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Abstract

The new-Keynesian, Taylor-rule theory of inflation determination relies on explosive dy-
namics. By raising interest rates in response to inflation, the Fed induces ever-larger inflation,
unless inflation jumps to one particular value on each date. However, economics does not rule
out explosive inflation, so inflation remains indeterminate.
Attempts to fix this problem assume that the government will choose to blow up the economy

if alternative equilibria emerge, by following policies we usually consider impossible.
The Taylor rule is not identified without unrealistic assumptions. Thus, Taylor rule regres-

sions do not show that the Fed moved from "passive" to "active" policy in 1980.
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1 Introduction

How is the price level determined? The new-Keynesian, Taylor-rule theory provides the current
standard answer to this basic economic question. In this theory, inflation is determined because
the central bank systematically raises nominal interest rates more than one-for-one with inflation.
This “active”interest rate target is thought to eliminate the indeterminacy that results from fixed
interest rate targets, and thus to provide the missing “nominal anchor.”

Theories ultimately rise and fall on their ability to organize and interpret facts. Keynes wrote
the General Theory of the great depression. Friedman and Schwartz wrote the Monetary History
of the United States. The central new-Keynesian story is that U. S. inflation was conquered
in the early 1980s, by a change from a “passive” policy in which interest rates did not respond
suffi ciently to inflation to an “active”policy in which they do so. Most famously, Clarida, Galí and
Gertler (2000) ran regressions of federal funds rates on inflation and output. They found inflation
coeffi cients below one up to 1980, and above one since then. (Complex new-Keynesian models also
“fit the data”well, but so do other models. This observation is not a useful test of a model’s basic
structure.)

I analyze this theory and its interpretation of the data. First, I conclude that the Taylor rule,
in the context of a new-Keynesian model, leaves the same inflation indeterminacy as with fixed
interest rate targets. Second, even accepting the model, I show that the parameters of the Fed’s
policy rule are not identified, so regression evidence does not say anything about determinacy in a
new-Keynesian model.

The same key point drives both observations: New-Keynesian models do not say that higher
inflation causes the Fed to raise real interest rates, which in turn lowers “demand,”which reduces
future inflation. That’s “old-Keynesian,”stabilizing logic. In new-Keynesian models, higher infla-
tion leads the Fed to set interest rates in a way that produces even higher future inflation. For
only one value of inflation today will inflation fail to explode, or, more generally, eventually leave a
local region. Ruling out non-local equilibria, new-Keynesian modelers conclude that inflation today
must jump to the unique value that leads to a locally-bounded equilibrium path.

But there is no reason to rule out nominal explosions or “non-local”nominal paths. Transversal-
ity conditions can rule out real explosions, but not nominal explosions. Since the multiple non-local
equilibria are valid, the new-Keynesian model does not determine inflation.

Furthermore, if we do rule out the non-local paths, interest rates that generate explosive inflation
are an outcome that is never realized in the observed equilibrium, so that response cannot be
measured.

1.1 Responses: determinacy and dilemma

Many authors have advanced proposals to trim new-Keynesian multiple equilibria by adding addi-
tional provisions to the policy description, describing actions that the government would take if the
undesired equilibrium were to occur. I analyze these proposals, asking several questions: Do they,
in fact, rule out the undesired equilibrium? Many do not. Unpleasant outcomes, such as infinite
inflation, can be an equilibrium. Does the future policy lead people to any change in behavior
today? In many cases, the answer is no. Knowledge of the future policy and its outcome do not
change consumption or asset demands, or give any supply-demand pressure towards a different
inflation rate today. In a game, a “blow up the world”threat can induce the other player to change
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earlier behavior. But here the private sector is atomistic. Is the proposal an even vaguely plausible
description of what people currently believe our government would do, and not wildly at odds with
what governments actually do in similar circumstances? Or is it a suggestion for commitments that
future governments might make? We need the former case in order to use the theory as a positive
description of current data.

Many proposals to trim equilibria sound superficially like sensible descriptions of what govern-
ments do to stop extreme inflation or deflation —switch to a commodity standard, exchange-rate
peg, money growth rule, or undertake a fiscal expansion or reform. However, stopping an inflation
or deflation is a completely different act than disallowing an equilibrium. If an inflation-stopping
policy still describes how an equilibrium forms at each date, then the inflation or deflation and its
end remain an equilibrium path and we have ruled nothing out.

To rule out equilibria, the government must specify policy so that it is impossible for an equi-
librium to form somewhere along the path. Some proposals specify a commodity standard, which
implies zero inflation, but also a very high interest rate. Others specify a commodity standard, but
also a limit on money supply which precludes the price level set by the commodity standard. Still
others specify inconsistent fiscal and monetary policies, introduce arbitrage opportunities, or set
infinite inflation. It is these inconsistent or overdetermined policies, not the inflation or deflation
stabilization, which trims equilibria.

Such assumptions seem wildly implausible, as descriptions of government behavior, or as de-
scriptions of people’s current beliefs about government behavior. A policy configuration for which
“no equilibrium can form”or “private first-order conditions cannot hold”means a threat to blow
up the economy. Furthermore, in these models, there are policies that the government can follow
which stop the inflation without blowing up the economy, allowing an equilibrium to form at each
date. Therefore, “blowing up the economy”is a choice. Why would a government choose to blow
up the economy, when tested policies that stop inflation or deflation, while allowing equilibria to
form at each date, are sitting on the shelf? Actual governments that stop inflations do not also
insist that the real quantity of money remain at a low level, do not try to target hyperinflationary
interest rates, do not introduce arbitrage opportunities, and do coordinate fiscal and monetary
policies.

In fact, in most (Ramsey) analyses of policy choices, we label such policy configurations as
“impossible,”not just “implausible.” We think of governments choosing policy configurations, while
taking private first-order conditions as constraints; we think of governments acting in markets. We
don’t think governments can set policies for which private first-order conditions don’t hold. For
example, to operate a commodity standard, we would say that a government must offer to exchange
currency for the commodity freely at the stated price; it simply cannot also maintain a low limit
on money supply or a very high interest rate target.

The logical dilemma is unavoidable. If we specify that the government will stop an inflation
or deflation in such a way that equilibria can form on each date, we get quite sensible proposals
and descriptions of what governments might do — can do, and have done — to end inflations or
deflations, but we don’t rule out any equilibria. To rule out equilibria, people must believe that
the government will choose to blow up the economy. Whether the rest of the policy description
resembles historically successful stabilizations is irrelevant. Whether the impossible policies occur
on the date of stabilization or at any other point on the path is irrelevant. I survey the extensive
literature, and do not find any successful escape from this dilemma.

There is an important distinction here between “eliminating multiple equilibria”and “defining
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one equilibrium.”The government does set policies for which market-clearing conditions may not
hold at off-equilibrium prices. For example, in a commodity standard, there is an arbitrage op-
portunity if the market price differs at all from the government price. This policy gives a strong
supply-demand force towards the equilibrium price. But there is nothing infeasible or incredible
about a commodity standard. Non-Ricardian fiscal commitments work the same way.

1.2 Responses: identification

The literature also contains many attempts to rescue identification. But we can and must ask
whether identification assumptions are reasonable, as a description of Fed behavior, of people’s
expectations of Fed behavior, and of the theory with which the regressions are interpreted.

The central identification problem is that the theory predicts there is no movement in the crucial
right hand variable, the difference between actual inflation and inflation in the desired equilibrium.
(Here too, the issue is not “in” vs. “out of” equilibrium, the issue is selection between multiple
equilibria.) At a deep level, then, we must assume that the correlations between interest rates
and inflation in the equilibrium are the same as the Fed’s unobservable interest-rate response to
movements of inflation away from that equilibrium. In the theory, the right “natural rate,” the
behavior of interest rates in the desired equilibrium, is a completely different issue from determinacy;
how the interest rate should vary if inflation veers away from the desired equilibrium. To identify
the latter from the former, we must assume they are the same.

But then a second classic problem arises. In the desired equilibrium, the Taylor-rule right hand
variables (inflation, output) and all potential instruments are correlated with the monetary policy
disturbance term. This correlation is central to the theory: If a monetary policy shock occurs,
then inflation and other right-hand variables are supposed to jump to the unique values that lead
to a locally-bounded equilibrium.

Furthermore, new-Keynesian theory also advocates a “stochastic intercept:”The central bank
should vary the interest rate in response to structural (IS, cost, etc.) disturbances, in order to
follow variations in the “natural rate.”These interest-rate movements become part of the empirical
monetary policy disturbance. Therefore, the theory predicts that the structural disturbances to
other equations, and endogenous variables which depend on them, cannot be used as instruments.

Lags don’t help either. If the structural disturbances are serially correlated, lagged endogenous
variables are correlated with the monetary-policy error term. If the structural disturbances are not
serially correlated, lagged endogenous variables are uncorrelated with the right-hand side of the
monetary policy rule.

In sum, New-Keynesian models specify policy rules that are a snake-pit for econometricians.
There is no basis for all the obvious devices, such as excluding variables from the policy rule,
the use of instruments, assuming the right-hand variables of policy rules are orthogonal to the
disturbance, or lag-length restrictions on disturbances. (Lag-length and exclusion restrictions as
approximations are not a big problem; restrictions to produce identification are.) Not only might
these problems exist, but theory predicts that most of them do exist. Empiricists must throw out
important elements of the theory in order to identify parameters.

Finally, even if one could identify parameters from a determinate new-Keynesian equilibrium
(1980s), what does one measure if the world is indeterminate, as supposedly was the case in the
1970s? The change in coeffi cients is a crucial part of the story, and one must measure the earlier
coeffi cient to measure a change.
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1.3 If not this then what?

If not this theory, what theory can account for price-level determination, in a modern fiat-money
economy whose central bank follows an interest rate target? This paper is entirely negative, and
long enough, so I do not exposit or test an alternative theory. But it is worth pointing out a
possibility.

The valuation equation for government debt states that the real value of nominal debt equals
the present value of real primary surpluses. The new-Keynesian Taylor rule model fulfills this
equilibrium condition by assuming that the government will always adjust taxes or spending ex-
post to validate any change in the price level. If deflation doubles the real value of nominal debt,
the government doubles taxes to pay off that debt. It is an “active money, passive fiscal”regime,
in Leeper’s (1991) terminology.

The “active fiscal, passive money”regime is an alternative possibility. In this case, the valuation
equation for government debt determines the price level, and the central bank follows an interest
rate rule that does not destabilize the economy. Since this model of price-level determination relies
on ruling out real, rather than nominal explosions, through the consumer’s transversality condition,
it uniquely determines the price level. This model is not inconsistent with empirical Taylor Rule
regressions. It therefore provides a coherent economic theory of the price level, that can address
current institutions.

This paper is not a criticism of new-Keynesian economics in general. In particular, I do not have
anything to say here that criticizes its basic ingredients: an intertemporal, forward-looking “IS”
curve, or an intertemporally-optimizing, forward-looking model of price-setting subject to frictions,
as captured in the “new-Keynesian Phillips curve.” The “passive money, active fiscal” regime of
such a model can determine inflation.

1.4 An acknowledgement

Indeterminacy, multiple equilibria, and identification in dynamic rational-expectations models are
huge literatures that I cannot possibly adequately cite, acknowledge, or review in the space of one
article. The body of the paper reviews specific important contributions in the context of new-
Keynesian models. This is not a critique of those specific papers. I choose these papers as concrete
and well-known examples of general points, repeated throughout the literature. The Appendix and
online Appendix contain a much more comprehensive review, both to properly acknowledge others’
efforts, and to establish that no, these problems have not been solved.

The equations in this paper are simple and not new. In this field, however, there is great debate
over how one should read and interpret simple and fairly well-known equations. This paper’s novelty
is a contribution to that diffi cult enterprise.

2 Simplest model

We can see the main points in a very simple model consisting only of a Fisher equation (consumer
first order conditions) and a Taylor rule describing Fed policy,

it = r + Etπt+1, (1)
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it = r + φπt + xt, (2)

where it = nominal interest rate, πt = inflation, r = constant real rate.

The monetary policy disturbance xt represents variables inevitably left out of any regression
model of central bank behavior, such as responses to financial crises, exchange rates, time-varying
rules, mismeasurement of potential output, and so on. It is not a forecast error, so it is serially
correlated,

xt = ρxt−1 + εt. (3)

(Equivalently, the target may be smoothed and react to past inflation. )

We can solve this model by substituting out the nominal interest rate, leaving the equilibrium
condition

Etπt+1 = φπt + xt. (4)

2.1 Determinacy

Equation (4) has many solutions. We can write the equilibria of this model as

πt+1 = φπt + xt + δt+1; Et (δt+1) = 0, (5)

where δt+1 is any conditionally mean-zero random variable. Multiple equilibria are indexed by
arbitrary initial inflation π0, and by the arbitrary random variables or “sunspots” δt+1. This
observation forms the classic doctrine (Sargent and Wallace 1975) that inflation, to say nothing of
the price level, is indeterminate with an interest rate target.

If ‖φ‖ > 1, all of these equilibria except one eventually explode, i.e. Et (πt+j) grows without
bound. If we disallow such solutions, then a unique locally-bounded solution remains. We can
find this solution by solving the difference Equation (4) forward, or by undetermined coeffi cients
(which assumes a bounded solution, depending only on xt),

πt = −
∞∑
j=0

1

φj+1
Et (xt+j) = − xt

φ− ρ. (6)

Equivalently, by this criterion we select the variables π0, {δt+1}, which index multiple equilibria, as

π0 = − x0

φ− ρ ; δt+1 = − εt+1

φ− ρ. (7)

Thus we have it: if the central bank’s interest rate target reacts suffi ciently to inflation — if
‖φ‖ > 1 —then it seems that a pure interest rate target, with no control of monetary aggregates, no
commodity standard or peg, and no “backing”beyond pure fiat, can determine at least the inflation
rate, if not quite the price level. It seems that making the peg react to economic conditions overturns
the classic doctrine that inflation is indeterminate under an interest-rate peg. (McCallum 1981.)

But what’s wrong with non-local equilibria? Transversality conditions can rule out real explo-
sions, but not nominal explosions. Hyperinflations are historic realities. This condition didn’t come
from any economics of the model. I conclude there’s nothing wrong with them, and this model
does not eliminate multiple equilibria and hence does not determine inflation.

This is an example, which needs fleshing out. First, I need to write down a fully-specified
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model, to show there truly is nothing wrong with non-local equilibria. Second, I need to examine
the standard three-equation model, including varying real rates and price stickiness, to verify that
this simple frictionless model indeed captures the same issues. Third, haven’t the legions of people
who have addressed these issues solved all these problems? I review the literature to verify they
have not done so.

This simple example also makes clear the stark difference between “indeterminacy”and “infla-
tionary and deflationary spirals,”and the difference between “determinacy”and the “stabilizing”
stories, common in policy analysis and Federal Reserve statements. Authors at least since Friedman
(1968) have worried that if the Fed follows an interest rate target, inflation could rise, real rates
would fall (for Friedman, money growth would increase), this would cause higher future inflation,
and the spiral would continue. Many analyses of the 2008-2011 situation worry about an opposite
deflationary spiral, especially with nominal interest rates stuck at zero. Many explanations of the
Taylor rule say that it cuts off such spirals: nominal interest rates rise more than inflation, so real
rates rise, which cools off future inflation.

All of this is “old-Keynesian”logic. Whether right or wrong, the issues are completely different.
The spirals describe a single but undesirable equilibrium. The Taylor rule induces a stable root, not
an unstable root, to the system dynamics. All of these stories require at least nominal effects on
real interest rates or price stickiness absent in this analysis. As King (2000) emphasizes, φ < −1,
oscillating hyper-inflation and deflation, works just as well as φ > 1 to ensure determinacy. That
example is hard to describe by “stabilizing”intuition.

2.2 Identification

Now, suppose the solution (6) is in fact correct, what are its observable implications? Since πt is
proportional to xt, the dynamics of equilibrium inflation are simply those of the disturbance xt,

πt = ρπt−1 + wt. (8)

(wt ≡ −εt/(φ − ρ), but εt and xt are not directly observed, so we can summarize observable
dynamics with the new error wt.) Using (1) and (8), we can find the equilibrium interest rate,

it = r + ρπt. (9)

Equation (9) shows that a Taylor-rule regression of it on πt will estimate the disturbance serial
correlation parameter ρ rather than the Taylor rule parameter φ.

What happened to the Fed policy rule, Equation (2)? The solution (6) shows that the right hand
variable πt and the disturbance xt are correlated —perfectly correlated in fact. That correlation
is no accident or statistical assumption, it is central to how the model behaves. The whole point
of the model, the whole way it generates responses to shocks, is that endogenous variables (πt)
“jump”in response to shocks (εt), so as to head off expected explosions.

Perhaps we can run the regression by instrumental variables? Alas, the only instruments at
hand are lags of πt and it, themselves endogenous, and thus invalid. For example, if we use all
available lagged variables as instruments, we have from (8) and (9)

E(πt|πt−1, it−1, πt−2, it−2....) = ρπt−1

E(it|πt−1, it−1, πt−2, it−2....) = r + ρ2πt−1.
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Thus the instrumental variables regression gives exactly the same estimate

E(it|πt−1, it−1, πt−2, it−2....) = r + ρE(πt|πt−1, it−1, πt−2, it−2....).

If the disturbance xt were i.i.d., then the correlation of instruments with errors would be removed,
but so would the correlation of instruments with right hand variables.

Is there nothing clever we can do? No. The equilibrium dynamics of the observable variables
{it, πt} are completely described by equations (8) and (9). The equilibrium dynamics, and the
resulting likelihood function, do not involve φ. φ is not identified from data on {it, πt} in the
equilibrium of this model. Inflation is supposed to jump to the one value for which accelerating
inflation at rate φ is not observed. If inflation does jump, there is no way to measure how fast the
inflation would accelerate if it did not jump.

Absence of φ from equilibrium dynamics and the likelihood function means that we can’t even
test whether the data are generated from the region of determinacy ‖φ‖ > 1, abandoning hope of
measuring the precise value of φ, as Lubik and Schorfheide (2004) try to do. For every equilibrium
generated by a φ∗ with ‖φ∗‖ > 1, the same equilibrium dynamics (8) and (9) can be generated by
a different φ with ‖φ‖ < 1. The online Appendix elaborates this point.

Again, this is the beginning. I need to show that the same problems occur in more complex
models, including the standard three-equation new-Keynesian model that Clarida, Galí and Gertler
(2000) and other authors use, and that the many attempts at identification don’t convincingly
surmount them.

3 An explicit frictionless model

3.1 The model

To keep the discussion compact and consistent with the literature, I simplify standard sources,
Benhabib Schmitt-Grohé and Uribe (2002) and Woodford (2003). Consumers maximize a utility
function

maxEt

∞∑
j=0

βju(Ct+j).

