Corrected Table 6. Boldface numbers were wrong in the original

Weighted							Unweighted					
$\sum_{j=1}^{k} \rho^{j-1} r_{t+j}=a+b_{r}^{(k)}\left(d_{t}-p_{t}\right)+\delta_{t+k}$							$\sum_{j=1}^{k} r_{t+j}=a+b_{r}^{(k)}\left(d_{t}-p_{t}\right)+\delta_{t+k}$					
	direct			implied			direct			implied		
	coeff.	p-val	, $\phi=$	coeff.	p-val	e, $\phi=$	coeff.	p-val	e, $\phi=$	coeff.	p-valu	e, $\phi=$
k	$b_{r}^{(k)}$	0.94	0.99									
1	0.10	22	22	0.10	22	22	0.10	22	22	0.10	22	22
5	0.35	28	29	0.40	17	19	0.37	29	29	0.43	16	18
10	0.80	16	16	0.65	10	15	0.92	16	16	0.75	9.0	14
15	1.38	4.4	4.7	0.80	6.2	12	1.68	4.8	5.0	0.98	4.3	10
20	1.49	4.7	5.2	0.89	4.1	9.8	1.78	7.8	8.3	1.15	2.2	7.6
∞				1.04	1.8	7.3				1.64	0.5	8.9

Table 6. Long-horizon forecasting regressions. In each case $b_{r}^{(k)}$ gives the point estimate in the data. The column labeled " p-value" gives the percent probability value-i.e., the percentage of simulations in which the long-horizon regression coefficient $b_{r}^{(k)}$ exceeded the sample value $\hat{b}_{r}^{(k)} . \phi=0.94,0.99$ indicates the assumed dividend-yield autocorrelation ϕ in the null hypothesis. "Direct" constructs long-horizon returns and explicitly runs them on dividend yields. "Implied" calculates the indicated long-horizon regression coefficient from one-period regression coefficients. For example, the five-year weighted implied coefficient is calculated as $b_{r}^{(5)}=\sum_{j=1}^{5} \rho^{j-1} \phi^{j-1} b_{r}=\left(1-\rho^{5} \phi^{5}\right) /(1-$ $\rho \phi) b_{r}$.

