a) and (23b)
as filtering formulas.

Equations (27) and (28) seem to mix “structure” (vμ and vg ) and “result” (vdp). If one wants
to specify a “structure” before knowing the “result” vdp, how does one proceed? In fact, however,
we can read equations (27) and (28) as a recipe for constructing a valid “structural” covariance
matrix before knowing the result. The form of the model places no restrictions on the covariance
matrix of {vdp,vd} — any covariance is possible. Hence, if we want to specify a valid model, we can
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start with two shocks, εx, εy, with arbitrary covariance matrix Σ = cov(εx, εy). We can then pick
arbitrary numbers αdp and αd, and we can construct the model shocks {vg, vμ, vd} by⎡⎣ vμ,t

vg,t
vd,t

⎤⎦ =
⎡⎢⎣

αμdp
kμ

αd
kμ

αμ,dp−1
kg

αd
kg

0 1

⎤⎥⎦∙ εx,t
εy,t

¸
,

meaning just that we specify that the shocks have covariance matrix

cov

⎛⎝⎡⎣ vμ,t
vg,t
vd,t

⎤⎦⎞⎠ =

⎡⎢⎣
αμ,dp
kμ

αd
kμ

αμ,dp−1
kg

αd
kg

0 1

⎤⎥⎦Σ" αμ,dp
kμ

αμ,dp−1
kg

0
αd
kμ

αd
kg

1

#
.

This is just a recipe for constructing a shock covariance matrix that obeys a certain set of restric-
tions; it is just a way of parameterizing a valid (for observability) 3× 3 singular shock covariance
matrix via αdp, αd and Σ. If we now construct dpt by the present value identity, we will find that

vdp,t = kμvμ,t − kgvg,t = εx,t

vd,t = εy,t

In other words, dividend yields reveal the shock εx,t, just as dividend yields revealed the expected
return shock εμ,t in the one-state-variable system (13). Thus, formulas (27)-(28) are just a para-
metric way of constructing a covariance matrix of shocks {vg, vμ, vd} that is restricted in a particular
way so that the “structural” shocks are observable from the information set It.

The project seems hard: find the Wold representation of {dpt, rt,∆dt} that follows from the
structure (40)-(43). The answer turns out to be almost trivially simple: The state-space represen-
tation of the observable model is of the same form as that of the “structural” model, but with linear
functions of the two observable shocks vd, vdp in place of the three structural shocks εg, εd, εdp, and
our best guesses of the state variables ĝ and μ̂ in place of their unobservable actual values.

We may want to express the model in reference to a {dp, r} VAR rather than a {dp,∆d} VAR.
In place of (27)-(28) we can write

vμ,t+1 =
αμ,dp
kμ

vdp,t+1 +
αr
kμ

vr,t+1

vg,t+1 =
αμ,dp − 1

kg
vdp,t+1 +

αr
kg

vr,t+1.

The only difference is vr in place of vd. Since vr = −ρvdp + vd, the parameterization doesn’t add
or subtract anything, but it form will be prettier when referencing a {dp, r} VAR.)

2.3 From structure to observable state-space representations and back

The α coefficients (or other parametrizations of the covariance structure of {vμ, vg, vd, vz}) are
messy functions of the parameters of the structural models (16)-(18) or (64)-(66), which we can
find by matching second moments. If one wishes to derive α coefficients from a particular view of
the structure, one must make that connection. The formulas are straightforward, but do not give
any useful intuition.
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The form of the answer is given by (23a)-(26b) with a shock covariance matrix that we can
summarize by the covariances of {vdp, vd} and the α coefficients of (27) in every case. Therefore,
for forecasting purposes one may simply treat the α as the free parameters to be estimated, and I
show below how to infer them from a VAR. For everything we can observe, the α parameters are
enough.

One may wish to go backward, to learn about the “structural” representation (16)-(18) or
(64)-(66) from the observable representations. This step requires identification assumptions. The
observable representation is in the same class, it just happens to have a singular covariance matrix.
To learn about the “structural” representation, one must add identifying assumptions to deny the
possibility of this singular covariance matrix, and then work backward again through the messy
formulas connecting α and the observable shock covariance matrix to the structural ε covariance
matrix, or estimate the “structural” model with its identifying restrictions directly, e.g. by maxi-
mum likelihood. For example, in the observable representation of the simple AR(1) model, vμ, vg,
and vd are spanned by two shocks. One might specify that expected returns, expected dividend
growth and actual dividend growth are all uncorrelated with each other. There is always an ob-
servationally equivalent structure in which the covariance matrix is singular, but one may want to
make calculations, such as variance decompositions that impose another view.

However, I find no such assumptions plausible for empirical specifications (i.e. disconnected
from specific economic models). It’s pedagogically interesting to specify uncorrelated μ, g and
actual dividend ∆d shocks, but there is no economic reason to impose any particular value for
their correlation. Campbell and Cochrane (1998) is only one obvious example of an economic
model in which there is only one underlying shock. In that model a decline in actual consumption
(∆d) simultaneously triggers a change in expected returns. I can’t think of any general economic
statement that would limit or specify the correlation between expected returns, expected dividend
growth, unexpected returns, unexpected dividend growth, and other state variables zt. In that
state of affairs, the observable representation is as well as we can do.

This model can be estimated straightforwardly by maximum likelihood. For each choice of
parameters, we can simulate the model forward to create a time-series of v shocks, and then we can
evaluate the likelihood of those shocks. It can also be estimated by matching second moments or
by inverting forecasting regressions via the formulas derived below.

2.4 AR/ARMA representations and forecasting regressions

The observable state-space model is

μ̂t+1 = φμμ̂t + vμ,t+1

ĝt+1 = φgĝt + vg,t+1

∆dt+1 = ĝt + vd,t+1.

dpt = kμμ̂t − kgĝt

vdp,t+1 = kμvμ,t+1 − kgvg,t+1

rt+1 = μ̂t + vr,t+1

vr,t+1 = vd,t+1 − ρvdp,t+1.
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vμ,t+1 =
αμ,dp
kμ

vdp,t+1 +
αd
kμ

vd,t+1

vg,t+1 =
αμ,dp − 1

kg
vdp,t+1 +

αd
kg

vd,t+1.

To derive the VAR, MA or ARMA representations, we substitute out the state variables μ̂ and
ĝ

μ̂t =
1

1− φμL
vμt =

1

1− φμL

∙
αμ,dp
kμ

vdp,t +
αd
kμ

vd,t

¸
ĝt =

1

1− φgL
vgt =

1

1− φgL

∙
αμ,dp − 1

kg
vdp,t +

αd
kg

vd,t

¸

dpt =
1

1− φμL
(αμ,dpvdp,t + αdvd,t)−

1

1− φgL
[(αμ,dp − 1) vdp,t + αdvd,t]

dpt =

µ
αμ,dp
1− φμL

− αμ,dp − 1
1− φgL

¶
vdp,t +

µ
αd

1− φμL
− αd
1− φgL

¶
vd,t

2.4.1 MA representation

Hence we have the MA representation

dpt =

µ
αμ,dp
1− φμL

− αμ,dp − 1
1− φgL

¶
vdp,t +

µ
αd

1− φμL
− αd
1− φgL

¶
vd,t

∆dt = ĝt−1 + vd,t =
L

1− φgL

αμ,dp − 1
kg

vdp,t +

µ
1 +

L

1− φgL

αd
kg

¶
vd,t

Collapsing the lag operator polynomials,

dpt =

"
1−

£
φμ − αμ,dp

¡
φμ − φg

¢¤
L¡

1− φμL
¢ ¡
1− φgL

¢ #
vdp,t + αd

¡
φμ − φg

¢
L¡

1− φμL
¢ ¡
1− φgL

¢vd,t
∆dt =

L

1− φgL

αμ,dp − 1
kg

vdp,t +
1−

¡
φg − αd/kg

¢
L

1− φgL
vd,t

or, finally, in a pretty vector format

∙
dpt
∆dt

¸
=

⎡⎢⎣ 1−[φμ−αμ,dp(φμ−φg)]L
(1−φμL)(1−φgL)