Consumers receive a constant nonstorable endowment Yt = Y ; markets clear when Ct = Y . Con-
sumers trade in complete financial markets described by real contingent claims prices mt,t+1 and
hence nominal contingent claims prices

Qt,t+1 =
Pt
Pt+1

mt,t+1.

The nominal interest rate is related to contingent claim prices by

1

1 + it
= Et [Qt,t+1] .

The government issues one-period nominal debt; Bt−1 denotes the face value issued at time t−1
and coming due at date t. The government levies lump-sum taxes St, net of transfers. St denotes
the real primary surplus. I follow Benhabib Schmitt-Grohé and Uribe (2002), Woodford (2003),
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Cochrane (2005) and many others in describing a frictionless economy. The dollar can be a unit
of account even if, in equilibrium, nobody chooses to hold any dollars overnight.

The consumer faces a present-value budget constraint

Et

∞∑
j=0

Qt,t+jPt+jCt+j = Bt−1 + Et

∞∑
j=0

Qt,t+jPt+j (Yt+j − St+j) . (10)

or, in real terms,

Et

∞∑
j=0

mt,t+jCt+j =
Bt−1

Pt
+ Et

∞∑
j=0

mt,t+j (Yt+j − St+j) . (11)

3.2 Equilibria

The consumer’s first order conditions state that marginal rates of substitution equal contingent
claims price ratios, and equilibrium Ct = Y implies a constant real discount factor,

β
uc(Ct+1)

uc(Ct)
= mt,t+1 = β

uc(Y )

uc(Y )
= β. (12)

Therefore, the real interest rate is constant,

1

1 + r
= Et (mt,t+1) = β

and the nominal discount factor is

Qt,t+1 =
Pt
Pt+1

mt,t+1 = β
Pt
Pt+1

. (13)

The interest rate follows a Fisher relation,

1

1 + it
= Et(Qt,t+1) = βEt

(
Pt
Pt+1

)
=

1

1 + r
Et

(
1

Πt+1

)
(14)

The usual relation (1) follows by linearization.

From the consumer’s present value budget constraint (10), and using contingent claim prices
from (13), equilibrium Ct = Y also requires

Bt−1

Pt
=
∞∑
j=0

1

(1 + r)j
Et (St+j) . (15)

The value of government debt is the present value of future net tax payments. This is not a
“government budget constraint,”it is an equilibrium condition, an implication of supply = demand
or Ct = Yt in goods markets, as you can see directly by looking at (11). Section 1 of the online
Technical Appendix and Cochrane (2005) discuss this issue in more detail. I assume that the
present value of future primary surpluses is positive and finite, 0 <

∑∞
j=0

1
(1+r)j

Et (St+j) <∞.

The Fisher equation (14) and the government debt valuation equation (15) are the only two
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conditions that need to be satisfied for the price sequence {Pt} to represent an equilibrium. If
they hold, then the allocation Ct = Y and the resulting contingent claims prices (13) imply that
markets clear and the consumer has maximized subject to his budget constraint. The equilibrium
is not yet unique, in that many different price or inflation paths will work. Unsurprisingly, we need
some specification of monetary and fiscal policy to determine the price level.

3.3 New - Keynesian policy and multiple equilibria

The new-Keynesian/Taylor-rule analysis maintains a “Ricardian”fiscal regime; net taxes St+j are
assumed to adjust so that the government debt valuation equation (15) holds given any price level.
(Woodford (2003) p. 124.) It also specifies a Taylor rule for monetary policy.

We have answered the first question needed from this explicit model: yes, solutions of the
simple model consisting of a Fisher equation and a Taylor rule (1)-(2), as I studied above, do in
fact represent the full set of (linearized) equilibrium conditions of this explicit model, if we assume
a Ricardian fiscal regime. My simple model didn’t leave anything out.

Are the non-local equilibria really globally valid? Here I follow the standard sources, in part
to emphasize agreement that they are. (Woodford (2003) Ch. 2.4, starting p. 123, and Ch. 4.4
starting on p. 311, with a review; Benhabib Schmitt-Grohé and Uribe (2002).)

Restrict attention to perfect foresight equilibria. Adding uncertainty (sunspots) can only in-
crease the number of equilibria. Consider an interest rate (Taylor) rule

1 + it = (1 + r)Φ(Πt); Πt ≡ Pt/Pt−1. (16)

Φ(·) is a function allowing nonlinear policy rules. The consumer’s first order condition (14) reduces
to

Πt+1 = β(1 + it). (17)

We are looking for solutions to the pair (16) and (17). As before, we substitute out the interest
rate and study the equation

Πt+1 = Φ(Πt). (18)

We have a nonlinear, global, perfect-foresight version of the analysis in Section 2.

As Benhabib Schmitt-Grohé and Uribe emphasize, a Taylor rule with slope greater than one
should not apply globally to an economy in which consumers can hold money, because nominal
interest rates cannot be negative. Thus, if we want to specify a Taylor rule with Φπ > 1 at
some point, we should think about the situation as illustrated in Figure 1. The equilibrium at
Π∗ satisfies the Taylor principle, and is a unique locally bounded equilibrium. Any value of Π0

other than Π∗ leads away from the neighborhood of Π∗ as shown. With a lower bound on nominal
interest rates, however, the function Φ(Π) must also have another stationary point, labeled ΠL.
This stationary point must violate the Taylor principle. Therefore, many paths lead to ΠL and
there are “multiple local equilibria”near this point. In addition, the equilibria descending from
Π∗ to ΠL are “bounded”though not “locally bounded.”

(Yes, Π∗ is the “good”equilibrium and ΠL is the “bad”equilibrium. The point is to find deter-
minacy by ruling out multiple equilibria. Π∗ is a unique locally-bounded equilibrium. “Stability”
near ΠL comes with “indeterminacy.”)

All of these paths are equilibria. Since these paths satisfy the policy rule and the consumer’s
first-order conditions by construction, all that remains is to check that they satisfy the government
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Figure 1: Dynamics in a perfect foresight Taylor-rule model.

debt valuation formula (15), i.e. that there is a set of ex-post lump-sum taxes that can validate
them and hence ensure the consumer’s transversality condition is satisfied. There are lots of ways
the government can implement such a policy. We only need to exhibit one. If the government
simply sets net taxes in response to the price level as

St =
r

1 + r

Bt−1

Pt
(19)

then the real value of government debt will be constant, and the valuation formula will always hold.

To see why this is true, start with the flow constraint, proceeds of new debt sales + taxes =
old debt redemption,

Bt
1 + it

+ PtSt = Bt−1.

With 1 + it = (1 + r)Pt+1/Pt, this can be rearranged to express the evolution of the real value of
the debt,

Bt
Pt+1

= (1 + r)

(
Bt−1

Pt
− St

)
. (20)

Substituting the rule (19) we obtain
Bt
Pt+1

=
Bt−1

Pt
.

We’re done. With constant real debt and the flow relation (20) the transversality condition holds,
and (20) implies (15). All the “explosive”equilibria as in Section 2 are, in fact, valid. Deflationary
equilibria that approach ΠL are also valid equilibria, as is ΠL itself. If we write the Taylor rule
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such that i = 0 at ΠL (for example, it = max(0, r + φπt)), the “liquidity trap”equilibrium it = 0,
ΠL = β (deflation at the rate r) is also a valid equilibrium.

3.4 Non-Ricardian Policy

The price level is uniquely determined in this frictionless model if we strengthen, rather than throw
out, the government valuation equation —if the government follows a “non-Ricardian”fiscal regime.
This is a natural alternative theory to consider, it is the basis for a lot of equilibrium-trimming and
related discussion that follows, and it clarifies the fundamental issue.

As the simplest example, suppose fiscal policy sets the path of real net taxes {St} independently
of the price level. (A proportional income tax achieves this result.) The initial face value of one-
period government debt Bt−1 is predetermined at date t. Then, (15) determines the price level
Pt,

Bt−1

Pt
= Et

∞∑
j=0

1

(1 + r)j
St+j . (21)

This is the same mechanism by which stock market prices are determined as the present value of
dividends (Cochrane (2005)).

The government can still follow an interest rate rule. By varying the amount of nominal debt
sold at each date, the government can control expected future prices and hence the interest rate.
Multiplying (21) at t+ 1 by 1

1+r and taking expectations,

Bt
Pt
Et

(
1

1 + r

Pt
Pt+1

)
=
Bt
Pt

1

1 + it
= Et

∞∑
j=1

1

(1 + r)j
St+j .

Pt is determined by (21). Then, by changing debt sold at time t, Bt, the government can determine
it and Et(Pt/Pt+1). Alternatively, the government can simply auction bonds at the interest rate
it, and this equation tells us how many Bt it will sell.

Ex-post inflation is determined by the ex-post value of (21), which we can write in a pretty
proportional form

(Et+1 − Et)
(

1
1+πt+1

)
Et

1
1+πt+1

=
(Et+1 − Et)

∑∞
j=1

1
(1+r)j

St+j .

Et
∑∞

j=1
1

(1+r)j
St+j

(22)

Linearizing in the style of Section 2, innovations to the present value of surpluses determine ex-post
inflation, the quantity δt+1 = πt+1 − Etπt+1 which indexed multiple equilibria in (5).

In this regime, the price level (not just inflation) is determinate, even with a constant interest
rate target it = i. This regime also overturns the doctrine that interest rate targets lead to
indeterminacy. (Leeper (1991), Sims (1994), Woodford (1995).)

Since it is free to set interest rates, the government can follow a Taylor rule. Thus, the empirical
finding that a Taylor rule seems to fit well is not inconsistent with this theory, nor is the observation
that central banks can and do set interest rates. A Taylor rule with φ > 1 will generically lead
to equilibria that are not locally bounded, unless fiscal shocks happen to select the new-Keynesian
equilibrium. Thus, we obtain the usual doctrine following Leeper (1991) that “active”fiscal policy
should be paired with “passive”(φ < 1) monetary policy.
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Without direct observations of δt+1, similar identification problems remain, discussed in Section
4.1 of the online Appendix. However, estimates of φ are not particularly important in this regime, as
price level determinacy or the control of inflation do not hinge on φ. In fact, problems in measuring
φ are to some extent welcome. They mean we do not have to take regression estimates as strong
evidence for a troublesome structural φ > 1 despite stable inflation. Non-Ricardian models can
generate spurious φ > 1 as easily as new-Keynesian models can do.

At a minimum, the fiscal regime offers a way to understand U.S. history in periods that even
new-Keynesians believe are characterized by passive (φ < 1) monetary policy. This offers an im-
provement over “indeterminacy”or “sunspots”which place few restrictions on the data. Woodford
(2001) applies this regime to the Fed’s interest rate peg in the late 1940s and early 1950s. Applying
it to the 1970s is an obvious possibility.

3.5 Ricardian asymmetry, asset prices, and observational equivalence.

Equations (21) and (22) also describe an equilibrium in which a variable, the price level, is a forward-
looking expectation, and jumps to avoid an explosive root. Recall the evolution of government debt
(20) as

Bt
Pt+1

= (1 + r)

(
Bt−1

Pt
− St

)
. (23)

Again, we have an unstable root. If Pt is too low, then the real value of government debt explodes.
In response to a shock, Pt jumps to the unique value that prevents such an explosion.

How do I accept explosive solutions in the new-Keynesian model, while I deny them in the
non-Ricardian regime? Why do I solve asset pricing equations pt+1 = Rt+1pt − dt+1 forward, but
not πt+1 = φπt−xt? There is a fundamental difference. There is a transversality condition forcing
the consumer to avoid real explosions, explosions of Bt−1/Pt or the real value of assets. There is
no corresponding condition forcing anyone to avoid nominal explosions, explosions of Pt itself.

Correspondingly, there is an economic mechanism forcing (21) to hold in a non-Ricardian regime.
If the price level is below the value specified by (21), nominal government bonds appear as net wealth
to consumers. They will try to increase consumption. Collectively, they can’t do so, therefore this
increase in “aggregate demand” will push prices back to the equilibrium level. Supply equals
demand and consumer optimization are satisfied only at the unique equilibrium. Stock prices are
pushed to the present value of dividends by the same mechanism.

There is no corresponding mechanism to push inflation to the new-Keynesian value (6). In
the new-Keynesian model we are choosing among equilibria; supply equals demand and consumer
optimization hold for any of the alternative paths, any choice of δt+1; we’re finding the unique
locally bounded equilibrium, not the unique equilibrium itself. The economy is supposed to jump
to the right equilibrium.

In asset pricing equations such as (23) and pt+1 = Rt+1pt − dt+1 we can also measure the
explosive eigenvalue, the rate of return, despite the forward-looking solution. This occurs because
we can measure the dividend directly. In a deep sense, the reason we can’t measure φ is because
we have no independent measure of the monetary policy shock.

Alas, passive and active fiscal regimes are observationally equivalent at this general level. All
the equilibrium conditions hold in each case. We cannot test whether inflation occurred, and this
caused the government to “passively” change taxes ex-post, or whether people knew that taxes
were going to change, and the price level jumped in their expectation. Canzoneri, Cumby and
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Diba’s (2001) fiscal test has the same flaw as Clarida, Galí and Gertler’s (2000) monetary test,
shown in Cochrane (1998).

The regimes are also not as distinct as they may appear. For example, if the government
runs a commodity standard, offering to buy and sell a commodity at a given price, it must adjust
taxes so as always to have suffi cient stocks of the commodity on hand. Is this “Ricardian” or
“non-Ricardian?” One could say that the government valuation equation (21) “really”determines
the price level, and the commodity standard just communicates the necessary fiscal commitment.
Since the present value of future surpluses is on its own diffi cult to forecast, communicating such a
fiscal commitment is a useful way to stabilize prices and a central part of any successful monetary-
fiscal policy structure. And commodity standards and pegs fall apart precisely when the underlying
fiscal commitment is no longer credible.

Similarly, if the new-Keynesian equilibrium selection were successful, one could say that the
government valuation equation (21) “really” determines the price level, with interest rate policy
merely a way to communicate and enforce that fiscal commitment. In this view, the problem with
the new-Keynesian interest rate regime is that it does not communicate a unique fiscal commitment.

4 New-Keynesian Solutions

Of course, the New Keynesian literature is aware of these issues. How do new-Keynesian authors
pick the locally-bounded solution Π∗ and get rid of the other ones?

4.1 Reasonable expectations?

Much of the approach is simply to think about what expectations seem reasonable. For example,
Woodford (p.128) argues that

“The equilibrium ..[Π∗].. is nonetheless locally unique, which may be enough to allow
expectations to coordinate upon that equilibrium rather than on one of the others.”

Similarly, King (2000, p. 58-59) writes

“By specifying [φ > 1] then, the monetary authority would be saying, ‘if inflation
deviates from the neutral level, then the nominal interest rate will be increased relative
to the level which it would be at under a neutral monetary policy.’If this statement is
believed, then it may be enough to convince the private sector that the inflation and
output will actually take on its neutral level.

This seems a rather weak foundation for the basic economic question, how the price level is
determined. It is especially weak in ruling out equilibria between ΠL and Π∗. One might think that
expectations of accelerating inflation are not reasonable. But if Π∗, say 2%, inflation expectations
are reasonable, is a path that starts at 1% inflation and slowly declines to ΠL near zero really so
unreasonable?

Importantly for judging the reasonableness of alternative equilibria, Woodford argues that we
should not think of an economy or Fed making a small “mistake”and therefore slipping from Π∗

into an explosive equilibrium; instead we should think of expectations of future inflation driving
inflation today: (p. 128)
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Indeed it is often said that .. the steady state with inflation rate Π∗ is “unstable”
implying that an economy should be expected almost inevitably to experience either a
self-fulfilling inflation or a self-fulfilling deflation under such a regime.
Such reasoning involves a serious misunderstanding of the causal logic of the dif-

ference equation [(18)]. This equation does not indicate how the equilibrium inflation
rate in period t+ 1 is determined by the inflation that happens to have occurred in the
previous period. If it did it would be correct to call Π∗ an unstable fixed point of the
dynamics—even if that point were fortuitously reached, any small perturbation would
result in divergence from it. But instead, the equation indicates how the equilibrium
inflation rate in period t is determined by expectations regarding inflation in the fol-
lowing period... The equilibria that involve initial inflation rates near (but not equal
to) Π∗ can only occur as a result of expectations of future inflation rates (at least in
some states) that are even further from the target inflation rate. Thus the economy
can only move to one of these alternative paths if expectations about the future change
significantly, something that one may suppose would not easily occur.”

A “serious misunderstanding of causal logic”is a strong charge, and I think unwarranted here.
The equations of the model do not specify a causal ordering. They are just equilibrium conditions.
And a strict opposite causal ordering doesn’t make sense either. If you see a small change today in
an unstable dynamic system, your expectations of the future may well change by a large amount.
If you see the waiter trip, it’s a good bet the stack of plates he is carrying will crash. In new-
Keynesian models, agents might well see a disturbance, know the Fed will feed back on its past
mistakes, think “oh no, here we go,”and radically change their expectations of the future. They
don’t need to wake up and think “gee, I think there will be a hyperinflation”before reading the
morning paper. The new-Keynesian forward-looking solutions rely exactly on such endogenous
expectations: Near-term expectations jump in response to a shock, to put the economy back on
the saddle path that has no change in asymptotic expectations.

Still, there is some appeal to the argument that expectations of hyperinflations seem far-fetched.
But expectations that are far-fetched in our intuitive understanding of our world are not necessarily
so far-fetched for agents in this model, once we recognize that this model may not represent our
world. In this model, the Fed is absolutely committed to raising interest rates more than one for
one with inflation, forever, no matter what. In this model, real rates are constant, so the rise
in nominal rates must correspond to a rise in inflation —precisely the opposite of the explicitly
stabilizing language in the Federal Reserve’s account of its actions. If we lived in such a world, I
would confidently expect hyperinflation. If we think that forecast is “unreasonable,” it means we
don’t believe the model describes the world in which we live.

4.2 Solutions and dilemma; stabilizations

Recognizing, I think, the weakness of these arguments—if not, they would not need to go on—
New-Keynesian theorists have explored a variety of ways to trim multiple equilibria. Alas, these
fall in the logical conundrum explained in the introduction: To trim equilibria, we must assume
that the government will blow up the world —to set policy in such a way that private first order
conditions cannot hold —even though such policies cannot be achieved through markets, and even
though policies exist that would allow the government to stop inflation or deflation while letting
the economy operate.
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Woodford’s (2003) section 4.3 studies proposals to cut off inflationary equilibria to the right of
Π∗. Woodford’s main suggestion is (p. 138):

...self-fulfilling inflations may be excluded through the addition of policy provisions
that apply only in the case of hyperinflation. For example, Obstfeld and Rogoff (1986)
propose that the central bank commit itself to peg the value of the monetary unit in
terms of some real commodity by standing ready to exchange the commodity for money
in event that the real value of the total money supply ever shrinks to a certain very low
level. If it is assumed that this level of real balances is one that would never be reached
except in the case of a self-fulfilling inflation, the commitment has no effect except to
exclude such paths as possible equilibria. ...[This proposal could] well be added as a
hyperinflation provision in a regime that otherwise follows a Taylor rule.