αd(φμ−φg)L
(1−φμL)(1−φgL)

αμ,dp−1
kg

L
1−φgL

1−(φg−αd/kg)L
1−φgL

⎤⎥⎦∙ vdp,t
vd,t

¸

Returns follow from

rt+1 = μ̂t + vr,t+1

=
1

1− φμL

∙
αμ,dp
kμ

vdp,t +
αd
kμ

vd,t

¸
+ vd,t+1 − ρvdp,t+1
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2.4.2 ARMA representation

Multiplying out the denominator lag polynomials, this model has a ARMA(1,1) representation¡
1− φμL

¢ ¡
1− φgL

¢
dpt =

¡
1−

£
φμ − αμ,dp

¡
φμ − φg

¢¤
L
¢
vdp,t + αd

¡
φμ − φg

¢
Lvd,t

(1− φgL)∆dt =
αμ,dp − 1

kg
Lvdp,t +

µ
1−

µ
φg −

αd
kg

¶
L

¶
vd,t

∙ ¡
1− φμL

¢ ¡
1− φgL

¢
0

0 (1− φgL)

¸ ∙
dpt
∆dt

¸
=

Ã
I −

"
φμ − αμ,dp

¡
φμ − φg

¢
−αd

¡
φμ − φg

¢
1−αμ,dp

kg
φg − αd

kg

#
L

! ∙
vdp,t
vd,t

¸
(32)

Returns follow

(1− φμL)rt+1 =

∙µ
αμ,dp
kμ

+ ρφμ

¶
vdp,t +

µ
αd
kμ
− φμ

¶
vd,t

¸
+ (vd,t+1 − ρvdp,t+1)

and thus also fit in the VARMA(1,1) representation.

2.4.3 AR representations and forecasting regressions

Finally, we can invert the MA lag polynomial to find the AR representation, which describes
forecasting regressions. Alas, inverting or raising the right-hand matrix to powers does not lead to
easily interpreted quantities, so I’ll show the main features in a series of special cases.

The case φμ = φg

Start with a special case, φμ = φg = φ so kg = kμ = k = (1− ρφ)−1. In that case we have∙
(1− φL)2 0
0 (1− φL)

¸ ∙
dpt
∆dt

¸
=

µ
I −

∙
φ 0

1−αμ,dp
k φ− αd

k

¸
L

¶ ∙
vdp,t
vd,t

¸

Canceling a root in the first equation, the autoregressive representation of the dividend yield is
a simple AR(1),

dpt = φdpt−1 + vdp,t.

Thus, the structural parameter φ can be measured from the autoregression coefficient of dividend
yields.

Dividend growth follows

(1− φL)∆dt+1 =
1− αμ,dp

k
vdp,t −

³
φ− αd

k

´
vd,t + vd,t+1

∆dt+1 =
1− αμ,dp

k
dpt +

1−
¡
φ− αd

k

¢
L

1− φL
vd,t+1

1− φL

1−
¡
φ− αd

k

¢
L
∆dt+1 =

1− αμ,dp
k

Ã
1− φL

1−
¡
φ− αd

k

¢
L

!
dpt + vd,t+1 (34)

15



The last equation is the autoregressive representation for dividend growth, and describes the fore-
casting regression. More formally of course the autoregressive representation is"

1− φL 0

−1−αμ,dpk
1−φL

1−(φ−αd
k )L

L 1−φL
1−(φ−αd

k )L

# ∙
dpt
∆dt

¸
=

∙
vdp,t
vd,t

¸

We can also track the return forecasting regression in this system by using

μ̂t =
1

1− φμL

∙
αμ,dp
kμ

vdp,t +
αd
kμ

vd,t

¸
and thus

rt+1 =
1

1− φL

£ αμ,dp
k

αd
k

¤ ∙ vdp,t
vd,t

¸
+ vr,t+1

=
£ αμ,dp

k
αd
k

¤ " 1 0

−1−αμ,dpk
1

1−(φ−αd
k )L

L 1
1−(φ−αd

k )L

# ∙
dpt
∆dt

¸
+ vr,t+1

rt+1 =
αμ,dp
k

dpt −
αd
k

1

1−
¡
φ− αd

k

¢
L

∙
∆dt −

(1− αμ,dp)

k
dpt−1

¸
+ vr,t+1 (35)

To interpret (34) and (35), first, note that if αμ,dp = 1— if all dp shocks feed to returns, not
dividend growth, and if αd = 0 — dividend growth shocks as well as dp shocks don’t affect expected
dividend growth — then we return to the one-state variable model studied above. Dividend growth
is just white noise,

∆dt+1 = vd,t+1.

and return forecasts are just

rt+1 =
1

k
dpt + vr,t+1 = (1− ρφ) dpt + vr,t+1

Second, allow arbitrary αdp but start with αd = 0 — we split dividend yield shocks between
expected returns and dividend growth, but dividend growth shocks do not affect expected returns
or expected dividend growth. Now we have a simple dividend yield and return forecast,

∆dt+1 =
1− αμ,dp

k
dpt + vd,t+1 = αg,dp (1− ρφ) dpt + vd,t+1 (36)

rt+1 =
αμ,dp
k

dpt + vr,t+1 = αμ,dp(1− ρφ)dpt + vr,t+1

αg,dp and αμ,dp control whether dividend yields reveal expected returns or dividend growth, with
the familiar (1 − ρφ) coefficient. With αμ,dp = 1, we recover the simple one-state variable model;
with αg,dp = 1 we recover the constant expected return benchmark.

Second, with αμ,dp = 1 again but now allow αd 6= 0, i.e. ex-post dividend growth shocks do
affect expected dividend growth and expected returns, then dividend yields drop from the dividend
forecast regression. To forecast dividends, we have only the standard dividend growth ARMA(1,1)
that emerges from an AR(1) expected process, which features a long moving average of extra ∆d
on the right hand side.

1− φL

1−
¡
φ− αd

k

¢
L
∆dt+1 = vd,t+1
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⎧⎨⎩1−
αd
kg
L

1−
³
φ− αd

kg

´
L

⎫⎬⎭∆dt+1 = vd,t+1

∆dt+1 =
αd
kg

∞X
j=0

µ
φ− αd

kg

¶j

∆dt−j + vd,t+1

We can recover some information about the slow time-varying mean dividend growth by looking at
long moving averages of actual dividend growth.

rt+1 =
1

k
dpt +

αd
k

∞X
j=0

µ
φ− αd

kg

¶j

∆dt−j + vr,t+1

We have the same dividend yield coefficient 1/k = 1− ρφ. However, dividend growth shocks move
expected returns and expected dividend growth in offsetting ways, so there is more information
about expected returns available than in the dividend yield. The same long moving average of
dividend growth that helps to forecast dividend growth also helps to forecast returns. This observation
summarizes most of the point of the AR(1) latent variable model. Nicely, this representation simply
adds two intuitive forecasters: the dividend yield and the moving average used with simple univariate
ARMA(1,1) models. As with dividends, standard regressions might miss the fact that all dividends
together help to forecast returns.