In real life governments often stop inflations by a firm peg to a foreign currency (with a fiscal
reform, to make credible the fiscal policy commitment), which is the modern equivalent of a com-
modity standard. Atkeson, Chari and Kehoe (2010) advocate a similar idea, but specify that the
government switches to a money growth rule in a model with non-interest-elastic money demand.
Switching to a non-Ricardian regime to enforce a fixed price level would have the same effect.

However, this quote and the surrounding discussion do not explain how stabilizing an infla-
tion serves to rule out an equilibrium path. First-order and market-clearing conditions can hold
throughout the inflation and stabilization, and then the path is not ruled out.

The answer is that each of these proposals implicitly pairs the stabilization with another pol-
icy specification, not needed to stop the inflation, in such a way that equilibrium cannot form.
Inconsistent policy rules out the equilibrium path, not inflation stabilization.

The key assumption in Woodford’s quote is “otherwise follows a Taylor rule.”His government
continues to follow the Taylor rule even after it has switched to a commodity standard! You can’t
have two monetary policies at once; if you do, no equilibrium can form.

To be precise, suppose that at inflation past some levelΠU the government changes to a commod-
ity standard (a peg), switches to a money growth rule with interest-inelastic demand, or switches a
non-Ricardian regime. At date T −1, ΠT−1 < ΠU , so the consumer obeys his first order conditions,
the Fed follows the Taylor rule, and equilibrium inflation still follows

ΠT = β(1 + iT−1) = Φ(ΠT−1).

(In the linearized model, πT = φπT−1.)

Now, suppose ΠT > ΠU so at date T , the government freezes this price level at PT by one of
the above policies, and PT+1 = PT . Equilibrium at date T therefore requires iT = r,from the
consumer’s first order conditions

ΠT+1 = 1 = β(1 + iT ).

(In the linearized model, iT = πT+1.)

The hyperinflation has ended, but this fact does not “exclude such paths as possible equilibria.”
The key to “excluding equilibria”is that Woodford, Atkeson, Chari and Kehoe, etc., assume that
the Fed also continues to follow the Taylor rule,

1 + iT = (1 + r)Φ(ΠT )
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which is a huge number, and inconsistent with iT = r demanded by first-order conditions.

We would normally say that it’s impossible both to run a commodity standard which requires
iT = r and to set interest rates at hyperinflationary levels which requires iT to be a huge number.
As Woodford explains, the government implements a commodity standard by “standing ready to
exchange the commodity for money.” It can’t both do that and control the quantity of money to
follow an interest rate target. If the government really could commit to such a thing there would
be “no equilibrium.” But does it really make any sense that the government would try to do such
a thing, that people would believe that it would try to do such a thing, that a government even
can do such a thing, and persist long enough to “rule out equilibrium,”whatever that means? At
a minimum, we see that stabilizing inflation has nothing to do with ruling out the equilibrium path.
One period of inconsistent policy anywhere along the path is enough to accomplish the latter.

Atkeson, Chari and Kehoe (2010) recognize the problem and carefully set up policy so that
equilibrium can form on every date past T . However, they also assume that the Taylor rule
requiring high interest rates coexist for one period with a money growth rule that demands low
interest rates, in order to rule out equilibrium. Blowing up the world for one period is enough. The
Appendix reviews their proposal in detail.

What about Obstfeld and Rogoff (1983) (1986) and the related large literature that tries to trim
indeterminacies in models with fixed money supply and interest-elastic money demand? Didn’t they
solve all these problems years ago, as Woodford seems to suggest? Since it requires setting up a
different model, I review these models in the Appendix. The answer is the same. Switching to a
commodity standard at a very high level of inflation stops the inflation, but it allows an equilibrium
at each date, so the inflationary equilibrium path is not ruled out. To rule out that equilibrium path,
one must also control the money supply, for example specifying that the nominal money supply
after the reform is no higher than it was before the inflation started, disallowing the recovery in real
money balances which accompanies the end of hyperinflations. Again, what government would
do this? How could a government do this? How could a government freely trade currency for the
commodity at a given price, and impose an upper limit on the money supply? I conclude that
models with interest-elastic money demand MV (i) = PY , fixed M and passive fiscal policies have
exactly the same unsolved indeterminacies as the Taylor rule models.

(In fact, Obstfeld and Rogoff (1983) do not specify a commodity standard. They propose that
the government repurchase the currency, and then allow an infinite price level forever after. It turns
out their proposal does not invalidate the inflation as an equilibrium path. The Appendix analyzes
their case in detail.)

A variant on this policy can work, however. Suppose that if inflation exceeds some value ΠU ,
the government commits to instantly return to the initial price level, P0, by a commodity standard.
Negative nominal rates are not a market-clearing condition, so this commitment rules out a high
level of PT as an equilibrium, and hence the path leading up to it.

This is not a blow-up-the world threat, as the government abandons the Taylor rule in period T .
It is close to fiscal. A commodity standard must be paired with an appropriate fiscal regime. The
“Ricardian”assumption will be tested by the offer to redeem the money stock at a much higher
real value. Whether one regards this as “Ricardian”or “non-Ricardian” is largely semantic. The
inflation never gets going, because money-holders understand that money is eventually backed by
real goods, and by the government’s ability to tax in order to provide those real goods. The future
commitment leads to greater demand for money at time zero.

However, though it may describe other governments and especially the UK as it returned to
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the gold standard at parity after suspensions of convertibility during wars and crises, it is not a
vaguely plausible description of expectations regarding current governments.

4.3 Fiscal equilibrium trimming

Benhabib, Schmitt-Grohé and Uribe (2002), mirrored in Woodford (2003) section 4.2, try to trim
equilibria by adding fiscal commitments to the Taylor rule. Their ideas are aimed at trimming
deflationary equilibria, but either set of ideas could apply to both inflations and deflations. They
specify that in low-inflation states, the government will lower taxes so much that real debt grows
explosively, the consumer’s transversality condition is violated, and the government debt valuation
equation no longer holds. Ergo, the low-inflation region and all the equilibria below Π∗ in Figure
1 that lead to it are ruled out. Specifically, (their equations (18)-(20)) they specify that in a
neighborhood of ΠL, the government will commit to surpluses St = α(Πt) (Bt−1/Pt) with α(ΠL) < 0
in place of (19).

They also show that the same result can be implemented by a target for the growth rate of
nominal liabilities, a “4% rule”for nominal debt. If deflation breaks out with such a commitment,
real debt will then explode; to keep nominal debt on target, the government would need to start
borrowing and spending as above. Woodford suggests this implementation as well (p. 132): “let
total nominal government liabilities Dt be specified to grow at a constant rate µ̄ > 1 while monetary
policy is described by the Taylor rule ...” “Thus, in the case of an appropriate fiscal policy rule, a
deflationary trap is not a possible rational expectations equilibrium.”

As the above proposals are grounded in sensible policies to stabilize hyperinflations, these
proposals sound like sensible and time-honored prescriptions to inflate the economy, i.e., to head
back to the desired equilibrium Π∗. Benhabib, Schmitt-Grohé and Uribe describe them this way
(p. 548):

Interestingly, this type of policy prescription is what the U.S. Treasury and a large
number of academic and professional economists are advocating as a way for Japan to
lift itself out of its current deflationary trap...A decline in taxes increases the household’s
after-tax wealth, which induces an aggregate excess demand for goods. With aggregate
supply fixed, price level must increase in order to reestablish equilibrium in the goods
market.

(They didn’t know that zero interest rates and $1.5 trillion deficits would so soon follow!) And this
is, indeed, how a coordinated fiscal-dominant regime works, it is good intuition for operation of the
fiscal theory of the price level, and undoubtedly what real-world proponents of these policies have
in mind.

But that’s not their proposal. The proposal does not “lift the economy out of a deflationary
trap” back to Π∗. Their proposal sits at ΠL with an uncoordinated policy and lets government
debt explode. If their proposal did successfully steer the economy back to Π∗ then the whole path
to ΠL and back would have been an equilibrium. Benhabib, Schmitt-Grohé and Uribe change tax
policy while also maintaining the Taylor rule Φ(Π) and the dynamics of Figure 1. In Woodford’s
p. 132 quote “while monetary policy is described by the Taylor rule” is the key. We are switching
to a Ricardian regime, which demands higher inflation, while simultaneously keeping the Taylor
rule in place, which demands continued low inflation. The transversality condition is a consumer
first-order condition. We are setting policy parameters for which consumer first-order conditions
cannot hold.
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Once we see that central point, we can think of many monetary-fiscal policies that preclude
deflationary equilibria equivalently and more transparently. If inflation gets to an undesired level,
tax everything. Burn the money stock. Introduce an arbitrage opportunity. Best of all, specify
a Φ(Π) function that includes negative nominal interest rates —just eliminate the ΠL equilibrium
in the first place! Bassetto (2004) suggests this option. Since there can be no equilibrium at
negative nominal rates, such a Φ(Π) function works exactly the same way to rule out equilibria: In a
deflationary state, the government commits to a policy that allows no equilibrium. Negative nominal
rates are no more or less possible than letting debt explode, or running a commodity standard with
high rates or low money stock. In retrospect, it doesn’t make sense to demand a Ramsey approach
in setting up the problem —the Taylor rule must not prescribe negative nominal rates, because that
would violate first order conditions —and then patch it up with policy prescriptions that do violate
first order conditions. Why not just commit to negative nominal rates in the first place?

It’s not hard to understand why the issue has become so confused. Benhabib, Schmitt-Grohé
and Uribe, Woodford, and other authors did not follow my alternative suggestions — to specify
policy paths that clearly, decisively —and unrealistically —forbid equilibrium. Instead, they thought
about a very reasonable-sounding response to inflation or deflation, and then subtly (and doubtless
unintentionally) snuck in an extra step that rules out equilibrium. It’s very easy to confuse “stopping
an inflation”with “ruling out this equilibrium path.”The easy-to-miss little extra step matters,
not the seductively sensible policy that surrounds it.

There is an important difference between Benhabib, Schmitt-Grohé and Uribe’s proposal and
those previously mentioned, which leads to a more sympathetic reading. Their government does
not switch to a non-Ricardian regime at low inflation when α(Πt) turns negative. It was there
all along. Since any inflation rate below Π∗ leads inexorably to a state in which real government
debt explodes, the valuation equation for government debt (15) does not hold for any Π0 < Π∗.
The fact that α(Πt) > 0 temporarily in St = α(Πt) (Bt−1/Pt) does not, together with the Taylor
rule, produce a Ricardian regime while inflation is still high. This fact gives a supply-and-demand
force for raising inflation immediately, as in any non-Ricardian regime. If a consumer contemplates
Π0 = Π∗ − ε, he sees that government bonds are worth less and tries to get rid of them, raising
aggregate demand, and bringing inflation back up to Π∗ immediately. The operation is the same as
if the government had simply announced a non-Ricardian regime to support Π∗. The Taylor rule
just makes the demand curve underlying this regime vertical.

Read this way, Benhabib, Schmitt-Grohé and Uribe’s proposal is feasible, as the commitments
underlying non-Ricardian fiscal regimes are feasible. History since the publication of their paper
seems to have borne out their predictions for government behavior. But their proposal was supposed
to rule out this equilibrium path, not to describe history. Their point is, with these expectations,
Inflation should never have fallen in the first place. So we cannot appeal to recent history in support
of their analysis. Either the model is wrong —perhaps we’re at Π∗ —or perhaps people do not believe
that the government really will let government debt explode as a response to lower-than-desired
inflation. And the inflationary paths remain.

4.4 Weird Taylor rules

Woodford starts “Policies to prevent an inflationary panic”by suggesting (p.136) a stronger Taylor
rule, that the graph in Figure 1 becomes vertical at some finite inflation ΠU above Π∗, i.e. that the
Fed will set an infinite interest rate target. Similarly, Alstadheim and Henderson (2006) remove
the ΠL equilibrium by introducing discontinuous policy rules, or V-shaped rules that only touch
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the 45◦ line at the Π∗ point. Bassetto (2004), mentioned above, likewise suggested that the Taylor
rule ignore the i ≥ 0 bound and promise negative nominal rates in a deflation.

These proposals blow up the economy directly. At one level, however, these proposals are not
as extreme as they sound. After all, the Taylor principle in new-Keynesian models amounts to
people believing unpleasant things about alternative equilibria. The more unpleasant the beliefs,
the more effective at ruling out equilibria, so hyperinflating away the entire monetary system (Φ(Π)
becoming vertical), introducing an arbitrage opportunity (allowing i < 0 in the policy rule), and
so forth certainly remove these equilibria, and perhaps more effectively than an inflation or fiscal
imbalance that slowly gain steam.

However, it’s not clear that all these proposals rule out equilibria. A currency can be com-
pletely inflated away in finite time. Obstfeld and Rogoff’s (1983) model has this property (see the
Appendix) and Zimbabwe experienced it. The unpleasant is not impossible.

And, while they are possible commitments one might ask a future Fed to make, none of these
proposals are even vaguely plausible descriptions of current beliefs about Fed behavior or current
Fed statements.

4.5 Residual money demand; letting the economy blow up

Schmitt-Grohé and Uribe (2000) and Benhabib, Schmitt-Grohé and Uribe (2001) offer a similar
way to rule out hyperinflations, without assuming the Fed directly blows up the economy with
infinite interest rates, by adding a little money. This idea is also reviewed by Woodford (2003
p. 137), and has long roots in the literature on hyperinflations with fixed money supply and
interest-elastic demand (Sims (1994)).

Schmitt-Grohé and Uribe’s idea is easiest to express with real balances in the utility function.
With money, the Fisher equation contains monetary distortions:

1 + it = Πt+1
uc(Y,Mt/Pt)

βuc(Y,Mt+1/Pt+1)
= Πt+1(1 + rt), (24)

where rt denotes the real interest rate. (This is a perfect foresight model, so the expectation is
missing.) Suppose the Taylor rule is

1 + it =
1

β
Φ(Πt).

Substituting it from the Taylor rule into (24), and rearranging the money vs. bonds first order
condition as Mt/Pt = L(Y, it), inflation dynamics follow

Πt+1 = Φ(Πt)
uc [Y,L(Y,Φ(Πt+1))]

uc [Y,L(Y,Φ(Πt))]
(25)

instead of (18).

The idea, then, is that this difference equation may rise to require Πt+1 =∞ above some bound
ΠU , even if the Taylor rule for nominal interest rates 1 + it = Φ(Πt)/β remains bounded for all Πt.
Woodford and Schmitt-Grohé and Uribe give examples of specifications of u(C,M/P ) for which
this situation can happen.

Is this the answer? First and most importantly, if we do not regard a belief that the Fed will
directly blow up the economy (it rises to ∞) as a reasonable characterization of expectations, why
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would people believe that the Fed will to take the economy to a state in which the economy blows
up all on its own? Infinite inflation and finite interest rates mean infinitely negative real rates;
a huge monetary distortion. Surely the Fed would notice that real interest rates are approaching
negative infinity!

Second, it is delicate. In general, this approach relies on particular behavior of the utility
function or the cash-credit goods specification at very low real balances. Are monetary frictions
really important enough to rule out inflation above a certain limit, sending real rates to negative
infinity, or to rule out deflation below another limit? We have seen some astounding hyperinflations;
real rates did not seem all that affected.

Sims (1994) pursues a similar idea. Perhaps there is a lower limit on nominal money demand,
so that real money demand explodes in a deflation. Perhaps not; perhaps the government can print
any number it wants on bills, or will run periodic currency reforms; perhaps real money demand is
finite for any price level.

In sum, these proposals require two things: First, they require expectations that the govern-
ment will follow the Taylor rule to explosive hyperinflations and deflations, beyond anything ever
observed, and despite the presence of equilibrium-preserving stabilization policies such as the switch
to commodity standard, money growth, or non-Ricardian regime. Second, they require belief in a
deep-seated monetary non-neutrality suffi cient to send real rates to negative infinity or real money
demand to infinity, though even the beginning of such events has never been observed. At a mini-
mum, expectations of such events sounds again like a weak foundation for what should be a simple
question, the basic determination of the price level.

5 Determinacy and identification in the three-equation model

One may well object at the whole idea of studying identification and determinacy in such a stripped-
down model, with no monetary friction, no means by which the central bank can affect real rates,
and a single disturbance. Typical verbal (old-Keynesian) explanations of Taylor rules and inflation,
and typical Federal Open Market Committee statements, involve at least the Phillips curve and Fed
control of real rates of interest: nominal rates rise, gaps appear, these gaps drive down inflation. You
can’t do that in a frictionless model. Empirical Taylor rule estimates are much more sophisticated
than it = φπt + εt regressions.

It turns out that the simple model does in fact capture the relevant issues, but one can only
show that by examining “real”new-Keynesian models and regressions in detail and seeing that the
same points and same logic emerge.

The excellent exposition in King (2000) makes the non-identification and determinacy theorems
clear. The basic model is

yt = Etyt+1 − σrt + xdt (26)

it = rt + Etπt+1 (27)

πt = βEtπt+1 + γ (yt − ȳt) + xπt (28)

where y denotes output, r denotes the real interest rate, i denotes the nominal interest rate, π
denotes inflation, ȳt is potential output, and the x are serially correlated structural disturbances.
I use x not ε and the word “disturbance”rather than “shock”to remind us of that fact.
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While seemingly ad-hoc, the point of the entire literature is that this structure has exquisite
micro-foundations, which are summarized in King (2000) and Woodford (2003). The first two
equations derive from consumer first order conditions for consumption today vs. consumption
tomorrow. The last equation is the “new-Keynesian Phillips curve,” derived from the first order
conditions of forward-looking optimizing firms that set prices subject to adjustment costs. There is
an active debate on the right specification of (28), including additional inflation dynamics and the
difference between output and marginal cost, but these differences do not affect my conclusions.

For both determinacy and identification questions, we can simplify the analysis by studying
alternative equilibria as deviations from a given equilibrium, following King (2000). Use y∗t etc.
to denote equilibrium values. y∗t is a stochastic process, i.e. a moving average representation
y∗t ({xdt, xπt, ...}) or its equivalent. There are many such equilibria. For example, given any
stochastic process for {y∗t } you can construct the corresponding {π∗t } , {r∗t } , {i∗t } from (28),(26),
and (27) in order.

Use tildes to denote deviations of an alternative equilibrium yt from the ∗ equilibrium, ỹt ≡
yt − y∗t . Subtracting, deviations must follow the same model as (26)-(28), but without constants
or disturbances

ı̃t = r̃t + Etπ̃t+1 (29)

ỹt = Etỹt+1 − σr̃t (30)

π̃t = βEtπ̃t+1 + γỹt. (31)

5.1 Determinacy

Now, if the Fed sets it = i∗t , i.e. ı̃t = 0, then π̃t = 0, ỹt = 0 are an equilibrium. But this is not the
only equilibrium. To see this point, write (29)-(31) with ı̃t = 0 in a standard form as[

Etỹt+1

Etπ̃t+1

]
=

1

β

[
β + σγ −σ
−γ 1

] [
ỹt
π̃t

]
. (32)

Since the model only restricts the dynamics of expected future output and inflation, we have
multiple equilibria. Any[

ỹt+1

π̃t+1

]
=

1

β

[
β + σγ −σ
−γ 1

] [
ỹt
π̃t

]
+

[
δy,t+1

δπ,t+1

]
(33)

with Etδy,t+1 = 0, Etδπ,t+1 = 0 is valid, not just δy,t+1 = δπ,t+1 = 0 and hence ỹt = π̃t = 0 for all
t.

Perhaps however the dynamics of (32) are explosive, so at least ỹ = π̃ = 0 is the only locally-
bounded equilibrium; the only one in which Et (ỹt+j) and Et (π̃t+j) stay near zero. Alas, this hope
is dashed as well: One of the eigenvalues of the transition matrix in (32), derived below, is less
than one. We have just verified in this model the usual doctrine that an interest rate peg does not
determine inflation.

To determine output and the inflation rate, then, new-Keynesian modelers add to the specifica-
tion it = i∗t of what interest rates will be in this equilibrium, a specification of what interest rates
would be like in other equilibria, in order to rule them out. King (2000) specifies Taylor-type rules
in the form

it = i∗t + φπ (πt − π∗t ) + φy (yt − y∗t ) (34)
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or, more simply,
ı̃t = φππ̃t + φyỹt.

(Both King and the online Appendix allow responses to expected future inflation and output as
well. This generalization does not change my points.)

For example, with φy = 0 the deviations from the ∗ equilibrium now follow[
Etỹt+1

Etπ̃t+1

]
=

1

β

[
β + σγ −σ (1− βφπ)
−γ 1

] [
ỹt
π̃t

]
. (35)

The eigenvalues of this transition matrix are

λ =
1

2β

(
(1 + β + σγ)±

√
(1 + β + σγ)2 − 4β (1 + σγφπ)

)
. (36)

If we impose σγ > 0, then both eigenvalues are greater than one in absolute value if

φπ > 1

or if

φπ < −
(

1 + 2
1 + β

σγ

)
. (37)

Thus, if the policy rule is suffi ciently “active,” any equilibrium other than ı̃ = ỹ = π̃ = 0 is
explosive. Ruling out such explosions, we now have the unique locally-bounded equilibrium. (The
online Appendix treats determinacy conditions with output responses and responses to expected
future inflation and output.)

As in the simple model, the point of policy is to induce explosive dynamics, eigenvalues greater
than one, not to “stabilize” so that the economy always reverts after shocks. As pointed out
by King (2000), p. 78, the region of negative φπ described by (37), which generates oscillating
explosions, works as well as the conventional φπ > 1 to determine inflation.

The analysis so far has exactly mirrored my analysis of the simple model of Section 2. So, in fact,
that model does capture the determinacy issues, despite its absence of any frictions. Conversely,
determinacy in the new-Keynesian model does not fundamentally rely on frictions, the Fed’s ability
to control real rates, or a Phillips curve. As in the simple model, “determinacy” is a question of
multiple equilibria, not inflationary or deflationary “spirals.”

As in the simple model, no economic consideration rules out the explosive solutions. One might
complain that I have not shown the full, nonlinear model in this case, as I did for the frictionless
model. This is a valid complaint, especially since output may also explode in the linearized non-
local equilibria. I do not pursue this question here, as I find no claim in any new-Keynesian writing
that this route can rule out the non-local equilibria. Its determinacy literature is all carried out in
simpler frameworks, as I have done. And there is no reason, really, to suspect that this route will
work either. Sensible economic models work in hyperinflation or deflation. If they don’t, it usually
reveals something wrong with the model rather than the impossibility of inflation. In particular,
while linearized Phillips-curve models can give large output effects of high inflations, we know that
some of their simple abstractions, such as fixed intervals between price changes, are only useful
approximations for low inflation. The Calvo fairy seems to visit more often in Argentina.

In one respect, this analysis is quite different from the simple model of Section 2. Determinacy
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is a property of the entire system, and depends on other parameters of the model, not just φπ. Here,
for σγ < 0, there is a region with φπ > 1 in which both eigenvalues are not greater than 1, so we have
indeterminacy despite an “active”Taylor rule. There is another region in which both eigenvalues
are greater than one despite 0 < φπ < 1, so we have local determinacy despite a “passive”Taylor
rule. The parameter configuration σγ < 0 is not a plausible, but as models become more complex,
determinacy involves more parameters, and can often involve plausible values of those parameters.
The regions of determinacy are not as simple as φπ > 1, and testing for determinacy is not as simple
as testing the parameters of the Fed reaction function. Alas, noone has tried a test for determinacy
in a more complex model.

King’s expression of the Taylor rule (34) is particularly useful because it clearly separates “in-
equilibrium”or “natural rate” i∗t and “alternative-equilibrium”or determinacy φπ(πt − π∗t ) issues
so neatly. One can read its instructions as: First, the Fed should set the interest rate to the
“natural rate” i∗t that appropriately reflects other shocks in the economy. Then, the Fed should
react to inflation away from the desired equilibrium in order to induce local determinacy of the i∗

equilibrium. The two issues are completely separate.

For example, many theoretical treatments find that interest rates which move more than one for
one with inflation are desirable, for reasons other than determinacy, or one may accept empirical
evidence that they do so. But both of these observations are essentially observations that equilib-
rium interest rates i∗t should, or do, vary more than one for one with with equilibrium inflation, π∗t .
King’s expression (34) emphasizes that these observations tell us nothing, really, about determinacy
issues, whether deviations from equilibrium should or do follow the same patterns.

In particular, one might object that a non-explosive, non-Ricardian regime requires φ < 1, and
that Taylor-rule regressions give coeffi cients greater than one . But King’s expression (34) shows
us that a more than one-for-one relation between i∗t and π

∗
t is perfectly consistent with a less than

one-for-one relationship φ < 1 between deviations (i− i∗) and (π − π∗).

5.2 Identification

King’s expression of the Taylor rule (34) makes the central identification point very clear. In the
* equilibrium, we will always see πt − π∗t = 0 and yt − y∗t = 0. Thus, a regression estimate of
(34) cannot possibly estimate φπ, φy. There is no movement in the necessary right hand variables.
More generally, φπ and φy appear nowhere in the equilibrium dynamics characterized simply by
π̃ = ỹ = ı̃ = 0, so they are not identified. Taylor determinacy depends entirely on what the Fed
would do away from the * equilibrium, which we can never see from data in that equilibrium.

King recognizes the issue, in footnote 41:

“The specification of this rule leads to a subtle shift in the interpretation of the
policy parameters [φπ, φy]; these involve specifying how the monetary authority will
respond to deviations of inflation from target. But if these parameters are chosen so
that there is a unique equilibrium, then no deviations of inflation will ever occur.”

He does not address the implications of this issue for empirical work.

This issue is not particular to the details of the three-equation model. In the general solution
method for these sorts of models, we set to zero movements of the linear combinations of variables
that correspond to unstable eigenvalues. As a result, we cannot measure those unstable eigenvalues.
The online Appendix makes this point with equations.
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So, what assumptions do people make to escape this deep problem? The prototype theoretical
Taylor rule (34), repeated here,

it = i∗t + φπ (πt − π∗t ) + φy (yt − y∗t ) , (38)

describes how the central bank would react to potential deviations from the equilibrium π∗, y∗, in
order to make y∗t and π

∗
t the unique locally-bounded equilibrium. To identify φπ, φy, then, we have

to make two assumptions:

Assumption 1: The Fed’s reaction φπ, φy to a deviation of inflation πt and output yt from the
desired-equilibrium value π∗t and y

∗
t is the same as the relation between equilibrium interest rates

i∗t and equilibrium inflation π∗t and y
∗
t ; we must assume that the φ in (38) are the same as the φ

∗

in a relation such as
i∗t = φ∗ππ

∗
t + φ∗yy

∗
t + ...+ xit (39)

where xit denotes a residual combination of shocks with suffi cient orthogonality properties to allow
some estimation. (Of course, leads and lags and other variables may appear in both (38) and (39).)

Making this assumption is (for once) relatively uncontroversial, since there are no obvious
observations one could make to refute it. Still, it’s worth making the assumption explicit and at
least worth reading Fed statements to see if they support it.

The key question is whether we are able to make Assumption 1. Doing so requires restric-
tions on the model and equilibrium. The equilibrium quantities i∗t , y

∗
t , π
∗
t , are functions of shocks,

i∗t ({xdt, xπt, xit, ...}), “moving averages.”To be able to make assumption 1, we need a second as-
sumption:

Assumption 2: The model and Fed’s choice of equilibrium (different i∗ imply different y∗, π∗ for
a given model) must be such that equilibrium quantities can be expressed in the “autoregressive”
representation (39), with parameters φ∗ in the zone of determinacy (explosive eigenvalues), and
with the error xit orthogonal to something we can use as instruments.

Many models and many equilibria of a given model do not have this property. As an example,
consider the failure of Section 2. The equilibrium there is, in response-to-shock form,

π∗t = kxt

i∗t = r + ρkxt

where k is a constant. We can express the interest rate equation as a relationship among endogenous
variables,

i∗t = r + ρπ∗t .

However, ‖ρ‖ < 1, so we cannot use this relationship among endogenous variables as a Taylor rule
for interest rate policy. This example violates the qualification “with φ∗ in the zone of determinacy.”
If we try to express this equilibrium as a rule with larger φ∗π,

i∗t = r + φ∗ππ
∗
t + (ρ− φ∗π) kxt

we obtain an “error term”— the xit in (39) — that is hopelessly correlated with the right hand
variables π∗t , and all instruments, exactly the point of Section 2. This relationship violates the
qualification on the error term in Assumption 2.

Even “φ∗ in the zone of determinacy”is really too loose. For example, suppose the correlations

25



between variables in an equilibrium require φ∗π = 10. This equilibrium can be supported by φπ = 10,
but it also can be supported by a more sensible φπ = 1.5. We can assume they are the same,
identifying φπ = 10, but maybe we would not want to make the basic assumption in this case.

The no-gap equilibrium is a particularly good example in the three-equation context, since
minimizing output gaps is a natural objective for monetary policy. To see this result most simply,
suppose all the shocks follow AR(1) processes xjt = ρjxjt−1 + εjt. Then, substituting y∗t = ȳt in
(26)-(28), the no-gap equilibrium is, in moving-average form,

π∗t =
1

1− βρπ
xπt (40)

i∗t = r −
1− ρȳ
σ

ȳt +
ρπ

1− βρπ
xπt +

1

σ
xdt. (41)

If the Fed sets interest rates to this i∗t , equilibrium output can always equal potential output.

However, there is no way for the Fed to implement this policy and attain this equilibrium with
a rule that does not depend explicitly on shocks, and thus with an error term that is uncorrelated
with available instruments. We could try to substitute endogenous variables for shocks in (41) as
far as

i∗t = r −
1− ρȳ
σ

y∗t + ρππ
∗
t +

1

σ
xdt,

and implement i∗t as a Taylor rule with φ
∗
π = ρπ and φ

∗
y = −

(
1− ρȳ

)
/σ. However, xdt remains

in the rule, and since it is not spanned by y∗t and π
∗
t , there is no way to remove it. xdt thus must

become part of the monetary policy disturbance. With no reason to rule out correlation between
the disturbances xdt and xπt, ȳt, nor any reason to limit serial correlation of xdt, we do not have
any instruments.

But even this much is false progress. The coeffi cient ρπ < 1 so these attempted values of φ∗y
and φ∗π lie outside the zone of determinacy. To try implement i

∗
t as a Taylor rule with coeffi cients

in the zone of determinacy, we have to strengthen the inflation response in an almost silly way,

i∗t = r −
(

1− ρȳ
σ

)
y∗t + φ∗ππ

∗
t +

{
(ρπ − φ∗π)π∗t +

1

σ
xdt

}
. (42)

The term in brackets is the new monetary policy disturbance. The right hand variable is now
hopelessly correlated with the error term. (The online Appendix shows the same result directly and
more generally: assuming a Taylor rule without shocks, you can’t produce the no-gap equilibrium
with finite coeffi cients.) Here, the attempt to equate the correlation between i∗t and π

∗
t in the

no-gap equilibrium with the Fed’s response to alternative equilibria must fail.

5.3 Stochastic Intercept

The term in brackets in (42) ir i∗t are often called “stochastic intercepts.” In order to attain the
no-gap equilibrium in this model, the central bank must follow a policy in which the interest rate
reacts directly to some of the structural shocks of the economy, as well as reacting to output and
inflation. The stochastic intercept is a crucial part of New-Keynesian policy advice. Woodford
(2003) for example argues for “Wicksellian”policy in which the interest rate target varies following
the “natural” rate of interest, determined by real disturbances to the economy, and then varies
interest rates with inflation and output so as to produce local uniqueness. King’s (2000) expression
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(34) offers the clearest separation between “natural rate”and “determinacy”roles.

Given this fact, it is a substantial restriction to omit the intercept from empirical work, and
from policy discussion surrounding empirical work. For example, Clarida, Galí and Gertler (2000)
and Woodford (2003, Ch. 4) calculate the variance of output and inflation using rules with no
intercepts, and discuss the merits of larger φ for reducing such variance. Yet all the time equilibria
with zero variance of output or inflation are available, as in the no-gap equilibrium, if only we will
allow the policy rule to depend on disturbances directly.

The stochastic intercept of theory is often left out of empirical work because it becomes part
of the monetary policy disturbance in that context. It is inextricably correlated with the other
structural shocks of the model, and hence with the endogenous variables which depend on other
shocks of the model. Things were bad enough with genuine monetary policy disturbances —an xit
unrelated to other shocks of the model —because the new-Keynesian model predicts that right hand
variables should jump when there are shocks to this disturbance, as highlighted in Section 2. The
stochastic intercept makes things even worse, because theory then predicts correlation between the
composite monetary policy disturbance and other shocks, and other endogenous variables which
depend on those shocks.

When one assumes away the stochastic intercept —or, equivalently, assumes that the monetary
policy disturbance is uncorrelated with other variables —that assumption is really a restriction on
the set of equilibrium paths the economy is following, and it is an assumption on Fed policy that
it does not pick, by interest rate policy i∗t , any of those equilibria. Many equilibria are left out,
including the one with no gaps.

This discussion reinforces two general principles: First, don’t take error term properties lightly.
As Sims (1980) emphasizes, linear models are composed of identical-looking equations, distinguished
only by exclusion restrictions and error-orthogonality properties. The IS curve

yt = Etyt+1 − σ (it − Etπt+1) + xdt,

after all, can be rearranged to read

it = Etπt+1 +
1

σ
(Etyt+1 − yt) +

1

σ
xdt.

If we regress interest rates on output and inflation, how do we know that we are recovering the
Fed’s policy response, and not the parameters of the consumer’s first-order condition? Only the
orthogonality of the shocks (xdt) with instruments distinguishes the two equations.

Second, orthogonality is a property of the model and a property of the right hand variables not
really a property of the errors. You really have to write down a full model to understand why the
endogenous right hand variables or instruments would not respond to the shocks in the monetary
policy disturbance.

With this background of possibilities and implicit assumptions, I can review the explicit as-
sumptions in classic estimates.
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5.4 Clarida, Galí and Gertler

Clarida Galí and Gertler (2000) specify an empirical policy rule in partial adjustment form (in my
notation),

it = (1− ρ1 − ρ2)
{
r + (φπ − 1) [Et (πt+1)− π] + φyEt [∆yt+1 −∆ȳt+1]

}
+ ρ1it−1 + ρ2it−2 (43)

where

π = inflation target, estimated

∆yt+1 −∆ȳt+1 = growth in output gap

r = “long run equilibrium real rate”, estimated

(See their (4) p. 153 and Table II p. 157.) What are the important identification assumptions?

First, there is no error term, no monetary policy disturbance at all. The central problem of
my simple example is that any monetary policy disturbance is correlated with right hand variables,
since the latter must jump endogenously when there is a monetary policy disturbance. Clarida,
Galí, and Gertler assume this problem away. They also assume away the stochastic intercept,
the component of the monetary policy disturbance that reflects adaptation to other shocks in the
economy.

A regression error term appears when Clarida, Galí, and Gertler replace expected inflation and
output with their ex-post realized values, writing

it = (1− ρ1 − ρ2)
{
r + (φπ − 1) [πt+1 − π] + φy∆yt+1

}
+ ρ1it−1 + ρ2it−2 + εt+1. (44)

In this way, Clarida, Galí, and Gertler avoid the 100% R2 prediction which normally results from
assuming away a regression disturbance. The remaining error εt+1 is a pure forecast error, so it is
serially uncorrelated. This fact allows Clarida, Galí and Gertler to use variables observed at time t
as instruments to remove correlation between the forecast error εt+1 and the ex-post values of the
right hand variables πt+1 and ∆yt+1. Validity for this purpose does not mean such instruments
would be valid if we were to recognize a genuine monetary policy disturbance.

Clarida, Galí and Gertler (1998) consider a slightly more general specification that does include
a monetary policy disturbance.1 In this case, they specify (their equation 2.5, my notation)

it = ρit−1 + (1− ρ)
[
α+ φπE (πt,t+n|Ωt) + φyE (yt − ȳt|Ωt)

]
+ vt (45)

where ȳ denotes potential output, separately measured, and Ωt is the central bank’s information
set at time t, which they assume does not include current output yt. vt is now the monetary policy
disturbance, defined as “an exogenous random shock to the interest rate.”They add, “Importantly,
we assume that vt is i.i.d.” They estimate (45) by instrumental variables, using lagged output,
inflation, interest rates, and commodity prices as instruments.

Obviously, the assumption of an i.i.d. disturbance is key, and restrictive. For example, many
commentators accuse the Fed of deviating from the Taylor rule for years at a time in the mid 2000s.
This assumption means that any other shocks in the monetary policy disturbance — stochastic
intercepts, variation in the “natural rate,”—are also i.i.d. There is no reason preference shifts

1Curiously, Clarida Gali and Gertler (2000) mention the disturbance vt below their equation (3), p. 153, but it
does not appear in the equations or the following discussion. I presume the mention of vt is a typo in the 2000 paper.
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(IS curve) or marginal cost shocks (Phillips curve shifts) should be i.i.d. But some other shock
must not be i.i.d., so that there is persistent variation in the right hand variables. Therefore,
the monetary policy disturbance must not include a “stochastic intercept” that responds to the
non-i.i.d. shocks.