Finally, we can understand the general case with φμ = φd, and both αμ,dp 6= 1 and αd 6= 0. Now
dividend forecasts reduce to we have

∆dt+1 =
1− αμ,dp

k
dpt +

αd
k

∞X
j=0

³
φ− αd

k

´j µ
∆dt−j −

1− αμ,dp
k

dpt−j−1

¶
+ vd,t+1

We can think of this as the “basic” regression (36) with coefficient 1−αμ,dpk , with the addition of a
long moving average of “errors’ from this regression as well to account for the αd effect. Typically,
the variation in ex-post dividend growth is much larger than its expected value, thus we may expect
to a good approximation,

∆dt+1 ≈
1− αμ,dp

k
dpt +

αd
k

∞X
j=0

³
φ− αd

k

´j
∆dt−j + vd,t+1

Now, we have the usual coefficient plus a long moving average of past dividend growth.

Return forecasts (35) in this case reduce similarly to

rt+1 =
αμ,dp
k

dpt −
αd
k

∞X
j=0

³
φ− αd

k

´j µ
∆dt−j −

1− αμ,dp
k

dpt−j−1

¶
+ vr,t+1

As always, what is added to the dividend growth forecast, given dividend yields, must be subtracted
from the return forecasts. It too will be well approximated by

rt+1 ≈
αμ,dp
k

dpt −
αd
k

∞X
j=0

³
φ− αd

k

´j
∆dt−j + vr,t+1
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The last two equations are a particularly nice representation, as they add together the two
intuitive effects. The dividend yield helps to forecast dividend growth, by the usual present value
logic. But the dividend yield also forecasts returns. Thus, a direct measure of expected dividend
growth formed by a moving average helps as well.

These expressions show also how to obtain estimates of the structural model from regressions. φ
follows from the dividend yield autocorrelation αμ,dp follows from the coefficient of dividend growth
on dividend yields, and αd follows from the regression coefficient of dividend yields on a long moving
average of dividend growth.

Finally, this expression suggests the power of the state-space formulation. VAR research eval-
uates the individual significance of right hand variables, and could easily conclude that ∆dt−j are
individually insignificant, where the moving average of dividend growth might be both economically
and statistically significant. Regression methods are very bad at detecting long-run phenomena of
this sort.

AR and ARMA representations for returns on the right hand side

Wemay want to use {dp, r} as the basis for the VAR rather than {dp,∆d}. In particular, we may
want to forecast returns with dividend yields and lagged returns, rather than with dividend yields
and lagged dividend growth. Going through the same steps again, we can find these representations
simply by replacing αd with αr, vd with vr, and ∆d with r. Thus, the last general result becomes

rt+1 =
αμ,dp
k

dpt −
αr
k

∞X
j=0

³
φ− αr

k

´j ³
rt−j −

αμ,dp
k

dpt−j−1
´
+ vr,t+1

rt+1 ≈
αμ,dp
k

dpt −
αr
k

∞X
j=0

³
φ− αr

k

´j
rt−j + vr,t+1 (37)

Again, the regressions allow us to identify φ from dividend yield autocorrelation, αμ,dp from the
dividend yield coefficient, and then αr from the coefficient on a long moving average. Now a long
moving average of past return “errors”, which will be well approximated by past returns, should
help to forecast returns. Again, this is the central message of the AR(1) latent variable model.

In both cases, we see the separate roles of αμ,dp and αd or αr, which govern the underlying
sensitivity of expected dividend growth to the dividend yield and to dividend growth or return
shocks. The “cleanup” variables formed with a long moving averages only help if expected dividend
growth (and hence return) variation is linked to the ex-post shocks vd and vr, if αd or αr are not
zero. If expected dividend growth or return is only affected by dp shocks, αg,d = 0 or αg,r = 0, the
original dp regressions remain unchanged, and there is nothing more one can do to forecast than
pure regressions on dividend yields, even when expected dividend growth does vary.

Regressions of this form can give us good preliminary estimates of αμ,dp and αd or αr to see how
much the {dp,∆d} or {dp, r} systems really are affected by expected dividend growth variation.
We can identify φ ≈ 0.94 from the dividend-yield autoregression, so proxies for the extra right hand
variables are straightforward to construct.

φμ 6= φg effects

The case φμ 6= φg is interesting as well. There are two reasons why extra variables can help to
forecast returns, given the dividend yield. Either they can forecast dividend growth in exactly the
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opposite way, or they can forecast different time-paths for dividend yields and dividend growth.
φμ 6= φg captures the second sort of effect.

To see the effect without the complexity of the general case, consider the αd = 0 special case.
Now the ARMA representation is∙ ¡

1− φμL
¢ ¡
1− φgL

¢
0

0 (1− φgL)

¸ ∙
dpt
∆dt

¸
=

Ã
I −

"
φμ − αμ,dp

¡
φμ − φg

¢
0

1−αμ,dp
kg

φg

#
L

! ∙
vdp,t
vd,t

¸

The dividend yield follows an autonomous process, but more complex than an AR(1). It’s an
ARMA(2,1) with nearly -canceling roots, again the sort of process that is hard to capture with
regressions. ¡

1− φμL
¢ ¡
1− φgL

¢
1−

£
φμ − αμ,dp

¡
φμ − φg

¢¤
L
dpt = vdp,t.

The dividend growth forecast is now

∆dt+1 = −1− αμ,dp
kg

1

1− φgL
vdpt + vd,t+1

= −1− αμ,dp
kg

1− φμL

1−
£
φμ − αμ,dp

¡
φμ − φg

¢¤
L
dpt + vd,t+1

= −1− αμ,dp
kg

Ã
1−

αμ,dp
¡
φμ − φg

¢
L

1−
£
φμ − αμ,dp

¡
φμ − φg

¢¤
L

!
dpt + vd,t+1

= −1− αμ,dp
kg

Ã
1−

αμ,dp
¡
φμ − φg

¢
L

1−
£
αg,dpφμ − αμ,dpφμ

¤
L

!
dpt + vd,t+1

∆dt+1 = −
αg,dp
kg

dpt +
αg,dpαμ,dp

kg

¡
φμ − φg

¢ ∞X
j=0

£
αg,dpφμ − αμ,dpφμ

¤j
dpt−j + vd,t+1 (38)

and the return forecast is correspondingly

rt+1 = μ̂t + vr,t+1

=
1

1− φμL

∙
αμ,dp
kμ

vdp,t +
0

kμ
vd,t

¸
+ vr,t+1

=
1

1− φμL

"
αμ,dp
kμ

¡
1− φμL

¢ ¡
1− φgL

¢
1−

£
φμ − αμ,dp

¡
φμ − φg

¢¤
L
dpt

#
+ vr,t+1

=
αμ,dp
kμ

1− φgL

1−
£
φμ − αμ,dp

¡
φμ − φg

¢¤
L
dpt + vr,t+1

=
αμ,dp
kμ

"
1−

(1− αμ,dp)
¡
φμ − φg

¢
L

1−
£
φμ − αμ,dp

¡
φμ − φg

¢¤
L

#
dpt + vr,t+1

rt+1 =
αμ,dp
kμ

dpt −
αμ,dpαg,dp

kμ

¡
φμ − φg

¢ ∞X
j=0

£
αg,dpφμ − αμ,dpφμ

¤j
dpt−j + vr,t+1 (39)
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As usual, we start with the dividend yield with its standard coefficient reflecting how a dividend
yield shock is split between expected returns and expected dividend growth. Then, we get an extra
term, reflecting different speeds of expected return and expected dividend growth adjustment. This
time, a long moving average of dividend yields themselves provide the extra information. Since the
dividend yield reflects influences with different horizons, the history of dividend yields can be used
to tease out more information about expected returns than is present in the current dividend yield.

3 Dividend yield as a state variable, and an observable

3.1 Reexpressing the structural model

I have expressed the state-space model with expected returns and expected dividend growth μ and
g as state variables. Many other equivalent representations are possible. We can take any two
of {μt, gt, dpt} as the state variables, and two of {εg, εμ, εdp} together with one of {εd, εr} as the
shocks.