5.5 Giannoni, Rotemberg, Woodford

Rotemberg and Woodford (1997, 1998, 1999), followed by Giannoni and Woodford (2005) (see
also the summary in Woodford 2003, Ch. 5) follow a different identification strategy, which allows
them to estimate the parameters of the Taylor rule by OLS rather than IV regressions. Giannoni
and Woodford (2005 p. 36-37) write the form of the Taylor rule in these papers:

We assume that the recent U.S. monetary policy can be described by the following
feedback rule for the Federal funds rate

it = ı̄+
n∑
k=1

φik(it−k − ı̄) +

nw∑
k=0

φwkŵt−k +

nπ∑
k=0

φπk(πt−k − π̄) +

ny∑
k=0

φykŶt−k + εt (46)

where it is the Federal funds rate in period t; πt denotes the rate of inflation between
periods t − 1 and t; ŵt is the deviation of the log real wage from trend at date t, Ŷt
is the deviation of log real GDP from trend, ı̄ and π̄ are long-run average values of
the respective variables. The disturbances εt represent monetary policy “shocks”and
are assumed to be serially uncorrelated. ...To identify the monetary policy shocks and
estimate the coeffi cients in [(46)], we assume ... that a monetary policy shock at date t
has no effect on inflation, output or the real wage in that period. It follows that [(46)]
can be estimated by OLS...(p.36-37)

Since they lay out the assumptions that identify this policy rule with such clarity, we can easily
examine their plausibility. First, they assume that the monetary policy disturbance εt is i.i.d. —
uncorrelated with lags of itself and past values of the right hand variables. This is again a strong
assumption, given that εt is not a forecast error, but instead represents structural disturbances.

Second, they assume that the disturbance εt is also not correlated with contemporaneous values
of ŵt, πt and Ŷt. This is an especially surprising result of a new-Keynesian model, because ŵt, πt
Ŷt are endogenous variables. From the very simplest model in this paper, endogenous variables
have jumped in the new-Keynesian equilibrium when there is a monetary policy (or any other)
disturbance. How can ŵt, πt and Ŷt not jump when there is a shock εt? To achieve this result,
Giannoni, Rotemberg and Woodford assume as part of their economic model that ŵt, πt Ŷt must
be predetermined by at least one quarter, so they cannot move when εt moves. (In the model
as described in their Technical Appendix, output Ŷ is actually fixed two quarters in advance,
and the marginal utility of consumption µt is also fixed one quarter in advance.) It is admirable
that Giannoni, Rotemberg and Woodford explain the properties of the model which generate the
needed correlation properties of the instruments. But needless to say, these are strong assumptions.
Are wages, prices, output and marginal utility really fixed one to two quarters in advance in our
economy, and therefore unable to react within the quarter to monetary policy disturbances? They
certainly aren’t forecastable one to two quarters in advance!

Most of all, if ŵt, πt Ŷt do not jump when there is a monetary policy disturbance, something
else must jump, to head off the explosive equilibria. What jumps in this model are expectations of
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future values of these variables, among others ŵt+1 = Etŵt+1, πt+1 = Etπt+1, and Ŷt+2 = EtŶt+2

as well as the state variable Etµt+1, the marginal utility of consumption. All of these variables
are determined at date t. Now, we see another implicit assumption in the policy function (46) —
none of these expected future variables are present in the policy rule. Thus, Giannoni, Rotemberg,
and Woodford achieve identification by a classic exclusion restriction. In contrast to the literature
that argues for the empirical necessity and theoretical desirability of Taylor rules that react to
expected future output and inflation, and to other variables that the central bank can observe,
those reactions are assumed to be absent here.

In sum, Giannoni and Woodford identify the Taylor rule in their model, by two assumptions
about Fed behavior and one assumption about the economy: 1) The disturbance, including “natural
rate”“stochastic intercept”reactions to other shocks, is not predictable by any variables at time
t− 1; 2) The Fed does not react to expected future output, or wage, price inflation, or other state
variables; 3) Wages, prices, and output are fixed a period in advance.

6 Old-Keynesian models

Determinacy and identification are properties of specific models, not general properties of variables
and parameters. Old-Keynesian models reverse many of the determinacy and identification propo-
sitions. In these models, an inflation coeffi cient greater than one is the key for stable dynamics, to
produce system eigenvalues less than one, and to solve the model backward. Since the model does
not have expected future terms, such a backward solution gives determinacy. The policy rules are
identified, at least up to the usual (Sims 1980) issues with simultaneous-equation macro models.

I think much of the determinacy and identification confusion stems from misunderstanding the
profound differences between new-Keynesian and old-Keynesian models. Alas, the old-Keynesian
models lack economic foundations, so can’t be a serious competitor for the basic question I started
with: What economic force, fundamentally, determines the price level or inflation rate?

Taylor (1999) gives us a nice explicit example of a “old-Keynesian”model (my terminology)
which forms a good basis for explicit discussion of these points. (As everywhere else, this is just
a good example, not a critique of a specific paper; hundreds of authors adopt “old-Keynesian”
models.) Taylor adopts a “simple model”(p. 662, in my notation)

yt = −σ(it − πt − r) + ut (47)

πt = πt−1 + γyt−1 + et (48)

it = r + φππt + φyyt. (49)

We see a striking difference —all the forward-looking terms are absent.

Taylor states (p. 663) that “it is crucial to have the interest rate response coeffi cient on the
inflation rate ... above a critical ‘stability threshold’of one,”(p. 664)

The case on the left [φπ > 1] is the stable case...The case on the right [φπ < 1 ]
is unstable... This relationship between the stability of inflation and the size of the
interest rate coeffi cient in the policy rule is a basic prediction of monetary models used
for policy evaluation research. In fact, because many models are dynamically unstable
when φπ is less than one... the simulations of the models usually assume that φπ is
greater than one.

30



This is exactly the opposite philosophy from the new-Keynesian models. In new-Keynesian
models, φπ > 1 is the condition for a “dynamically unstable”model. New-Keynesian models want
unstable dynamics, in order to rule out multiple equilibria and force forward-looking solutions. In
Taylor’s model, φπ > 1 is the condition for stable dynamics, eigenvalues less than one, in which we
solve for endogenous variables (including inflation) by backward-looking solutions. “φπ > 1”sounds
superficially similar, but in fact its operation is diametrically the opposite.

A little more formally, and to parallel the analysis of the new-Keynesian model following (26)-
(28), the standard form of Taylor’s model is[

yt
πt

]
=

[
σγ 1−φπ

1+σφy
σ 1−φπ

1+σφy

γ 1

] [
yt−1

πt−1

]
+

[
1

1+σφy
σ 1−φπ

1+σφy

0 1

] [
ut
et

]
. (50)

(Substitute (49) into (47).) The eigenvalues of this transition matrix are

λ1 = 1 + σγ
1− φπ
1 + σφy

; λ2 = 0.

Therefore, φπ > 1 (with the natural restrictions φy > −1/σ, σγ > 0) generates values of the first
eigenvalue less than one. Following the usual decomposition, we can then write the unique solution
of the model as a backward -looking average of its shocks,[

yt
πt

]
=

1

1 + σφy + σγ (1− φπ)

[
λ1 − 1 λ1

1 + σφy 0

] ∞∑
j=0

λj1

[
ut−j
et−j

]
.

There is no multiple-equilibrium or indeterminacy issue in this backward-looking solution.

More intuitively, take φy = 0, and assume φπ > 1. Then if inflation πt rises in the policy rule
(49), the Fed ends up raising the real rate (as defined here without forward-looking terms) it−πt. In
the IS curve (47) this lowers output yt and lower output in the Phillips curve (48) lowers Et (πt+1).
This model thus embodies the classic concept of “stabilization” that more inflation makes the
Fed raise real interest rates which lowers demand and lowers future inflation. This is exactly the
opposite of the new-Keynesian dynamics. In the New-Keynesian model, a rise in inflation πt leads
to an explosion; “stabilization” by φπ > 1 means we count on πt to have jumped to the unique
value that heads off such explosions.

Why do the two models disagree so much on the desired kind of dynamics? The equations
of Taylor’s model have no expected future terms. Hence, there are no expectational errors. All
the shocks (ut, et) driving the system are exogenous economic disturbances. By contrast, the new-
Keynesian model has expected future values in its “structural”equations (26)-(28), so the shocks in
its standard representation such as (33) contain expectational errors. To avoid multiple equilibria,
we have to change Fed behavior to induce unstable dynamics, and then solve forward to remove
these expectational errors as shocks to the economy. The difference isn’t happenstance; the whole
point of the New-Keynesian enterprise is to microfound behavioral relationships, and microfounded
behavior is driven by expectations of the future, not memory of the past.

Taylor regards this model as a “reduced form”in which expectations have been “solved out,”
so that parameters γ, σ, r may change if φ changes. He claims that nonetheless “these equations
summarize more complex forward-looking models” (p. 662). I do not think this is true. Taylor’s
model is fundamentally different, not a simpler “reduced form,” or rough guide to give intuition
formalized by a more complex new-Keynesian effort. The difference between this model and the
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new-Keynesian model (26)-(28) is not about “policy invariance.”We want to analyze dynamics for
given policy parameters φπ, φy. Even if γ, σ and r change with different φπ, φy, they are constant
for a given φπ, φy. Equations (47)-(49) are not a “simpler”or “reduced form”version of (26)-(28).
They are the same equations —with the same algebraic complexity —with different t subscripts.
Different t subscripts dramatically change dynamics, including stability and determinacy.

The operation of the models is completely different. The response to shocks in an old-Keynesian
model represents the means by which structural equations are brought back to balance. The
response to shocks of a new-Keynesian model represents a jump to a different equilibrium, a choice
among many different possibilities, in each of which the structural equations are all in balance.
Determinacy is not even the issue in Taylor’s model. His model always has just one equilibrium.
The issue is “spirals,”whether that equilibrium is stable. King (2000) p. 72 also details a number
of fundamental differences between “new”and “old”Keynesian models of this sort.

New-Keynesian models and results are often described with old-Keynesian intuition. This is a
mistake.

Identification in Taylor’s model does not suffer the central problem of identification in new-
Keynesian models. The behavior we are assessing is not how the Fed would respond to the emer-
gence of alternative equilibrium paths, it is completely revealed by the Fed’s behavior in equilibrium.
The parameters φπ, φy appear in the equilibrium dynamics (50) and hence the likelihood function.
That doesn’t mean identification is easy; it means we “only”have to face the standard issues in
simultaneous-equation models as reviewed by Sims (1980) and studied extensively by the VAR
literature since then.

Since it easily delivers a unique equilibrium, and thus inflation determinacy, why not conclude
that Taylor’s model is the right one to use? Alas, our quest is for economic models of price
determinacy. This model fails on the crucial qualification —as Taylor’s (p. 662) discussion makes
very clear. If in fact inflation has nothing do to with expected future inflation, so inflation is
mechanistically caused by output gaps, and if in fact the Fed controls the output gap by changing
interest rates, then, yes, the Taylor rule does lead to inflation determinacy. But despite a half-
century of looking for them, economic models do not deliver the “if”part of these statements. If
we follow this model, we are giving up on an economic understanding of price-level determination,
in favor of (at best) a mechanistic description.

7 Extensions and responses

The online Appendix contains an extensive critical review of the literature, responses to many
objections, and extensions left out of the text for reasons of space. If you want to know “What
about x’s approach to determinacy or identification?”you are likely to find an answer there.

I investigate identification in the other equilibria of the simple model. For ‖φ‖ < 1, φ is not
identified in any equilibrium. For ‖φ‖ > 1, however, you can identify φ for every equilibrium except
the new-Keynesian local equilibrium. If explosions occur, you can measure their rate. I explore the
impulse-response functions of the simple model, and contrast new-Keynesian and non-Ricardian
choices in terms of impulse-response functions. I generalize the simple mode to include an “IS”
shock in (1). In this case, we can’t even estimate ρ.

I address the question, what happens if you run Taylor rule regressions in artificial data from
new-Keynesian models? This discussion generalizes the finding in section 2, in which regressions
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recovered the shock autocorrelation process rather than the Taylor rule parameter, to the three-
equation model. Unsurprisingly, Taylor-rule regressions do not recover Taylor-rule parameters in
artificial data from typical models.

One may ask, “well, if not a change in the Taylor rule, what did Clarida Galí and Gertler (2000)
measure?”The right answer is really “it doesn’t matter”—once a coeffi cient loses its structural
interpretation, who cares how it comes out? Or perhaps, “you need a different model to interpret
the coeffi cient.” However, the online Appendix gives an example of how other changes in behavior
can show up as spurious Taylor rule changes. In the example, the Taylor rule coeffi cient is constant
at φ = 1.1, but the Fed gets better at offsetting IS shocks, i.e. following better the “natural rate.”
This change in policy causes mis-measured Taylor rule coeffi cients to rise as they do in the data.

An obvious question is whether full likelihood approaches, involving dynamics of the entire
model, might be able to identify parameters where the single-equation methods I surveyed here
are faltering. Equivalently, perhaps the impulse response function to other shocks can identify the
Taylor-rule parameters (or, more generally, system eigenvalues). I survey these issues in the online
Appendix. While identification in full systems has been studied and criticized, nobody has tried to
use full-system methods to test for determinacy. This literature imposes determinacy and explores
model specification to better fit second moments. This is not a criticism; “fitting the data”rather
than “testing the model” is a worthy goal. But it means I have no useful results to report or
literature to review on whether this approach can overcome identification problems in order to test
for determinacy.

I explore leads and lags in Taylor rules in the context of the simple frictionless model, continuous-
time models, and the three-equation model. It turns out that determinacy questions depend quite
sensitively on the timing assumptions in the Taylor rule. The problem is particularly evident on
taking the continuous-time limit. Given that changing a time index, e.g. Etπt+1 in place of πt−1,
can reverse stability properties, this finding is not surprising, but it does counter the impression
that new-Keynesian Taylor-rule determinacy is “robust”to changes in specification.

A separate online Technical Appendix collects documentation and calculation details. I explain
budget constraints from Section 3.1 in more depth. I also collect analytic solutions to the standard
three-equation model.

8 Conclusions and implications

8.1 Determinacy

Practically all verbal explanations for the wisdom of the Taylor principle —the Fed should increase
interest rates more than one-for-one with inflation — use old-Keynesian, stabilizing, logic: This
action will raise real interest rates, which will dampen demand, which will lower future inflation.
New-Keynesian models operate in an entirely different manner: by raising interest rates in response
to inflation, the Fed induces accelerating inflation or deflation, or at a minimum a large “non-local”
movement, unless inflation today jumps to one particular value.

Alas, there is no economic reason why the economy should pick this unique initial value, as
inflation and deflation are valid economic equilibria. No supply/demand force acts to move infla-
tion to this value. The attempts to rule out multiple equilibria basically state that the government
will blow up the economy should accelerating inflation or deflation occur. This is not a reasonable
characterization of anyone’s expectations. Such policies also violate the usual criterion that the
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government must operate in markets just like agents. I conclude that inflation is just as indeter-
minate, in microfounded new-Keynesian models, when the central bank follows a Taylor rule with
a Ricardian fiscal regime, as it is under fixed interest rate targets.

The literature —understandably, I think —confused “stopping an inflation”with “ruling out an
equilibrium path.”Alas, now that confusion is lifted, we can see the latter goal is not achieved.

8.2 Identification

The central empirical success of New Keynesian models are estimates such as Clarida, Galí and
Gertler’s (2000) that say inflation was stabilized in the U.S. by a switch from an “indeterminate”to
a “determinate”regime. The crucial Taylor-rule parameter is not identified in the new-Keynesian
model, so we cannot interpret regressions in this way. The new-Keynesian model has nothing to
say about inflation in an indeterminate regime, so Taylor-rule regressions in the 1970s are doubly
uninterpretable in the new-Keynesian context.

Clarida, Galí, and Gertler’s coeffi cients of interest rates on inflation range from 2.15 (Table IV)
to as much as 3.13 (Table V). These coeffi cients are a lot greater than one. These coeffi cients imply
that if the US returned to the 12% inflation of the late 1970s, (a 10 percentage point rise), the
Federal Reserve would raise the funds rate by 21.5 to 31.3 percentage points. If these predictions
seem implausibly large, digesting the estimates as something less than structural helps a great
deal.

The identification issue stems from the heart of all new-Keynesian models with Ricardian fiscal
regimes. The models have multiple equilibria. The modelers specify policy rules which lead to
explosive dynamics, and then pick only the locally-bounded equilibrium. But locally-bounded
equilibrium variables are stationary, so cannot reveal the strength of the explosions, which only
occur in the equilibria we do not observe. Endogenous variables are supposed to jump in response
to disturbances, to head off explosions. Such jumps induce correlation between right hand variables
of the policy rule and its error, so that rule will be exquisitely hard to estimate. One can only
begin to get around these central problems by strong assumptions, in particular that the central
bank does not respond to many variables, and to “natural rate”shocks in particular, in ways that
would help it to stabilize the economy.

The literature —understandably, I think —did not appreciate that “determinacy”and “desir-
able rate in equilibrium”are separate issues; that new-Keynesian models, unlike their old-Keynesian
counterparts, achieve “determinacy”by responses to alternative equilibria, which are not measur-
able, not by responses to equilibrium variation in inflation, which are; that “achieving determinacy”
is a different reading of history than “raising rates to lower inflation;”and that “determinacy”—
eliminating multiple equilibria —is different from “stability”—avoiding inflationary or deflationary
“spirals.” Again, however, now that the distinction is clear we need not persist in mis-interpreting
the regressions.

8.3 If not this, then what?

The contribution of this paper is negative, establishing that one popular theory does not, in the
end, determine the price level or the inflation rate. So what theory can determine the price level, in
an economy like ours? Commodity standards and MV=PY can work in theory, but do not apply
to our economy, with fiat money, interest-elastic money demand and no attempt by the central
bank to target quantities.
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The price level can be determined for economies like ours in models that adopt —or, perhaps,
recognize —that governments follow a fiscal regime that is at least partially non-Ricardian. Such
models solve all the determinacy and uniqueness problems in one fell swoop. And the change is
not really so radical. Though the deep question of where the price level comes from changes, the
vast majority of the new-Keynesian ingredients can be maintained. Whether the results are the
same is an open question.

“Economic”is an important qualifier. Most of the case for Taylor rules in popular and central
bank writing, FOMC statements, and too often in academic contexts, emphasizes the old-Keynesian
stabilizing story. This is a pleasant and intuitively pleasing story to many. However, it throws out
the edifice of theoretical coherence —explicit underpinnings of optimizing agents, budget constraints,
clearing markets etc. —that is the hallmark achievement of the new-Keynesian effort. If inflation
is, in fact, stabilized in modern economies by interest rate targets interacted with backward -looking
IS and Phillips curves, economists really have no idea why this is so.
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9 Appendix

This appendix reviews the parallel question of inflations with constant money supply and interest-
elastic demand, and in particular Obstfeld and Rogoff (1983). I verify that standard proposals
suffer problems described in the text. I conclude that models with fixed money, interest-elastic
demand and Ricardian fiscal policies have the same indeterminacies as new-Keynesian models.

Obstfeld and Rogoff (1983) are often cited as the standard way to eliminate hyperinflationary
equilibria in such models, for example by Woodford (2003, p. 138) and Atkeson Chari and Kehoe
(2010). The main idea for which they are cited is that the government switches to a commodity
standard when inflation gets out of hand. Their actual idea is different, but it’s worth examining
both the general idea and their specific example.

9.1 Simple example —Cagan (1956) dynamics

I use the simplest possible example. (Minford and Srinavasan (2010) is a recent paper that uses
this framework.) Suppose money supply m is constant, money demand is interest-elastic, and the
real rate is constant and zero. Then the log price level path must satisfy

m = mt = pt − α (Etpt+1 − pt) ,

or, rearranging,

(Etpt+1 −m) = γ (pt −m) ; γ ≡
(

1 + α

α

)
.

pt = m is an equilibrium, but there are many others. Any path

(pt+1 −m) = γ (pt −m) + δt+1

with Et (δt+1) = 0 is possible. If pt > m, then we expect a hyperinflation, and conversely. To
conclude pt = m, we need some device to disallow the inflationary or deflationary equilibria.

With a commodity standard (and suffi cient fiscal backing) in place of the money target, the
price level is nailed at whatever value p∗ the government chooses, but money is endogenous in the
quantity m∗ = p∗.

To stop an hyperinflation that emerges under a money target, the central bank can switch to
a commodity standard. For example, the price level path p0 = m + 1, p1 = m + γ, p2 = m + γ2,
...pT = m + γT = p̄, followed by pT+1 = pT+2 = ..p̄ is an equilibrium if the central bank switches
to a commodity standard at the level p̄. Of course, the government then must allow the money
supply to expand passively to m̄ = p̄ = m + γT . The money stock on this equilibrium path is
m0 = m1 = m2 = mT−1 = m, mT = mT+1 = ... = p̄ = m + γT > m. As in real hyperinflations,
both real and nominal money balances expand when the hyperinflation is stopped.

That switch stops the inflation, but the inflation and its end still represent an equilibrium path
since first-order conditions are satisfied at every date. To rule out such paths as equilibria, we have
to add something else. New-Keynesian models ruled out such equilibrium paths by insisting on a
Taylor rule and commodity standard, at incompatible values. The analogue here is to assume that
the government also keeps intact the money stock target m while it nails the price level to p̄ with a
commodity standard. Once again, that’s a blow-up-the world policy, impossible by Ramsey rules,
since a commodity standard requires the government to freely buy and sell currency. Once again,
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it is a choice, since the standard policy which allows the real money stock to increase is available.

As with the Taylor rule, however, a commitment ot return to a fixed price level, with needed
fiscal backing, could rule out the hyperinflation.

9.2 Obstfeld and Rogoff

Obstfeld and Rogoff’s (1983) actual analysis is quite different. Their government does not attempt
to stabilize inflation by introducing a commodity standard or other means. Instead, their govern-
ment buys up all the money stock, and leaves the economy to barter —zero money, infinite price
level —thereafter.

Obstfeld and Rogoff start with an economy that can hyperinflate to an infinite price level in
finite time, jumping from PT = P̄ (defined below) to PT+1 = ∞ in one step. Figure 2 plots this
path, labeled “Solution with ε = 0.”The figure plots mt = M/Pt with M = 1 for clarity, so a jump
to PT+1 =∞ is a jump of mT+1 to zero.
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ObstfeldRogoff, ε = 0.5

Figure 2: Hyperinfnations in the Obstfeld-Rogoff model. “Solutions with ε = 0” gives the hy-
perinflation we wish to rule out. “Obstfeld-Rogoff” gives Obstfeld and Rogoff’s path when the
government offers to redeem the currency for ε units of consumption good. "Solution with ε = 0.5”
gives the actual path in that case. The lower horizontal line indicates M/P̄ . u′(y) = 1, M = 1,
β = 1/2, v(m) = m−1/2.

Obstfeld and Rogoff claim to remove this equilibrium by a small change: The government offers
to buy back the money stock in return for ε consumption goods per dollar. With this guarantee,
they claim their economy needs a period PT+1 = P = 1/ε during which money is repurchased
before going on to PT+2 =∞ and thereafter. Figure 2 shows this path as well, marked “Obstfeld-
Rogoff, ε = 0.5.”(I use a rather large ε so the paths are distinguishable on the graph.) They claim,
however, that no matter how small ε, first-order conditions are violated in this period T + 1, so
this equilibrium path is ruled out.

Alas, this result is wrong. In period T + 1, when consumers sell all their money back to
the government, the first-order condition studied by Obstfeld and Rogoff no longer applies. In
this regular first order condition, the consumer thinks about holding a bit more money, enjoying
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its transactions services, and then getting rid of it the next day. When the consumer sells all
his money back to the government for ε consumption goods per dollar, however, the “next day”
margin is absent. Instead, he enjoys the marginal utility of the ε consumption goods tendered by
the government.

This correct first order condition does hold in this period, and equilibrium still holds at every
date under Obstfeld and Rogoff’s repurchase offer. An equilibrium exists for every offer ε, and
price paths are continuous in ε. There is no discontinuity in the existence of equilibrium at ε = 0.
This equilibrium is labeled “Solution with ε = 0.5”in Figure 2.

Here is how the equilibrium with repurchase offer works: We still have PT+1 =∞. Then PT is
slightly higher than it was without the repurchase offer. Previously, at T , the consumer was happy
to hold money despite the fact that it would be worth nothing at the beginning of the next period
T + 1, because the marginal transactions value was so high. Now, he gets a slight extra benefit
of holding money, that he can redeem it in at the end of the period. This fact makes money
slightly more valuable at the beginning of the period. Previous periods T − 1, etc., follow the usual
difference equation with inflationary dynamics.

The solution is more intuitive, in retrospect. How could offering one kernel of corn for a billion
dollars destroy an equilibrium? Given people were holding money at T which they knew would be
worthless at T + 1, why would a tiny residual value make any difference? It doesn’t.

Here is the analysis in detail. Obstfeld and Rogoff assume that consumers maximize a standard
utility function defined over consumption and real money balances,

∞∑
t=0

βt [u(ct) + v(mt)] ; mt ≡Mt/Pt.

They introduce capital distinct from consumption, but this bit of realism is not relevant here, so I
specialize to a capital price qt = 1.

The consumer’s first-order conditions are

u′(ct)

Pt
=

v′(Mt/Pt)

Pt
+ β

u′(ct+1)

Pt+1

u′(ct) = β(1 + r)u′(ct+1).

(Obstfeld and Rogoff also study carefully the transversality conditions, but those are not at issue
here.) There is a constant endowment, so equilibrium requires ct = y, and the equilibrium conditions
become (their equation (14))

u′(y)

Pt
− v′(Mt/Pt)

Pt
= β

u′(y)

Pt+1
. (51)

Obstfeld and Rogoff study money targets; they assume that “..the money supply is constant at
level M.”(p. 678. ) The corresponding steady-state price level P satisfies

u′(y)− v′(M/P ) = βu′(y).

However, many other sequences {Pt} satisfy the equilibrium condition (51). These sequences also
satisfy the transversality condition, discussed in Obstfeld and Rogoff’s Section II. As in the new-
Keynesian model, the hyperinflations are economically viable equilibria without further policy
specification.
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Obstfeld and Rogoff study a special case of this model, in which v(m) satisfies the Inada
condition limm→0 v

′(m) = ∞. (They also assume limm→0mv
′(m) = 0.) As a result of this Inada

assumption, at very high but finite price levels Pt, we have v′(M/Pt) > u′(y). Here, real money
balances are so marginally valuable, people are willing to hold money for a period even if it will be
valueless the next day. Define the cutoff point for this behavior P̄ where

P̄ : u′(y)− v′(M/P̄ ) = 0

(This cutoff point P̄ uses a small bar; the steady state P uses a big bar. This is Obstfeld and
Rogoff’s notation.) Given PT+1 = ∞, we will observe PT = P̄ . Since money cannot be worth
negative amounts in the future, we never observe a price level higher than P̄ . (Think about this
equilibrium as the way in which expectations of PT+1 determine equilibrium prices at T .)

With the Inada condition, then, Obstfeld and Rogoff study a special kind of hyperinflation,
in which the price level increases steadily following the difference equation (51), attains a value
PT = P̄ where money is so scarce people hold it only for one period’s transactions value, and then
jumps to PT+1 =∞ forever after after. (Top of p. 681, their Figure 2 and shown as “solution with
ε = 0”in Figure 2).

To trim these equilibria, Obstfeld and Rogoff assume that “the government promises to redeem
each dollar bill for ε units of capital [equal to consumption in my simplification], but does not
offer to sell money for capital.” (p. 684.) They assume P ≡ 1/ε > P̄ , so that a price level P is
inconsistent with the first-order condition (51) and the money target, u′(y)− v′(M/P ) < 0.

Here’s their central claim that with this extra provision, hyperinflationary equilibrium paths
are ruled out (p. 685):

Suppose that {Pt} is an equilibrium path with P0 > P . Let PT = max
{
Pt|Pt < P

}
.

By (14) [my (51)] PT must be below P̄ , so that u′(y)− v′(M/PT ) > 0 while PT+1 must
exceed PT and therefore equal P . But there is no MT+1 ≤ M such that u′(y) −
v′(MT+1/P ) ≥ 0. Thus there is no price level PT+2 satisfying (14) and {Pt} is not an
equilibrium path.

Everything follows (51) backwards from a final period in which that the government buys up
all the money at P , and after which P =∞. During that final period, the first order condition (51)
cannot be not satisfied, because P > P̄ . We can see equilibria at PT =∞ and PT = P̄ , but not in
between.

The trouble with this analysis is that the first order condition (51) is wrong. It does not apply
when people redeem money for a real commodity. It assumes the consumer holds all his money from
time T + 1 to time T + 2. Obstfeld and Rogoff left the option to tender money to the government
out of their budget constraint, along with the constraint that money held overnight and money
tendered to the government must each be non-negative and the latter less than money holdings. It
is not true that in a period in which the government buys back money, the equilibrium price level
in that period must be P = 1/ε, and governed by the first-order condition (51).

To get it right, we have to be specific about timing. I assume that the consumer receives
the benefit of money holding v(M/P ) in the period in which redeems money, i.e. that money is
redeemed by the government at the end of the period. Equivalently, we can specify an intra-day
timing. The offer to buy back money is good at any time during the day, so it will always be
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optimal to redeem money at the end of the day, after receiving v(M/P ) and before money loses
value overnight. The opposite assumption, that consumers do not get v(M/P ) or must redeem at
the beginning of the day, just changes the dating convention, not the basic argument.

If the consumer consumes one unit less, holds a bit more money this period, and then re-
duces money holdings next period, and the non-negativity constraints are satisfied, the first order
condition is the same as (51):

u′(ct)

Pt
= v′

(
Mt

Pt

)
1

Pt
+ β

u′(ct+1)

Pt+1
. (52)

However, if the consumer consumes one unit less, holds a bit more money this period, and then
sells it to the government at the end of the period for ε = 1/P consumption goods, his first order
condition is

u′(ct)

Pt
= v′

(
Mt

Pt

)
1

Pt
+
u′(ct)

P
. (53)

Condition (52) holds if βu′(ct+1)/Pt+1 > u′(ct)/P in which case the consumer sells nothing to
the government. Condition (53) holds if βu′(ct+1)/Pt+1 < u′(ct)/P and in particular if Pt+1 =∞,
in which case the consumer holds nothing overnight and sells everything to the government.

It is still true that PT+1 = P , PT+2 = ∞ is not an equilibrium. By (53), PT+1 = P implies
v′(m) = 0. If people know they can put their money back to the government for consumption goods
at the same rate they can acquire money by reducing consumption, it is as if there is no interest
cost to holding money. Only complete satiation can be an equilibrium in this circumstance. Thus,
Obstfeld and Rogoff’s period with PT+1 = P and v′(M/P ) > u′(y) > 0 cannot happen, consistent
with their claim.

However, it is not true that we must observe PT = P = 1/ε in the repurchase period, followed
by PT+1 =∞. Money can trade during a period at a higher value than that which the government
offers in redemption at the end of the period. Fundamentally it is the “arbitrage condition” (p.
685) that is wrong. At PT = P̄ , people were willing to hold money despite zero value the following
day, and this did not violate “arbitrage.”Hence, they are willing to hold money during the day
which has greater value than it will have when the government repurchases the money at the end
of the day. When the buyback is in place with ε > 0, we observe an equilibrium with PT < P̄ , not
equal to or above P̄ .

Here, then, is how the hyperinflationary equilibrium actually ends, with the buy-back guarantee
in place. PT+1 = ∞. Knowing this, at T , people redeem all their money at the end of the period
T , so (53) is the relevant first order condition. Rearranging (53) in equilibrium (c = y, Mt = M),

u′(y)

(
1− PT

P

)
= v′

(
M

PT

)
.

This condition determines PT . If ε = 0 so P = ∞, then PT = P̄ , v′(mT+1) = u′(y) and this is
the equilibrium with no buyback. A small ε means a large P , so PT < P̄ . Periods prior to T
follow the usual difference equation (51). This path is an equilibrium, and is not ruled out by the
repurchase offer.

The central problem is Obstfeld and Rogoff’s “arbitrage condition” (p. 685) argument that
P = PT in any period that people are tendering money. That argument is not valid in this discrete-
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time model, because people can get v(m) plus the redemption value. This arbitrage argument
would be valid in a continuous-time version of the model, and perhaps the error comes from mixing
correct continuous-time intuition with a discrete-time model. However, a continuous-time version
of the same proof does not work because the first-order conditions are different. If utility is∫ ∞

t=0
e−δt [u(ct) + v(Mt/Pt)] dt,

the first-order condition corresponding to (51) is

v′(Mt/Pt)

u′(y)
= δ +

1

Pt

dPt
dt
. (54)

Now, v′(m) can rise to arbitrarily large values with a differentiable price path. P is a valid equilib-
rium price. The inflationary price path described by (54), terminated by a tender when PT = P ,
is a valid equilibrium.
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1 Introduction

This Appendix contains additional literature review and many extensions left out of the text for
reasons of space.

Sections 2 and 3 critically review more of the literature on identification and determinacy in
new-Keynesian and related models. If you want to know “what about x’s approach to these issues?,”
you are likely to find an answer here.

In particular, Subsection 2.1 quickly reviews the learnability criterion advanced by McCallum
(2003), (2009). Subsection 2.2 reviews recent proposals by Loisel (2009) and Adão, Correia and
Teles (2007) which seem to solve the multiple-equilibrium question. In fact, they propose a limiting
case with infinite eigenvalues, a subset of the timing issues reviewed below. Subsection 2.3 reviews
Atkeson, Chari, and Kehoe (2010), and shows that they too blow up the world, though only for a
day.

Subsection 3 on identification acknowledges the many papers that have made related points
critical of identification in new-Keynesian models. It also tackles some attempts to overcome the
identification problems. Lubik and Schorfheide (2004) try to identify the region —determinacy vs.
indeterminacy —without having to measure specific parameters using likelihood based measures. I
show generally that their identification comes from restrictions on the lag length of the unobservable
shocks.

Section 3.3 shows that in general one sets to zero movement in eigenvectors corresponding to
exploding eigenvalues, so the latter cannot be measured. Thus, the problems are not specific to the
structure of the three-equation new-Keynesian model.

Section 3.4 reviews identification in full-system approaches, i.e. approaches that go beyond the
single-equation approaches of the text, write down and estimate complete models. Since none of
those efforts have been really focused on assessing the determinacy of full models, I do not cover
them in the main text. For now, despite the appearance of identification problems, the models
impose eigenvalues greater than one and study dynamics.

Section 4 collects some extensions of the frictionless model. Subsection 4.1 explores identification
in all the equilibria of the frictionless model. I show that for φ < 1, we still cannot identify φ
separately from ρ. For φ > 1, and with a prior that ρ < 1, we can identify φ, for every equilibrium
except the new-Keynesian choice. If the economy does explode, we can measure the speed of that
explosion.

Subsection 4.2 explores the impulse response functions of the simple model. The new-Keynesian
model produces responses by supposing endogenous variables jump to a different equilibrium. The
section contrasts the response function in the new-Keynesian equilibrium, which combines a (im-

1



plicit) fiscal shock with a monetary policy shock, to the response function in the active-fiscal
equilibrium of the same model, which has a monetary policy shock with no concurrent fiscal shock.

Section 5 addresses the question, what happens if you run Taylor rule regressions in artificial
data from new-Keynesian models? As a particular example, if you run the regressions of the first
half of Clarida, Galí and Gertler’s (2000) paper on data from the model presented in the second
half of the paper, do the regressions recover the Taylor rule parameters in the model? The answer
is no. The text answered this question in the context of the simple model of section 2: We saw that
if we ran the Taylor rule regression in data generated by the very New-Keynesian model, we would
recover the shock autocorrelation process, not the Taylor rule parameter. This section answers the
same question in the context of three-equation model.

This section also answers the question, “well, if not a change in the Taylor rule, what did
Clarida Galí and Gertler measure?”The right answer is really “it’s a mongrel coeffi cient, it doesn’t
matter.”However, this section also gives an example of another shift in policy which could cause the
measured Taylor coeffi cient to rise spuriously. In my example, the Taylor rule coeffi cient is constant
at φ = 1.1, but the Fed gets better at offsetting IS shocks, i.e. following better the “natural rate.”
This causes measured Taylor rule coeffi cients to rise as they do in the data. This example also
answers a natural generalization of the frictionless model, by adding an “IS shock.”

Section 6 addresses leads and lags in Taylor rules in the context of the simple frictionless model,
continuous time models, and the three-equation model. It turns out that determinacy questions
depend quite sensitively on the timing assumptions in the Taylor rule. This contrasts with the usual
feeling that Taylor rules are “robust” to such timing assumptions. The problem is particularly
evident on taking the continuous-time limit. This section also addresses a natural question, what
if we change the timing conventions from the models of the text?

A technical Appendix follows, which collects some calculations referred to elsewhere.

Section 1 explains budget constraints from section 3.1 in more depth, in particular stressing
the difference between the consumer’s transversality condition and the government debt valuation
equation.