In particular, when thinking about observation, and with the goal of generalizing the benchmark
from regressions with only dp on the right hand side that expected returns vary but expected
dividend growth does not, var(g) = 0, in mind, it is convenient to choose dp as one state variable
(since it is directly observable) and choose g as the other. This expression quickly gives a useful
representation.

Substituting the dividend yield for expected returns, we can rewrite the example system (16)-
(22) as

gt+1 = φggt + εg,t+1 (40)

dpt+1 = φμdpt +
¡
φμ − φg

¢
kggt + εdp,t+1 (41)

∆dt+1 = gt + εd,t+1 (42)

Now we find μt and rt after the fact from identities

μt =
1

kμ
dpt +

kg
kμ

gt

rt+1 =
1

kμ
dpt +

kg
kμ

gt + (εd,t+1 − ρεdp,t+1) . (43)

In the last equation we start to see how dividend-yield return-forecasting regressions may be mod-
ified.

3.2 Adding an observable

One direction of generalization is easy to accommodate at the same time. Other variables may
help to forecast returns, by helping us to form better estimates of the hidden state variables μt and
gt. It is easy to extend this simple example by adding vector of variables zt which are related to
expected returns and expected dividend growth, but with potentially serially correlated errors

zt+1 = βggt + βμμt + φzzt + εz,t+1. (44)
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We can also think of this specification as

zt = β̃ggt + β̃μμt + φzzt−1 + ε̃z,t,

where I use tildes because the coefficients are not the same. In this latter version, zt wanders in a
stationary but serially correlated way around the an underlying linear combination of μt and gt.

Since agents see μt and gt, this specification does not alter our formulas for dividend yields or
returns in the “structural” representations; we just add this equation to our specification of the
model. The z variables matter of course to us who must make imperfect estimates of μ and g.

In the context of the model reexpressed with dp, g as state variables (40)-(43), we can use
dpt = kμμt − kggt to write

zt+1 = βggt + βμ

µ
1

kμ
dpt +

kg
kμ

gt

¶
+ φzzt + εz,t+1

zt+1 =
βμ
kμ

dpt +

µ
βg + βμ

kg
kμ

¶
gt + φzzt + εz,t+1

zt+1 = γdpdpt + γggt + φzzt + εz,t+1 (45)

This is still a restrictive and largely pedagogical example. In general, of course, we will want to
allow μ and g to respond to z, writing

⎡⎣ μt
gt
zt

⎤⎦ = A(L)

⎡⎢⎢⎣
εμ,t
εg,t
εz,tt
εd,t

⎤⎥⎥⎦
In this case dividend yield and return formulas are affected by the presence of the z variable, since
z helps agents to forecast future expected returns and dividend growth. The form of z in (44) is
just a way to extend the simple example slightly, not to purchase complete generality. I consider
this general model below.

3.3 Observable state-space representation

As before, we can write the observable counterpart to the structural model (40)-(43) with the
same state-space representation, but driven by shocks of the observables relative to their history.
This construction follows simply by projecting every part of the linear structural model onto the
observed information set.

Denote the information set It = {dpt, rt,∆dt, zt, dpt−1, rt−1,∆dt−1, zt−1, ... } From the identity
(10), of course, one of r or ∆d is superfluous. For example, we might summarize what we can learn
about the data by a (potentially infinite order) VAR involving {dpt,∆dt, zt}.

The observable errors are
vx,t+1 = xt+1 −E(xt+1|It)

with this new larger information set.
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Define as before our best guesses of the hidden state variables as

μ̂t ≡ E(rt+1|It) = E(μt|It)
ĝt ≡ E(∆dt+1|It) = E(gt|It).

Then the observable model corresponding to (40)-(42) and (45) is

ĝt+1 = φgĝt + (αg,dpvdp,t+1 + αg,dvd,t+1 + αg,zvz,t+1) (46)

dpt+1 = φμdpt +
¡
φμ − φg

¢
kgĝt + vdp,t+1 (47)

∆dt+1 = ĝt + vd,t+1 (48)

zt+1 = γdpdpt + γgĝt + φzzt + vz,t+1 (49)

Returns and expected returns μ̂ follow by identities, in particular.

rt+1 =
1

kμ
dpt +

kg
kμ

ĝt + vr,t+1; (50)

vr,t+1 = vd,t+1 − ρvdp,t+1

Once again, the shock to our best guess of dividend growth ĝ must be a combination of the
observable shocks as shown in (46). Again, if one wants to derive α coefficients from a particular
view of the structure, it is a straightforward if messy job of matching second moments. Absent
theoretical restrictions on the covariance matrix of shocks (and they are still absent), the v are
again as well as we can do to describe the system dynamics.

zt is observable, but its forecasting variable gt is not. This difference in right hand variable (g
vs. ĝ) means that the z regression error vz,t+1 is different from the structural shock εz,t+1, and it
means the AR representation of the system, presented below, leads to a more complex forecasting
equation for z than in the structural model.

In the special case αg,d = αg,dp = αg,z = 0, expected dividend growth (given our information
set It) is constant, and (46)-(50) reduce to the familiar one-state-variable system

∆dt+1 = vd,t+1

dpt+1 = φμdpt + vdp,t+1

rt+1 =
¡
1− ρφμ

¢
dpt + (vd,t+1 − ρvdp,t+1)

Though z coevolves with expected returns, the dividend yield reveals all we need to know about
expected returns in this case.

As expected dividend growth varies more, as the α increase, we begin to have a new state
variable ĝt that forecasts returns in addition to the dp ratio, seen in (50). In this representation,
the coefficient of returns on the dividend yield is unchanged, but greater variation in expected
dividend growth allows greater variation in expected returns. We can think of ĝt here as cleaning
up the dividend yield, removing some of the movement in dividend yields caused by dividend growth
forecasts. We can write the return forecasting equation as

rt+1 = (1− ρφμ)

⎡⎣dpt +E

⎛⎝ ∞X
j=1

ρj−1gt|It

⎞⎠⎤⎦+ vr,t+1.
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The additional state variable ĝt is visible in (46) as an accumulation of errors,

ĝt =
∞X
j=0

φjg (αg,dpvdp,t−j + αg,dvd,t−j + αg,zvz,t−j) ,

or we can simply view (46) as a filtering formula. The AR(1) structure of latent variables means
that the history of dividend growth and dividend yields is summarized by this one additional latent
variable for the purposes of forecasting returns.

The special case φμ = φg is an interesting simplification. Then, (47) and (50) reduce to

dpt+1 = φμdpt + vdpt+1

rt+1 = (1− ρφμ)dpt + ĝt + vr,t+1. (51)

The complication in the dp transition equation (47) came from the fact that dp is the sum of two
AR(1)s with different coefficients (expected returns and expected dividend growth). Now that it
is the sum of two AR(1)’s with the same coefficient, it retains the simple AR(1) structure of the
model with no variation in expected dividend growth. The return forecasting equation now adds
just the current expected dividend growth. Equivalently, since kg = kμ, the response of dividend
yield to expected return is the same as its response to expected dividend growth.

3.3.1 Other choices for state variables and shocks.

As with the structural system, we can rewrite the observable system in many ways by exploiting
the identities

dpt = kμμ̂t − kgĝt (52)

vdpt+1 = kμvμt+1 − kgvgt+1 (53)

vrt+1 = −ρvdpt+1 + vdt+1 (54)

We can choose any two of the three state variables {ĝt, μ̂t, dpt} and the other is implied by the
identity (52). We can choose to represent the system in terms of one the three state variable
shocks {vdp, vμ, vg}, and one of {vr, vd}, the other following from (54). The difference relative to
the “structural” model is that we can now only observe one state variable shock rather than two.
As in (46), one of the state variable shocks must be expressed in terms of the other shocks to the
system. In the end, the observable implications come down to those of a {dp,∆d, z} or {dp, r, z}
VAR.