Section 4 gives analytic solutions to the standard three-equation model. These models are
often solved numerically, but then it’s hard to know how specific parameters enter, especially for
identification questions. The solutions are algebraically laborious, so I hope documenting them here
is independently useful. In particular, I document analytic expressions for the eigenvalues, allowing
analysis of the regions of determinacy and indeterminacy. I also fully solve the models with AR(1)
shocks, which allows us to examine response functions and dynamics. In subsection 6.4 I verify
the claim made in the text that zero-gap equilibrium, though achievable with a stochastic-intercept
interest rate policy that directly offsets shocks, is not achievable via a Taylor rule. This verifies a
claim made in the identification discussion of the text.

2 Related literature on determinacy and equilibrium selection

The question, what determines the price level, especially in an economy with fiat money and an in-
terest rate target, naturally has a long history in economics, which I can’t begin to review. Patinkin
(1949) (1965) brought price-level indeterminacy questions to the fore in postwar macroeconomics.
Sargent and Wallace (1975) are the standard proof that interest rate targets lead to indeterminacy.
McCallum (1981) was the first to suggest that an interest rate target which varied with economic
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conditions might overturn Sargent and Wallace’s result. I won’t even try to cite the literature on
fiscal foundations of price level stability. Cochrane (2005) contains one review. Sims (1994, p. 381)
encapsulated the basic point well:

“The existence and uniqueness of the equilibrium price level cannot be determined
from knowledge of monetary policy alone; fiscal policy plays an equally important role.”

Sims also said “these points are not new.”

2.1 Learnablility

In a series of papers, summarized in McCallum (2003), McCallum argues for a “minimal state value”
(MSV) criterion to pick from multiple equilibria. In my examples, this criterion obviously rules
out the explosive solutions (which depend on initial inflation) or the sunspot solutions. However,
this seems a philosophical rather than an economic criterion. Addressing this criticism, McCallum
(2003) proposes instead that one choose equilibria by whether they are “learnable”or not, in the
sense of Evans and Honkapohja (2001), and argues that one can derive the MSV criterion from
this consideration. Woodford (2003b) in commenting on McCallum disagrees, and charges that the
“wrong”equilibrium is often the learnable one.

McCallum (2003 p 1154) explicitly states that his proposals do not apply to selecting among
nominal indeterminacies, and only apply to models with multiple real paths. Therefore, it appears,
he would not apply them to the frictionless models on which I have focused. On the other hand, he
does analyze the 3 equation model, presumably because in this case nominal indeterminacy spills
over to real variables. Furthermore, his analysis (p. 1160) is confined to the multiple solutions that
emerge when the Taylor principle is not satisfied, i.e. φ < 1. He argues that none of these solutions
are learnable. To him, then, the point of the Taylor rule is to make the forward-looking solution
learnable: “the Taylor principle is of importance because its non-satisfaction leads to a situation in
which all RE solutions fail to be learnable.”He does not address the multiple explosive solutions
that occur when the Taylor principle does apply (φ > 1).

McCallum (2010) is a new and particularly clear example of this line. McCallum argues in the
context of the simple model of Section 2 that the explosive equilibria are not “learnable”and the
unique bounded equilibrium is the only “learnable”one. This argument now does explicitly apply
to nominal indeterminacies. However, I (Cochrane 2010) think he got it backwards. McCallum
assumed that the public can directly observe the monetary policy shock xt; we do not have to run
regressions to learn what that shock is. When we make the opposite assumption, that the policy
disturbance is not directly observable, so that agents must run regressions to measure it, I obtain
the opposite result: the explosive equilibria are “learnable”and the unique local equilibrium is the
only one which is not “learnable.”

This result is closely tied to identification. If an econometrician can’t identify φ, how is the public
supposed to learn it? In these models the public and econometricians have the same information
sets. To measure the shock you need to know the slope coeffi cient, so φ and xt are the same question.
On the other hand, as shown in Section 4.1 φ is identified in the φ > 1, explosive equilibria. When
the economy does explode, you can measure how fast it does so. Econometricians can learn φ very
quickly in this example, and so can agents. Thus, I side with Woodford’s (2003b) general comment
in this case: the “wrong”equilibria are the “learnable”ones.
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More generally, even if true, I think this is a last gasp. Is inflation really determined at a
given value because for any other value the Fed threatens to take us to a valid but “unlearnable”
equilibrium? Why should we care about such a threat?

2.2 Interest rate rules that seem to work (infinite eigenvalues)

Loisel (2009) proposes a rule that responds to both current and future inflation (simplified to this
setting)

it = r + Etπt+1 + ψ (πt − zt)

where ψ is any nonzero constant, and zt is any exogenous random variable. If we merge this rule
with the usual Fisher equation

it = r + Etπt+1 (55)

we obtain a unique equilibrium
πt = zt.

This seems to be the Holy Grail: a nominal interest rate rule that delivers a unique equilibrium
inflation rate in a frictionless economy. The trick, as Loisel explains, is to have the interest rate
rule exactly cancel the troublesome forward-looking terms of the model.

To digest this proposal, write it as a special case of a rule that responds to current and expected
future inflation,

it = r + φ0πt + φ1Etπt+1 − φ0zt.

Merging this rule with the usual Fisher equation (55), we obtain

Etπt+1 = φ0πt + φ1Etπt+1 − φ0zt

Etπt+1 =
φ0

1− φ1

πt −
φ0

1− φ1

zt

As usual, this system displays multiple equilibria

πt+1 =
φ0

1− φ1

πt −
φ0

1− φ1

zt + δt+1; Etδt+1 = 0. (56)

The eigenvalue or root is φ0/(1− φ1). Thus, if

φ0

1− φ1

> 1, (57)

We have at least a unique locally-bounded equilibrium,

πt = Et

∞∑
j=0

(
1− φ1

φ0

)j
zt+j .

Condition (57) is equivalent to
φ0 + φ1 > 1

which has the familiar Taylor-rule ring to it, that overall interest rates must rise more than one-
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for-one with inflation.

Now, we can study not only the point φ1 = 1, but the limit φ1 → 1. By studying that limit, we
see what’s going on. As φ1 → 1, the eigenvalue or root (57) of the difference equation (56) rises to
infinity. For φ1 near 1, the Fed is saying “if inflation doesn’t come out to the desired value, we’ll
hyperinflate very fast,” and in the limit multiple equilibria are ruled out by a threat to hyperinflate
with infinite speed. Thus, this proposal is not really anything new and different, it is an extremely
accelerated version of the usual logic. That is not a criticism: much analysis of Taylor rules finds
that larger responses are better, and you can’t get larger than infinite. The point is just that we can
digest this proposal as a limit of the usual logic rather than have to think of it as a fundamentally
new type of interest rate target.

We can also see that it is a knife-edge case of the fact, studied below, that determinacy in new-
Keynesian models depends sensitively on the timing assumptions. A coeffi cient even ε different
from φ1 = 1.000, or a time index slightly different from +1.000 brings us back to the usual world.

Finally, all forward-looking rules, and this one in particular, require the central bank to respond
to private expectations. In a rational expectations equilibrium, expectations Et(Pt+1) or Et (πt+1)
are just given by Et(zt+1). However, if people develop a sunspot expectation for more inflation,
the Fed must increase interest rates to match it. One can easily question the informational and
off-equilibrium or game-theoretic foundations of such a response.

Adão, Correia and Teles (2007) advance a similar proposal. Simplified to the linearized, constant
real-rate, frictionless environment, they propose the target

it = r + Etpt+1 − zt (58)

where zt is any exogenous random variable. If we merge this rule with the usual Fisher equation
expressed as

it = r + Et (pt+1 − pt) (59)

we obtain a unique equilibrium
pt = zt.

Thus we have an interest rate target that delivers a unique, determinate, price level in a fric-
tionless economy, with no multiple equilibria. Again, the key is that the interest rate rule exactly
cancels the forward-looking term of the model, in this case the price level rather than the inflation
rate. Adão, Correia and Teles’analysis is in fact conducted in the full nonlinear version of a cash in
advance model with labor supply, so linearization, local approximation, and a frictionless economy
are not central to the result2.

2Here’s the nonlinear version: Start with the consumer’s first order condition

uC(t)

Pt
= (1 + it)Et

[
βuC(t+ 1)

Pt+1

]
Assume a constant endowment Ct = Y , so the uC terms cancel. Then, we can write

1 + it =
1

PtEt
[

β
Pt+1

]
Write the policy rule

1 + it =
1

ztEt
[

β
Pt+1

]
The globally-unique equilibrium is P = zt.
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We can understand this proposal as a similar infinitely-explosive limit of the sort of “Wicksel-
lian”price-level-stabilizing interest rate rules studied by Woodford (2003, p. 81). Generalize the
rule to

it = r + φ1Etpt+1 + φ0pt − zt
Equate to the Fisher equation (59), and we find the equilibrium condition

Etpt+1 =
1 + φ0

1− φ1

pt +
1

1− φ1

zt

The eigenvalue is

λ =
1 + φ0

1− φ1

,

and we have a unique locally-bounded equilibrium if ‖λ‖ > 1. Woodford studies the case φ1 = 0,
so obtains the condition φ0 > 0. Adão, Correia and Teles specify φ0 = 0, and study the limit as
φ1 → 1. Again, you can see that this is the limit of an infinite eigenvalue, in which the threatened
explosion happens infinitely fast.

Loisel’s (2009) actual example of an interest-rate rule that seems to avoid multiple equilibria is
given in the context of the three-equation model; in my notation

it = Etπt+1 + φπ,0πt +
1

σ
(Etyt+1 − yt)

If we place this rule in the standard model (26)-(28),

yt = Etyt+1 − σ (it − Etπt+1)

πt = βEtπt+1 + γyt

we can quickly see that πt = 0, yt = 0 is the only equilibrium so long as φπ,0 6= 0. In this context,
the variables are deviations from a desired equilibrium, so we have shown that the interest rate rule
implements the desired equilibrium uniquely.

We can understand this rule as the limit of a standard rule of the form

it = φπ,0πt + φπ,1Etπt+1 + φy,0yt + φy,1yt+1.

When φy,1 = 1/σ, the (single, repeated) eigenvalue of the three-equation model, derived in the
Appendix to Cochrane (2007) is

λ =
1 + σ

(
φy,0 + γφπ,0

)
β + σ

[
γ(1− φπ,1) + βφy,0

]
Taking the limit, φπ,1 → 1, φy,1 = 1/σ, φy,0 = −1/σ, the denominator goes to zero, so again this is
a limit with an infinite eigenvalue.

2.3 Atkeson, Chari, and Kehoe; blowing up the world for a day

Atkeson, Chari and Kehoe (2010) eloquently criticize “implementation via nonexistence”or blow-
up-the-world threats (p. 50). However, their “sophisticated policies”also rely on policy settings
for which first-order conditions do not hold, so no equilibrium is possible. They blow up the world
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for only one period; after that period a competitive equilibrium remains possible.

Here is a simple version of the Atkeson, Chari and Kehoe model which explains these points.
(Relative to their model starting on p. 53, I take γ = 0 and y = constant, or ψ = 0.) Specify an
endowment economy with constant consumption so the linearized Euler / “IS”equation is

it = Etπt+1. (60)

Add an interest-inelastic money demand function with a money-demand shock vt, so that money
growth µt and inflation πt follow

µt = πt + vt. (61)

The central bank can set either it or µt at the beginning of period t, as functions of time t − 1
information.

Suppose the central bank follows an interest rate rule

it = φEt−1 (πt) .

(The model has a set of producers who announce prices xt one period in advance, according to
xt = Et−1πt, so the Fed can see Et−1πt directly.) Money growth will then be endogenous, satisfying
(61). This is the same model as Section 2 with a money demand function, and an inconsequential
change in timing convention. Its equilibria are fully described by one condition

Etπt+1 = φEt−1 (πt) . (62)

The equilibrium πt = 0 is possible. But many other equilibria are possible too, indexed by alter-
native initial values of inflation and by “sunspot”shocks. Any process

πt = φπt−1 + δt; Et−1(δt) = 0

is an equilibrium. The Taylor rule ‖φ‖ > 1 means that any equilibrium other than πt = 0 eventually
leads to hyperinflation or deflation, but nothing in the model as it stands rules that out. (“Pure
interest rate rules,”p. 63.)

By contrast, if the central bank follows a money-targeting rule µt = 0, inflation is uniquely
determined at πt = −vt. Interest rates are then market-determined at it = Etπt+1 = −Etvt+1.
The money demand shock vt only serves to motivate why an interest rate rule might be desirable
to avoid inflation volatility, so I’ll drop it and specify vt = 0 in what follows.

Here is Atkeson, Chari and Kehoe’s main idea (“Reversion to a hybrid rule,”p. 65). Like them,
I simplify to a perfect-foresight version of the model, though I retain the Et notation for clarity.
The Fed follows the interest rate rule it = φEt−1πt with φ > 1, so long as expected inflation is
below some value π̄ or above some value π. If expected inflation Et−1πt gets out of this range,
the Fed switches to the money growth rule µt = 0. The economy then reverts to πt = 0, and an
equilibrium forms on each date after that point.

Inflations or deflations are therefore stabilized, but how does this provision rule out inflationary
paths? Let T denote the date of the switch, so µt = πt = 0 for all t ≥ T , but πT−1 is still
large. Everyone at time T − 1 and before knew this would happen, so the first order condition
requires iT−1 = ET−1(πT ) = 0. However, this requirement conflicts with the policy rule iT−1 =
φET−2 (πT−1) which is still large number. Hence, the path can’t be an equilibrium. (This is their
proof, bottom of p. 66 and top of p. 67.)
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For one period, the Fed follows a Taylor rule demanding a high interest rate iT−1 = φET−2 (πT−1)
and a money growth rule µT = 0 which demands a low interest rate iT−1 = ET−1(πT ) = 0, at
the same time. It’s a blow-up-the-world policy, just for a single period. The Fed can’t do that in
markets, so it’s an impossible policy commitment by usual Ramsey rules. And it’s a choice. The
Fed can stop the inflation, allowing an equilibrium to form at each date, by just waiting one period
to switch to a money growth rule, so it is not trying simultaneously to run a money growth rule
and Taylor rule.

Chari, Atkeson, and Kehoe’s prose is not always clear on this point, but I can find agreement
here:

...our definition does not require that, when there is a deviation in period t, the
entire sequence starting from period 0, including the deviation in period t, constitute a
period-zero competitive equilibrium. Indeed, if we achieve unique implementation, then
such a sequence will not constitute a period-zero equilibrium (p. 60.)

The only argument really is whether trying to run a policy that requires two different values of
the interest rate for one period is as “dire”(p. 50) as a hyperinflation might be.

Minford and Srinavasan (2010) similarly rule out equilibria by having the central bank switch
to a money growth rule for large values of inflation or deflation —but at the same time maintain
the Taylor rule for interest rates.

3 Related literature on identification

The point that out-of-equilibrium or alternative-equilibrium behavior cannot be measured from
data in a given equilibrium is well known, seemingly obvious, once stated, and applies broadly in
macroeconomics. Among many others, Sims (1994, p. 384) states as one of four broad principles,
“Determinacy of the price level under any policy depends on the public’s beliefs about what the pol-
icy authority would do under conditions that are never observed in equilibrium.”Cochrane (1998)
shows analogously that one cannot test the off-equilibrium government behavior that underlies the
fiscal theory of the price level: Ricardian and non-Ricardian regimes make observationally equiv-
alent predictions for equilibrium time series without further assumptions. (The models may make
very different response-function and policy predictions however.) The point that crucial estimates
of many macroeconomic models hinge on “incredible”identification assumptions goes back at least
to Sims (1980) My contribution is to apply these well-known principles to new-Keynesian models.

3.1 Literature on lack of identification

The papers closest to this one are Beyer and Farmer (2004, 2006). Beyer and Farmer (2007)
compare an “indeterminate”AR(1) model

pt = aEt (pt+1)

with ‖a‖ < 1 to a “determinate”AR(2),

pt = aEt (pt+1) + bpt−1 + vt
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where they choose a and b so that one root is stable and the other unstable. Both models have
AR(1) representations, so there is no way to tell them apart. They conjecture based on this result
that Lubik and Schorfheide (2004) attain identification by lag length restrictions.

Beyer and Farmer (2004) compute solutions to the three equation new-Keynesian model. They
note (p 24) that the equilibrium dynamics are the same for any value of the Fed’s Taylor Rule
coeffi cient on inflation, as long as that coeffi cient is greater than one. Thus, they see that the
Taylor Rule coeffi cient is not identified by the equilibrium dynamics. They examine the model

ut = Etut+1 + 0.005 (it − Etπt+1)− 0.0015 + v1t

πt = 0.97Etπt+1 − 0.5ut + 0.0256 + v2t

it = 1.1Etπt+1 + 0.028 + v3t

where vit are i.i.d. shocks. They compute the equilibrium dynamics (“reduced form”) as ut
πt
it

 =

 0.05
0.02
0.05

+

 1 0 0.05
−0.5 1 −0.25

0 0 1

 v1t

v2t

v3t

 . (63)

They state that “all policies of the form

it = −f32Et [πt+1] + c3 + v3t,

for which
|f32| > 1

lead to exactly the same reduced form..as long as c3 and f32 are chosen to preserve the same steady
state interest rate.”They don’t state whether this is an analytical result or simply the result of
trying a lot of values; since the computation of (63) is numerical, one suspects the latter.

Davig and Leeper (2005) calculate an economy in which the Taylor rule stochastically shifts
between “active” φ > 1 and “passive” φ < 1 states. They show that the system can display a
unique locally-bounded solution even though one of the regimes is “passive.” Intuitively, we can
rule out a value of inflation if it will lead to a future explosion after a stochastic shift to a new
regime, even if it does not lead to an explosion so long as the current regime is in place. Even if
one could identify and measure the parameters of the Taylor rule, this model argues against the
stylized history that the US moved from “passive”and hence “indeterminate”monetary policy in
the 70s to an “active”and hence “determinate”policy in the 1980s. So long as agents understood
some chance of moving to an “active”policy, inflation was already “determinate”in the 1970s.

Woodford (2003) notices the identification problem. On p.93, he discusses Taylor’s (1999) and
Clarida, Galí and Gertler’s (2000) regression evidence that the Fed responded less than 1-1 to
inflation before 1980 and more than 1-1 afterwards. He writes

Of course, such an interpretation depends on an assumption that the interest-rate
regressions of these authors correctly identify the character of systematic monetary
policy during the period. In fact, an estimated reaction function of this kind could
easily be misspecified.

An example in which the measured φ coeffi cient is 1/2 of the true value follows. However,
though Woodford sees the possibility of a bias in the estimated coeffi cients, he does not say that
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the structural parameter φ is unidentified.

Minford, Perugini and Srinivasan (2001, 2002) address a related but different identification
point: does a Taylor-rule regression of interest rates on output and inflation establish that the Fed
is in fact following a Taylor rule? The answer is no: Even if the Fed targets the money stock,
equilibrium nominal interest rates, output and inflation will vary, so we will see a “Taylor rule”
type relation. As output rises or inflation rises with a fixed money stock, money demand rises, so
equilibrium interest rates must rise. As a very simple explicit example, consider a constant money
supply equal to money demand,

md
t − pt = αyt − βit
md
t = ms.