3.4 VAR and ARMA representations, forecasting regressions

Reexpressing the state-space model in terms of ĝ, dp as state variables rather than ĝ, μ̂ does not
change the VAR and ARMA representations, which substitute out all of the unobserved state
variables.

Adding z variables does change the VAR and ARMA representations. Empirically, the history
of dividend growth and returns don’t add as much to return forecasts as additional variables do.
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Thus, though algebraically more complex, this is the important case to consider. (The algebra is
in the Appendix.)

∆dt+1 = αg,dpdpt + αg,zzt + αg,dVd,t + αg,zVz,t + vd,t+1

zt+1 =
¡
αg,dpγg + γdp

¢
dpt +

¡
αg,zγg + φz

¢
zt + αg,dγgVd,t + αg,zγgVz,t + vz,t+1

where

Vd,t ≡
1

1− φ̃L
(∆dt − αg,dpdpt−1 − αg,zzt−1)

Vz,t ≡
1

1− φ̃L

£
φzt−1 −

¡
αg,zγg + φz

¢
zt−1 −

¡
αg,dpγg + γdp

¢
dpt−1

¤
φ̃ ≡ φ− αg,d − αg,zγg.

The return AR representation is most convenient with reference to the {dp, r} VAR,

rt+1 = (1− ρφ+ αg,dp) dpt + αg,zzt + αg,rVr,t + αg,zVz,t + vr,t+1

zt+1 =
¡
γdp + γgαg,dp

¢
dpt +

¡
φz + γgαg,z

¢
zt + γgαg,rVr,t + γgαg,zVz,t + vz,t+1

where

Vr,t ≡
1

1− φ̃L
[rt − ((1− ρφ) + αg,dp) dpt−1 − αg,zzt−1]

Vz,t ≡
1

1− φ̃L

£
φzt−1 −

¡
φz + αg,zγg

¢
zt−1 −

¡
αg,dpγg + γdp

¢
dpt−1

¤
φ̃ ≡ φ− αg,r − αg,zγg.

We have a natural extension of the intuition from previous formulas. Now dividend yields dpt as
well as the state variable zt should help to forecast returns and dividend growth. Again “cleanup”
variables formed by long moving averages also help. Interestingly, “cleanup” variables help for z
as well, since z dynamics are influenced by the unobserved ĝ.

Interesting special cases

The formulas are also interesting to see what forces are at work, and to see which effects one
might suppose to work do not in fact show up.

First, suppose αg,z = 0. Expected dividend growth still moves around, and z still gives us
independent information about the hidden state variable ĝt, but shocks to g are unaffected by
shocks to z. (The shocks v are all arbitrarily correlated, so “unaffected” here means in a multiple
regression sense; shocks vg are spanned by shocks vdp and vd)

Now our formulas specialize to

∆dt+1 = αg,dpdpt + αg,dVd,t + vd,t+1

zt+1 =
¡
αg,dpγg + γdp

¢
dpt + φzzt + αg,dγgVd,t + vz,t+1
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where
Vd,t ≡

1

1− φ̃L
(∆dt − αg,dpdpt−1)

and

rt+1 = (1− ρφ+ αg,dp) dpt + αg,rVr,t + vr,t+1

zt+1 =
¡
γdp + γgαg,dp

¢
dpt + φzzt + γgαg,rVr,t + vz,t+1

where
Vr,t ≡

1

1− φ̃L
[rt − ((1− ρφ) + αg,dp) dpt−1] .

If αg,z = 0 — if expected dividend growth ĝt is not affected by shocks to the information variable
zt, then z disappears entirely from forecasting returns and dividend growth (and, as always dividend
yields).

3.5 Calibration to dp-only forecasts

Naturally, we can estimate the multivariate return and dividend growth forecasts specified by
the two-state variable models. However, we can also ask what are their implications for single
regressions that only include dividend yields. Yes, these regressions are not as efficient as they
could be, as they ignore information that could improve forecasts. But they are regressions, and a
successful two-state model must mimic what happens if one runs the “wrong” regression as well as
what happens if one runs the “right” regressions. The advantage of this preliminary step is that we
know a good deal about simple dividend-yield regressions. As it turns out, the simple facts about
dividend yield forecasts in (6)-(9) allow us to restrict the two-state-variable model considerably.

To generate bd = 0 — the fact that dividend yields alone do not predict dividend growth — we
must have either var(g) = 0 (of course) or

βkμμ,kgg ≡
cov(kggt, kμμt)

var(kggt)
= 1. (55)

(Derivations below.) A regression of the the “permanent component” of expected returns kμμt =
Et
P∞

j=1 ρ
j−1rt+j on the permanent component of expected dividend growth must be one. Intu-

itively, a rise in expected dividend growth must come with a corresponding rise in expected returns
on average, so that the rise in expected dividend growth does not raise the price-dividend ratio.

In terms of more fundamental parameters of the model, we have a similar constraint on the
regression coefficient of the expected return shock on the expected dividend growth shock,

βεμ,εg ≡
cov(εμ, εg)

var(εg)
=
1− ρφμ
1− ρφg

1− φgφμ

1− φ2g
(56)

The terms on the right hand side of (56) correct for the potentially different persistence of expected
return and expected dividend growth shocks. In the useful baseline φμ = φg, we have βεμ,εg = 1 as
well, with the same intuition as for (55).

br = 0.1 and bdp = 0.94 — the two items are the same with the identity br = 1 + bd − ρbdpand
bd = 0, ρ ≈ 0.96 — imply that

1− ρφμ = br (57)
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and
φμ = bdp ≈ 0.94 (58)

This is the same formula that obtains when var(gt) = 0. Thus, even in the presence of dividend
growth forecastability, and even though the price-dividend ratio does not reveal expected returns
directly, the fact that bd = 0 implies that we can recover the autocorrelation coefficient of expected
returns φμ — the structural parameter in (17) — from the univariate autocorrelation of the dividend-
price ratio bdp.

Finally, the covariance matrix of the shocks in (6)-(9) restricts the covariance matrix of the
shocks in the model (16)-(18). There are only two independent shocks in the regressions (6)-(9),
which we might as well take as the uncorrelated dividend yield and dividend growth shocks. The
regression shocks are related to the structural shocks by

vdp,t+1 = kg
¡
φμ − φg

¢
gt + εdp,t+1 (59)

vd,t+1 = gt + εd,t+1 (60)

In the φμ = φg special case, gt drops from the dp transition equation (41), so the regression is the
structural equation and the regression error measures the structural error. In general, as usual,
regression and structural errors are not the same. (59)-(60) and cov(vd, vdp) = 0 then imply

var(εd) = var (vd)− var (g) (61)

var(εdp) = var(vdp)−
¡
φμ − φg

¢2
k2gvar(g) (62)

cov(εdp, εd) = −
¡
φμ − φg

¢
kgvar(g) (63)

It’s easiest to describe the parameters of the model in the form (40)-(42), but of course other
representations and the variance and covariance of other shocks εr, εμfollow.)

In sum, we may stay consistent with the evidence of simple dividend-yield regressions (6)-(9)
with a wide range of g processes. We may choose the persistence φg and the properties of the shock
εgt — its variance and correlation with the other shocks εdp, εd (or εμ, εd, or εμ, εr). However, once
that is done, the remaining parameters of the model are pinned down by the simple dividend-yield
regressions. We identify the φμ ≈ 0.94 structural parameter from dividend yield autocorrelation.
As we increase var(εg) and hence var(gt), we have to choose var(εd), var(εdp) and cov(εd, εdp)
as indicated by (61)-(63). The surprise is not that there is some information to add from other
sources; the surprise is that so much of the model structure is pinned down already by dividend
yield regressions.

3.5.1 Derivations

bd = 0 means

0 = cov(∆dt+1, dpt)

= cov(gt + εd,t+1, kμμt − kggt) = cov(gt, kμμt − kggt)

= kμcov(gt, μt)− kgvar(gt)

= cov(kggt, kμμt)− var(kggt),
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establishing (55). Translating to shocks,

1 = βkμμ,kgg =
kμ

1
1−φgφμσεg,εμ

k2g
1

1−φ2g
σ2εg

=
1− ρφg
1− ρφμ

1− φ2g
1− φgφμ

σεg,εμ
σ2εg

=
1− ρφg
1− ρφμ

1− φ2g
1− φgφμ

βεμ,εg ,

establishing (56).
To find the model prediction for br,

br =
cov(rt+1, dpt)

var(dpt)
=

cov(μt, kμμt − kggt)

var(kμμt − kggt)
=
¡
1− ρφμ

¢ cov(kμμt, kμμt − kggt)

var(kμμt − kggt)

=
¡
1− ρφμ

¢ cov(kμμt, kμμt − kggt)

cov(kμμt, kμμt − kggt)− cov(kggt, kμμt − kggt)

Using bd = 0 and hence cov(gt, kμμt − kggt) = 0, we obtain

br = (1− ρφμ)

and hence (57).
To derive (59) and (60), write the definition of regression errors,

vdp,t+1 = dpt+1 − bdpdpt = dpt+1 − φμdpt

= kμφμμt − kgφggt + εdp,t+1 − φμ (kμμt − kggt)

= kg
¡
φμ − φg

¢
gt + εdp,t+1

vd,t+1 = ∆dt+1 − bddpt = ∆dt+1 = gt + εd,t+1

3.5.2 Implications for long-run returns

What do regressions look like at longer horizons? Suppose you run

rt+2 = ar + b(2)r dpt + vt+2

in data generated from the two-state model. How does br vary with horizon? The one state variable
model

b(2)r = br(1 + φ)

seems to work well in the data. Are there other patterns we should see?

4 A General Two-State Variable Model

In the end, we want to rewrite an arbitrary VAR into a state-space form, to find its implications
for expected returns and dividend growth. We want to translate VAR specification assumptions
to state-space specification assumptions and vice-versa. For that application, I need to generalize
this system to allow for dynamics beyond a univariate AR(1), to allow for additional variables zt
which coevolve with expected returns and dividend growth in arbitrary ways. In addition, we want
to understand more generally the relationship between restrictions in the “structural” state-space
model, such as the AR(1) of the simple example, and restrictions on VAR representations, such as
finite lags, the presence or absence of variables, and relations between coefficients such as the long
moving average form of regression coefficients in the simple example.
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4.1 “Structural” representation

The general form of the state-space model is

⎡⎣ μt
gt
zt

⎤⎦ = A(L)

⎡⎢⎢⎣
εμ,t
εg,t
εz,t
εd,t

⎤⎥⎥⎦ (64)

∆dt+1 = gt + εd,t+1. (65)

(I write moving averages for technical convenience, but the equivalent autoregressive representations
are often more intuitive as in (16)-(18).) Relative to the simple examples, this specification allows
all three state variables (μ, g, z) to help forecast the others, and it allows them all to react to ex-post
dividend growth shocks. Dividend yields follow1 by

dpt = Et

∞X
j=0

ρj
¡
μt+j − gt+j

¢
=
£
1 −1 0

¤ LA(L)− ρA(ρ)

L− ρ

⎡⎢⎢⎣
εμ,t
εg,t
εz,t
εd,t

⎤⎥⎥⎦ (66)

and dividend yield and return shocks follow; evaluating (66) at L = 0,

εdp,t+1 =
£
1 −1 0

¤
A(ρ)

⎡⎢⎢⎣
εμ,t
εg,t
εz,t
εd,t

⎤⎥⎥⎦ (67)

εr,t+1 = −ρεdp,t+1 + εd,t+1 (68)

4.2 Observable state-space representation

The state-space representation of the observable implications of the general model (64)-(68) consists
of exactly the same model, projected on the information set It, and recognizing the loss of one shock.
It is simply

⎡⎣ μ̂t
ĝt
zt

⎤⎦ = A(L)

⎡⎢⎢⎣
vμ,t
vg,t
vz,t
vd,t

⎤⎥⎥⎦ (69)

∆dt+1 = ĝt + vd,t+1 (70)

1Here I use the magic Hansen-Sargent (1980) formula, that if

xt = a(L)εt

then

Et

∞

j=0

ρjxt+j =
La(L)− ρa(ρ)

L− ρ
εt

To prove it, just write out the moving average representations of both sides.
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dividend yields follow by

dpt = Et

∞X
j=0

ρj
¡
μ̂t+j − ĝt+j

¢
=
£
1 −1 0

¤ LA(L)− ρA(ρ)

L− ρ

⎡⎢⎢⎣
vμ,t
vg,t
vz,t
vd,t

⎤⎥⎥⎦ (71)

and the dividend yield and return shocks follow by

vdp,t+1 =
£
1 −1 0

¤
A(ρ)

⎡⎢⎢⎣
vμ,t+1
vg,t+1
vz,t+1
vd,t+1

⎤⎥⎥⎦ (72)

vr,t+1 = −ρvdp,t+1 + vd,t+1

In the structure (66)-(68), there are four potentially independent shocks, εμ, εg, εz, εd, and we
complete the structural specification with an arbitrary 4×4 shock covariance matrix. Our observable
representation is equivalent to a VAR (Wold representation) of the observable variables {dp,∆d, z}
or {dp, r, z} so it is driven by only three shocks, which must be linear combinations of the VAR
shocks {vdp, vd, vz} or {vdp, vr, vz}. Choosing the {dp,∆d, z} representation, we must be able to
write shocks to the observable model in the form∙

vμ,t
vg,t

¸
=

∙
αμ,dp αμ,z αμ,d
αg,dp αg,z αg,d

¸⎡⎣ vdp,t
vz,t
vd,t

⎤⎦ . (73)

Only one row of the α matrix is free, as we must have the counterpart of (67),

vdp,t =
£
1 −1 0

¤
A(ρ)

⎡⎢⎢⎣
vμ,t
vg,t
vz,t
vd,t

⎤⎥⎥⎦ = £ 1 −1 0
¤
A(ρ)

⎡⎢⎢⎣
αμ,dp αμ,z αμ,d
αg,dp αg,z αg,d

0 1 0
0 0 1

⎤⎥⎥⎦
⎡⎣ vdp,t

vz,t
vd,t

⎤⎦
and hence

£
1 0 0

¤
=
£
1 −1

¤ ∙ Aμμ(ρ) Aμg(ρ) Aμz(ρ) Aμd(ρ)
Agμ(ρ) Agg(ρ) Agz(ρ) Agd(ρ)

¸⎡⎢⎢⎣
αμ,dp αμ,z αμ,d
αg,dp αg,z αg,d

0 1 0
0 0 1

⎤⎥⎥⎦ (74)

For example, as in (27) we can express this restriction as a set of restrictions that let us solve for
the αμ given the αg or vice-versa

1 = [Aμμ(ρ)−Agμ(ρ)]αμ,dp + [Aμg(ρ)−Agg(ρ)]αg,dp

0 = [Aμμ(ρ)−Agμ(ρ)]αμ,z + [Aμg(ρ)−Agg(ρ)]αg,z + [Aμz(ρ)−Agz(ρ)]

0 = [Aμμ(ρ)−Agμ(ρ)]αμ,d + [Aμg(ρ)−Agg(ρ)]αg,d + [Aμd(ρ)−Ad(ρ)]

This is the general version of the restriction in (27)-(28).
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4.2.1 Model expressed in terms of observable shocks

With the substitution (73), we can equivalently rewrite the model in terms of the observable shocks
directly ⎡⎣ μ̂t

ĝt
zt

⎤⎦ = Ã(L)

⎡⎣ vdp,t
vz,t
vd,t

⎤⎦ (75)

∆dt+1 = ĝt + vd,t+1

The only (but crucial) difference in the form of this representation is that we have the observable
shocks directly on the right hand side rather than indirectly via vg and vμ. I use a tilde on Ã to
distinguish it from the original A matrix.

⎡⎣ μ̂t
ĝt
zt

⎤⎦ = A(L)

⎡⎢⎢⎣
vμ,t
vg,t
vz,t
vd,t

⎤⎥⎥⎦ = A(L)

⎡⎢⎢⎣
αμ,dp αμ,z αμ,d
αg,dp αg,z αg,d

0 1 0
0 0 1

⎤⎥⎥⎦
⎡⎣ vdp,t

vz,t
vd,t

⎤⎦ = Ã(L)

⎡⎣ vdp,t
vz,t
vd,t

⎤⎦

Dividend yields now follow by

dpt =
£
1 −1 0

¤ LÃ(L)− ρÃ(ρ)

L− ρ

⎡⎣ vdp,t
vz,t
vd,t

⎤⎦ (76)

and the dividend yield and return shocks follow by

vdp,t+1 =
£
1 −1 0

¤
Ã(ρ)

⎡⎣ vdp,t+1
vz,t+1
vd,t+1

⎤⎦ (77)

vr,t+1 = −ρvdp,t+1 + vd,t+1

By construction, £
1 0 0

¤
=
£
1 −1 0

¤
Ã(ρ)

so we recover the same dividend yield shock we started with. Hence we can also write

dpt =
L
h
Ãμ(L)− Ãg(L)

i
− ρ

£
1 0 0

¤
L− ρ

⎡⎣ vdp,t
vz,t
vd,t

⎤⎦
where Ãμ denotes the μ row of Ã.

4.2.2 From VAR to state-space

Above, we asked, given the restrictions of a “structural” representation, what restrictions on the
VAR representation follow? In this case the inverse question is just as interesting: Given a VAR
representation (78), how do we construct the state-space representation (69)? This inverse problem
is the interesting problem for empirical work. When we run regressions, we want to interpret them
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through the eyes of a state-space model like (69). In this case the “structural” model is specified
loosely enough that any VAR can be interpreted through its eyes.

This exercise is actually quite easy. Any set of return and dividend growth forecast regressions
implies a model for expected returns and expected dividend growth, as the right hand side of the
regressions. We just have to track the dynamics of the right hand sides of two regressions, and
we have the dynamics for the state variables μ̂ and ĝ. Since the rest follows from identities, we
can reverse the logic and know that starting with those dynamics produces the dividend yield and
return as the “result.”

Thus, suppose we start with a set of forecasting regressions of returns and dividend growth on
dp, ∆d (or r) and z, ⎡⎢⎢⎣

dpt+1
zt+1
∆dt+1
rt+1

⎤⎥⎥⎦ = a(L)

⎡⎣ dpt
zt
∆dt

⎤⎦+
⎡⎢⎢⎣

vdp,t+1
vz,t+1
vd,t+1
vr,t+1

⎤⎥⎥⎦ . (78)

As usual, one equation is irrelevant; the return or dividend growth row can be inferred from the
others, and we can use rt on the right hand side in place of ∆dt. Our objective is to translate
between this VAR representation and the equivalent observable state-space representation of the
form (64)-(68).

Using {dp, z,∆d} as state variables, our regressions imply the moving average representation⎡⎣ dpt
zt
∆dt

⎤⎦ = [I − La∗(L)]−1

⎡⎣ vdp,t
vz,t
vd,t

⎤⎦
where a∗(L) denotes the dp, z and ∆d (first three) rows of a(L) defined in (78). Since μ̂t =
E(rt+1|It), ĝt = E(∆dt+1|It) we can then find the state variables⎡⎣ μ̂t

ĝt
zt

⎤⎦ =
⎡⎣ ar,dp(L) ar,z(L) ar,d(L)

ad,dp(L) ar,z(L) ar,d(L)
0 1 0

⎤⎦⎡⎣ dpt
zt
∆dt

⎤⎦
and so write the moving average representation⎡⎣ μ̂t

ĝt
zt

⎤⎦ =
⎡⎣ ar,dp(L) ar,z(L) ar,d(L)

ad,dp(L) ar,z(L) ar,d(L)
0 1 0

⎤⎦ [I − La∗(L)]−1

⎡⎣ vdp,t
vz,t
vd,t

⎤⎦ . (79)

Of course we have directly
∆dt+1 = ĝt + vd,t+1.

That’s it. We have a model of the form (75). We can say “suppose expected returns and
dividend growth are generated by this process, suppose we find dividend yields by the present
value formula (76) and returns from the identity linking returns to dividend yields and dividend
growth.” We will recover the return regressions that we started with. (It’s a lot of fun to go through
the construction of dpt, rt and verify you get back to where you started. )

Alas, this equivalence is bad news for the state-space project if its goal is to improve return
forecasts. We can construct a state-space model to correspond to any VAR. For example, we can
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derive a state-space representation of a Campbell-Shiller (1988) two-lag VAR. State-space models
do not have to produce regressions with long moving averages on the right hand side. That finding
is a result of one particular state-space model, and that example was chosen for its pedagogically
simple structure. We have no economic reason to impose the particular structure of the simple
example rather than the time-series structure of expected returns and dividend growth that results
from an arbitrary VAR. The only hope is that one might make a calculation of this sort and find that
a sensible VAR implies an implausible state-space specification, for example with sawtooth impulse
response functions. Otherwise, state-space models will be a useful interpretation step rather than
any particular help in forecasting.

4.3 Expression in terms of expected return and expected dividend growth
shocks

As in the state-space model, it’s interesting to express the shocks as a “shock to expected returns”
and another “shock to expected dividend growth,” rather than in terms of the more nebulous “shock
to the dividend yield,” i.e. in the form of (69) rather than (75).

Evaluating (79) at L = 0, we have∙
vμ,t
vg,t

¸
=

∙
ar,dp(0) ar,z(0) ar,d(0)
ad,dp(0) ad,z(0) ad,d(0)

¸⎡⎣ vdp,t
vz,t
vd,t

⎤⎦ (80)

Thus, the first regression coefficients a(0) are the alpha parameters of (73), which shows us how to
identify and estimate the α parameters.

We want to rewrite (79),⎡⎣ μ̂t
ĝt
zt

⎤⎦ =
⎡⎣ ar,dp(L) ar,z(L) ar,d(L)

ad,dp(L) ar,z(L) ar,d(L)
0 1 0

⎤⎦ [I − La∗(L)]−1

⎡⎣ vdp,t
vz,t
vd,t

⎤⎦
In terms of μ and g shocks so defined. This means finding a matrixQ that inverts the transformation
in (80), i.e. such that⎡⎣ μ̂t

ĝt
zt

⎤⎦ =
⎡⎣ ar,dp(L) ar,z(L) ar,d(L)

ad,dp(L) ar,z(L) ar,d(L)
0 1 0

⎤⎦ [I − La∗(L)]−1Q

⎡⎢⎢⎣
vμ,t
vg,t
vz,t
vd,t

⎤⎥⎥⎦ (81)

To be such an inverse, we must have

I3 =

⎡⎣ Qdp,μ Qdp,g Qdp,z Qdp,d

0 0 1 0
0 0 0 1

⎤⎦
⎡⎢⎢⎣

ar,dp(0) ar,z(0) ar,d(0)
ad,dp(0) ad,z(0) ad,d(0)

0 1 0
0 0 1

⎤⎥⎥⎦
This condition for inverse puts three restrictions on the four free elements of Q.⎡⎣ 1 = Qdp,gad,dp(0) +Qdp,μar,dp(0)

0 = Qdp,gad,z(0) +Qdp,μar,z(0) +Qdp,z

0 = Qdp,gad,d(0) +Qdp,μar,d(0) +Qdp,d

⎤⎦
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We may choose either Qdp,g or Qdp,μ; the other follows from the first condition, and Qdp,z and Qdp,d

follow from those two.

To understand this arbitrariness consider the case that the coefficients a.,z, a.,d = 0, i.e. of
contemporaneous variables only dpt forecasts returns. Then, we must find shocks to expected
returns and expected dividend growth as∙

vμ,t
vg,t

¸
=

∙
ar,dp(0)
ad,dp(0)

¸ £
vdp,t

¤
Since there is only one underlying shock, however, how we express the resulting dynamics is some-
what arbitrary. We can express the exactly the same dynamics as driven by vμ,t/ar,dp(0), or by
vg,t/ad,dp(0). (Of course in both cases if one of ar,dp(0) or ad,dp(0) is zero, then the arbitrariness is
removed.)

In sum, we know how to construct a representation of the form (69), but it is not in general
uniquely identified, as must be the case since (69) has a singular covariance matrix.

The same feature means that we cannot in general express the representation (69) that we
recover with impact multipliers that are all one, i.e. A(0) with one on the diagonal and zeros
elsewhere. To achieve that result would require the opposite inverse relation

I4 =

⎡⎢⎢⎣
ar,dp(0) ar,z(0) ar,d(0)
ad,dp(0) ad,z(0) ad,d(0)

0 1 0
0 0 1

⎤⎥⎥⎦
⎡⎣ Qdp,μ Qdp,g Qdp,z Qdp,d

0 0 1 0
0 0 0 1

⎤⎦

I4 =

⎡⎢⎢⎣
ar,dp(0)Qdp,μ Qdp,gar,dp(0) Qdp,zar,dp(0) Qdp,dar,dp(0)
ad,dp(0)Qdp,μ Qdp,gad,dp(0) ad,dpQdp,z(0) Qdp,dad,dp(0)

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ ,
which in general is not possible. We cannot choose Qdp,μ to make the top left element one and to
make the 1,2 element zero.

4.4 From state space to VAR

The state-space model is ⎡⎣ μ̂t
ĝt
zt

⎤⎦ = Ã(L)

⎡⎣ vdp,t
vz,t
vd,t

⎤⎦
∆dt+1 = ĝt + vd,t+1 (82)

dpt =
£
1 −1 0

¤ LÃ(L)− ρÃ(ρ)

L− ρ

⎡⎣ vdp,t
vz,t
vd,t

⎤⎦
£
1 0 0

¤
=
£
1 −1 0

¤
Ã(ρ)
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Again we find MA and VAR representations for the observables {dpt,∆dt, rt, zt} by eliminating
the latent variables μ̂, ĝ.

Moving average. dpt and zt are already in moving average representation. We find dividends
and returns simply by (82) and its return counterpart. Thus, the moving average representation is⎡⎢⎢⎣

dpt+1
zt+1
∆dt+1
rt+1

⎤⎥⎥⎦ =
£
1 −1 0

¤ LÃ(L)−ρÃ(ρ)
L−ρ

Ãz(L)

LÃg(L) +
£
0 0 1

¤
LÃμ(L) +

£
−ρ 0 1

¤
⎡⎣ vdp,t+1

vz,t+1
vd,t+1

⎤⎦
Where I use Ãg, etc. to denote the rows of Ã.

4.5 Example

Suppose we have a general first-order VAR, with no z variable⎡⎣ dpt+1
∆dt+1
rt+1

⎤⎦ =
⎡⎣ adp,dp adp,d

ad,dp ad,d
ar,dp ar,d

⎤⎦∙ dpt
∆dt

¸
+

⎡⎣ vdp,t+1
vd,t+1
vr,t+1

⎤⎦ .
As usual the return identity means that one row is redundant

ar,dp = −ρadp,dp + ad,dp

ar,d = −ρadp,d + ad,d

Equation (79) gives us the observable state-space representation∙
μ̂t
ĝt

¸
=

∙
ar,dp ar,d
ad,dp ar,d

¸ ∙
I −

∙
adp,dp adp,d
ad,dp ad,d

¸
L

¸−1 ∙
vdp,t
vd,t

¸
. (83)

This result is more intuitive in AR form.∙
I −

∙
adp,dp adp,d
ad,dp ad,d

¸
L

¸ ∙
ar,dp ar,d
ad,dp ar,d

¸−1 ∙
μ̂t
ĝt

¸
=

∙
vdp,t
vd,t

¸
.

∙
μ̂t
ĝt

¸
=

∙
ar,dp ar,d
ad,dp ar,d

¸ ∙
adp,dp adp,d
ad,dp ad,d

¸ ∙
ar,dp ar,d
ad,dp ar,d

¸−1 ∙
μ̂t−1
ĝt−1

¸
+

∙
ar,dp ar,d
ad,dp ar,d

¸ ∙
vdp,t
vd,t

¸
.

Using the identities∙
ar,dp ar,d
ad,dp ar,d

¸
=

∙
−ρadp,dp + ad,dp −ρadp,d + ad,d

ad,dp ar,d

¸
=

∙
−ρ 1
0 1

¸ ∙
adp,dp adp,d
ad,dp ad,d

¸
,

and hence ∙
−1ρ

1
ρ

0 1

¸ ∙
ar,dp ar,d
ad,dp ar,d

¸
=

∙
adp,dp adp,d
ad,dp ad,d

¸
,

we can simplify the AR form to∙
μ̂t
ĝt

¸
=

∙
ar,dp ar,d
ad,dp ar,d

¸ ∙
−1ρ

1
ρ

0 1

¸ ∙
μ̂t−1
ĝt−1

¸
+

∙
ar,dp ar,d
ad,dp ar,d

¸ ∙
vdp,t
vd,t

¸
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and finally ∙
μ̂t
ĝt

¸
=
1

ρ

∙
−ar,dp ar,dp + ρar,d
−ad,dp ad,dp + ρar,d

¸ ∙
μ̂t−1
ĝt−1

¸
+

∙
ar,dp ar,d
ad,dp ar,d

¸ ∙
vdp,t
vd,t

¸
(84)

We recognize a variation of the original simple example, which specified a diagonal transition
matrix.

From (80) we can define expected return and dividend shocks∙
vμ,t
vg,t

¸
=

∙
ar,dp ar,d
ad,dp ad,d

¸ ∙
vdp,t
vd,t

¸
and thus write simply∙

μ̂t
ĝt

¸
=
1

ρ

∙
−ar,dp ar,dp + ρar,d
−ad,dp ad,dp + ρar,d

¸ ∙
μ̂t−1
ĝt−1

¸
+

∙
vμ,t
vg,t

¸

This example has a sad lesson — all of the interesting moving average dynamics studied in the
context of the simple example comes from ruling out off-diagonal elements of the μ, g transition
matrix. Here is an example of almost the same form, whose AR representation is simply a first-order
VAR.
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