In equilibrium, we see a Taylor-like relation between nominal interest rates, output and the price
level

it = − 1

β
ms +

α

β
yt +

1

β
pt

This is an important point: just because the central bank says it is following an inflation target,
and just because its short run operating instrument is obviously an interest rate does not by itself
document that the central bank is not paying attention to a monetary aggregate, or that price level
determinacy does not in the end really come from such a target.

Mavroeidis (2004, 2005) argues that Clarida, Galí, and Gertler’s identification is “weak”because
when inflation is well controlled, there is little variation in the right hand variable. I go further to
argue that identification is absent, because there is no variation in the crucial right hand variable,
which is the deviation of inflation from equilibrium.

3.2 Lubik and Schorfheide; Testing regions

Lubik and Schorfheide (2004) try to identify the region —determinacy vs. indeterminacy —without
having to measure specific parameters. Alas, their identification comes from restrictions on the
lag length of the unobservable shocks. Beyer and Farmer (2007) make this point with a series of
examples. This discussion presents the general case.

Identification is different from approximation. We can be forgiven for running finite-order VARs
when theory does not restrict lag lengths. As data increase, lag lengths can increase, and we slowly
approach correct estimates. When we use a false restriction to generate identification, there is no
sense in which the answer is approximately right or ever gets better as we increase sample size.
(Sims 1980 p.5 footnote 5 makes this point eloquently.)

Lubik and Schorfheide explain their ideas in the same single-equation setup as in section 2,
simplifying even further by assuming a white noise monetary policy disturbance, i.e. ρ = 0. The
equilibrium is characterized again by (4) which becomes

Etπt+1 = φπt + εt. (64)

The solutions are, generically,
πt+1 = φπt + εt + δt+1

10



where δt+1 represents the inflation forecast error. If φ > 1, the unique locally-bounded solution is

πt = −εt
φ
.

If φ < 1, then any δt+1 with Etδt+1 = 0 gives rise to a locally-bounded equilibrium.

Lubik and Schorfheide agree that φ is not identified when φ > 1. For example, the likelihoods
in their Figure 1 are flat functions of φ for the region φ > 1. However, they still claim to be able
to test for determinacy —to distinguish the φ > 1 and φ < 1 regions. The essence of their test is
a claim that the model with indeterminacy φ < 1 can produce time-series patterns that the model
with determinacy cannot produce.

They explain the result with this simple example. Since δt+1 is arbitrary, it does no harm
to restrict δt+1 = Mεt+1 with M an arbitrary parameter. In this example, then, the (local or
bounded) solutions are

φ > 1: πt = −εt
φ

φ < 1: πt = φπt−1 + εt−1 +Mεt (65)

If φ > 1, the model can only produce white noise inflation πt. If φ < 1, the model produces an
ARMA (1,1) in which φ is identified as the AR root. Thus, if you saw an ARMA(1,1), you would
know you’re in the region of indeterminacy. They go on to construct a likelihood ratio test for
determinacy vs. indeterminacy.

Alas, this identification is achieved only by restricting the nature of the shock process xt. If
the shock process xt is not white noise, then the φ > 1 solution can display complex dynamics in
general, and an ARMA(1,1) in particular. Since the shock process is unobserved, we cannot in fact
tell even the region φ > 1 from the region φ < 1. I can sum up this point in a proposition:

Proposition: For any stationary time-series process for {it, πt} that represents an equilibrium
of (64), and for any φ, one can construct an xt process that generates the same process for the
observables {it, πt} as an equilibrium of (64) using the alternative φ. If φ > 1, the observables are
generated as the unique bounded forward-looking solution. Given an assumed φ and the process
πt = a(L)εt we construct xt = b(L)εt with

bj = aj+1 − φaj , (66)

or, in lag operator notation,

b(L) =
(
L−1 − φ

)
a(L)− a(0)L−1. (67)

In particular, any observed time series process for {it, πt} that is consistent with a φ < 1model is
also consistent with a different φ̃ > 1 model. Absent restrictions on the unobserved forcing process
{xt} , there is no way to tell the regime with determinacy from the regime with indeterminacy.
Equivalently, the joint set of parameters including φ and the parameters of the xt process are
unidentified; one can only identify some of these parameters, e. g. φ < 1 vs. φ > 1, by fixing
others, e.g., the parameters of xt.

Proof. Start with any process for inflation πt = a(L)εt. Choose an arbitrary
φ > 1. Then, we construct a disturbance process xt = b(L)εt so that the forward-
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looking equilibrium with arbitrary φ > 1 generates the the desired time-series process
for inflation, i.e.,

πt = a(L)εt = −Et
∞∑
j=0

1

φj+1
xt+j = −Et

∞∑
j=0

1

φj+1
b(L)εt+j .

It’s easy enough to check that (66) is correct:

−Et
∞∑
j=0

1

φj+1
b(L)εt+j = −Et

∞∑
j=0

1

φj+1

∞∑
k=0

(ak+1 − φak) εt+j−k

= − 1

φ
[(a1 − φa0) εt + (a2 − φa1) εt−1 + (a3 − φa2) εt−2 + ...]

− 1

φ2 [(a2 − φa1) εt + (a3 − φa2) εt−1 + (a4 − φa5) εt−2 + ...]

− 1

φ3 [(a3 − φa2) εt + (a4 − φa3) εt−1 + (a5 − φa4) εt−2 + ...] + ...

= a0εt + a1εt−1 + a2εt−2 + ...

If we choose a φ < 1, then the construction is even easier. The solutions to (4) are

πt+1 = φπt + xt + δt+1,

where δt is an arbitrary unforecastable shock. To construct an xt we need therefore

(1− φL)πt+1 = xt + δt+1

(1− φL)a(L)εt+1 = b(L)εt + δt+1.

Obviously, forecast errors must be equated, so we must have δt+1 = a0εt+1. Then,

(1− φL)a(L)εt+1 = b(L)εt + a0εt+1

(1− φL)a(L) = a0 + Lb(L),

and (67) follows. it is just given by it = r + Et (πt+1), and so adds nothing once we
match π dynamics.

Example: Suppose we generate data from the Lubik-Schorfheide example with φ < 1, i.e.
xt = εt is i.i.d., and therefore πt follows the ARMA(1,1) process (65),

πt = φπt−1 +Mεt + εt−1 = (1− φL)−1 (M + L) εt.

We can generate exactly the same solution from a model with arbitrary φ̃ > 1 if we let the policy
disturbance xt be an ARMA(1,1) rather than restrict it to be white noise. Using (67), we choose
xt = b(L)εt with

b(L) =
(
L−1 − φ̃

)
(1− φL)−1 (M + L)− L−1M
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or, multiplying by
(
1− φL−1

)
and simplifying,

(1− φL)xt =
[(
L−1 − φ̃

)
(M + L)− (1− φL)L−1M

]
εt

(1− φL)xt =
[(

1 +
(
φ− φ̃

)
M
)
− φ̃L

]
εt

xt − φxt−1 =
[
1 +

(
φ− φ̃

)
M
]
εt − φ̃εt−1

i.e., xt follows an ARMA (1,1).

The technical appendix shows where formulas (66) and (67) come from.

3.3 General case; system non-identification

One might suspect that these results depend on the details of the three-equation model. What if
one specifies a slightly different policy rule, or slightly different IS or Phillips curves? The bottom
line is that when you estimate dynamics from stationary variables, you must find stable dynamics.
You cannot measure eigenvalues greater than one. In the forward-looking bounded solution, shocks
corresponding to eigenvalues greater than one are set to zero.

To study identification, I trace the standard general solution method, as in Blanchard and Kahn
(1980), King and Watson (1998), and Klein (2000). The general form of the model can be written

yt+1 = Ayt + Cεt+1 (68)

where yt is a vector of variables, e. g. yt =
[
yt πt it xπt xdt

]′
. By an eigenvalue decompo-

sition3 of the matrix A, write
yt+1 = QΛQ−1yt + Cεt+1

where Λ is a diagonal matrix of eigenvalues λi, and Q is the corresponding matrix of eigenvectors.

Premultiplying (68) by Q−1, we can write the model in terms of orthogonalized variables as

zt+1 = Λzt + ξt+1

where
zt = Q−1yt; ξt+1 = Q−1Cεt+1.

Since Λ is diagonal, we can solve for each zt variable separately. We solve the unstable roots
forwards and the stable roots backwards

‖λi‖ > 1 : zit =
∞∑
j=1

1

λji
Etξ

i
t+j = 0 (69)

‖λi‖ < 1 : zit =
∞∑
j=0

λji ξ
i
t−j (70)

zit = λizit−1 + ξit.

3King and Watson (1998) and Klein (2000) treat more general cases in which A does not have an eigenvalue
decomposition. This generalization usually is just a matter of convenience, for example whether one substitutes in
variable definitions or leaves them as extra relations among state variables.
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Thus, we choose the unique locally-bounded equilibrium by setting the explosive zit variables and
their shocks to zero.

Denote by z∗ the vector of the z variables corresponding to eigenvalues whose absolute value
is less than one in (70), denote by ξ∗t the corresponding shocks, denote by Λ∗ the diagonal matrix
of eigenvalues less than one in absolute value, and denote by Q∗ the matrix consisting of columns
of Q corresponding to those eigenvalues. Since the other z variables are all zero, we can just drop
them, and characterize the dynamics of the yt by

z∗t = Λ∗z∗t−1 + ξ∗t
yt = Q∗t z

∗
t

The roots ‖λ‖ that are greater than one do not appear anywhere in these dynamics. Thus we
obtain general statements of the identification lessons that applied to φ in the simple example:
1) We cannot measure eigenvalues greater than one from the equilibrium dynamics of this model.
Equation (69) shows why: 2) There is no variation in the linear combinations of variables you need
to measure ‖λ‖ > 1. For this reason, 3) The equilibrium dynamics are the same for every value
of the eigenvalues supposed to be greater than one. The latter statement includes values of those
eigenvalues that are less than one. The equilibrium with Λ greater than one and no shocks by the
new-Keynesian equilibrium selection criterion is observationally equivalent to the same no-shock
equilibrium with Λ less than one.

This solution gives rise to more variables y than there are shocks, so it is stochastically singular.
We have

zt = Q−1yt.

Since some zt are zero, this relationship describes linear combinations of y that are always zero.
However, not all elements of y are directly observable. The “stochastic singularity” then links
endogenous observables (y, π, i) to disturbances (xπ, xd). Similarly, the expectational errors in
ξt+1 = Q−1Cεt+1 jump to offset any real shocks so that ξit+1 = 0 for ‖λi‖ ≥ 1 at all dates.

New-Keynesian models are engineered to have “just enough” forward looking roots. In new-
Keynesian models, some of the shocks are arbitrary forecast errors, because some of the structural
equations involve expectations; the model stops at Etyit+1 = something else. In this case the
backwards solution leads to indeterminacy since forecast errors can be anything. Hence, in new-
Keynesian models specify that some of the roots are explosive (forward-looking) so that the forecast
errors are uniquely determined and there is a unique local solution.

The only possibility to rescue identification in this context is if there are cross-equation restric-
tions; if we can learn the λ from the parts of the dynamics we can see. Nobody has traced this
idea to see if the parameters of the Taylor rule, or more generally the parameters that control
determinacy in more complex models, can be identified.

3.4 System identification

Identifying parameters by estimating the whole system is a promising possibility, especially if one
feels uncomfortable at the strong assumptions that need to be made for single-equation methods.
We write down a complete model, we find dynamics of the observable variables, and we figure
out if there are or are not multiple structural parameters corresponding to each possible set of
equilibrium dynamics. (Model fit can be measured by distance between impulse-response functions
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or by the likelihood function.) For determinacy questions, one can then address whether the whole
model produces eigenvalues in the zone of determinacy, which is not just a function of Taylor-rule
parameters in complex models. (Of course, full systems include specifications of the stochastic
process of shocks, so one must be careful that identification does not come crucially from lag-length
restrictions.)

There is now a quickly-evolving literature on estimating fully-specified new-Keynesian models
and parallel investigation of identification in those estimates. Examples include Rotemberg and
Woodford (1997, 1999, and especially 1998 with a focus on identification) and Giannoni and Wood-
ford (2005); Ireland (2007), Christiano, Eichenbaum and Evans (2005), Smets and Wouters (2003).
Ontaski and Williams (2004), Iskrev (2010), and Canova and Sala (2009), Fève, Matheron, and
Poilly (2007) question the identification in these estimates.

The overall conclusion is that many parameters of typical large-scale models are poorly identified
—likelihood functions and other objectives are flat —so some parameters must be fixed ex-ante, or
by Bayesian priors so strong that large parameter regions are excluded. Likelihood functions and
other objectives often have local minima raising the global identification issue.

For example, the difference between prior and posterior is a measure of how much the data
have to say about a parameter. Tellingly, in Smets and Wouter’s (2003) estimates, the prior and
posterior for the inflation response of monetary policy φπ are nearly identical (Figure 1C p. 1147),
and the estimate is 1.68 relative to a prior mean of 1.70, suggesting that the policy rule parameters
are at best weakly identified, even in a local sense.

Ontaski and Williams (2004) find that changing priors affects Smets and Wouter’s structural
parameter estimates substantially. They also find numerous local minima. They report “although
our parameter estimates differ greatly, the implied time series of the output gap that we find nearly
matches that in SW and the qualitative features of many of the impulse responses are similar.”
Canova and Sala (2009) are a similar numerical evaluation of identification in large-scale new-
Keynesian models with similar results.

Ireland (2007) shows analytically that several parameters in a large scale model are not identi-
fied. He also shows that is basically impossible to distinguish econometrically between two versions
of the model that provide very different interpretations of postwar US monetary history.

None of these papers even asks whether there are equivalent parameters from the region of non-
determinacy which account equally for the observed dynamics. They simply rule out parameters
from the non-determinacy region ex-ante or by strong Bayesian priors. The popular DYNARE
computer programs will not allow you to compute a solution from this region. In sum, nobody has
tried to exploit full-system identification to surmount the diffi culties posed above.

This is not a criticism. The authors of these papers are not interested in testing for determinacy.
None of them address Clarida, Galí, and Gertler’s (2000) question, whether the Federal reserve
moved from a ‘indeterminate” regime in before 1980 to a “determinate” one after that. More
broadly, they are not interested in testing the new-Keynesian model, asking whether some other
model might equally account for the data. They are interested in matching dynamics of output,
inflation, and other variables, by elaboration of the basic model, imposing determinacy where there
is any question, and making arbitrary choices of parameters when those are weakly identified. Lack
of identification, as expressed by Ontaski and Williams (2004), is almost a feature not a bug, as it
means the model’s ability to match dynamics is “robust”to parameter choices, though all recognize
that policy analysis depends on poorly identified parameters.

Perhaps in the future the testing issue will resurface, and then we can evaluate whether the
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identifying assumptions are reasonable.

3.5 Identification via impulse-response functions

We can get a more concrete sense of these issues by looking at the impulse response functions of a
fully specified model. Below, I find the full solution of the model

yt = Etyt+1 − σrt + xdt

it = rt + Etπt+1

πt = βEtπt+1 + γyt + xπt

it = φπ,0πt + φπ,1Etπt+1 + xit

when each of the disturbances x follows an AR(1). That solution is yt
πt
it

 =

 1− ρdβ σ
(
ρπ
(
1− φπ,1

)
− φπ,0

)
−σ (1− ρiβ)

γ (1− ρπ) −σγ
γ
(
φπ,0 + ρdφπ,1

)
(1− ρπ)

(
φπ,0 + ρπφπ,1

)
(1− ρi) (1− ρiβ)− σγρi

 zdt
zπt
zit


(71)

where the z variables are scaled versions of the disturbances; zdt
zπt
zit

 =

 ρd 0 0
0 ρπ 0
0 0 ρi

 zdt−1

zπt−1

zit−1

+

 vdt
vπt
vit



xdt =
[
(1− ρd) (1− ρdβ) + σγ

(
φπ,0 + ρd

(
φπ,1 − 1

))]
zdt

xπt =
[
(1− ρπ) (1− ρπβ) + σγ

(
φπ,0 + ρπ

(
φπ,1 − 1

))]
zπt

xit =
[
(1− ρi) (1− ρiβ) + σγ

(
φπ,0 + ρi

(
φπ,1 − 1

))]
zit

These dynamics give us the impulse response function to shocks. Looking at the right-most
column of (71), we see again that the Taylor-rule coeffi cients φ do not appear in the response to the
monetary policy shock zit. The φ coeffi cients do appear in the responses to the other shocks zdt and
zπt however, which suggests a possibility to identify these parameters. In essence, responses to other
shocks allow you to see some movement in inflation (and output) and the Fed’s response to that
movement, without any intervening monetary policy shock. They offer the promise to gain the same
identification of the 100% R2 models without a monetary policy shock, but without making that
unpalatable assumption. Equivalently, the other shocks (or combinations of endogenous variables
that only depend on those shocks) seem to offer instruments.

Alas, this approach hinges on assumptions about the orthogonality of shocks. To identify a
movement in zdt (say) with no movement in zit, we need to make assumptions about the correlation
structure of the v shocks. As in the “stochastic intercept”discussion, we really don’t have any such
information.
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4 Frictionless model extensions

4.1 Identification in all equilibria of the simple model

The model of section 2 has multiple equilibria. I studied identification for the New-Keynesian
equilibrium choice. Here, I study identification in the other equilibria, i.e. other choices of δt+1.
Perhaps other equilibria do allow identification? Perhaps when φ < 1 we can identify φ?

The answer is, other equilibria allow us to identify the pair ρ, φ, but we can’t identify φ
separately from ρ. This result holds for all choices of δt+1, and for any value of φ, so long as only
{πt, it} are observable. The new-Keynesian equilibrium is a special case in that only ρ is identified.

The equilibrium conditions are

Etπt+1 = φπt + xt (72)

xt = ρxt−1 + εt (73)

it = φπt + xt (74)

The equilibrium process for observables is

(it+1 − ρπt+1) = φ (it − ρπt) + δt+1 (75)

(it+1 − φπt+1) = ρ (it − φπt) + εt+1 (76)

(This is a different δt than in the text, though δ still indexes equilibria.) The new-Keynesian
equilibrium is the case it = ρπt and δt = 0. Except for this special case that the first equation
is always zero, ρ and φ appear symmetrically in the equilibrium conditions. Therefore, we can
identify the pair ρ, φ, but we cannot identify which is ρ and which is φ.

If φ > 1, then we can in fact identify ρ and φ from the prior that φ > 1 and ρ < 1. If the
system does explode, then we can measure the speed of that explosion. If φ < 1 then we will see
both roots <1 and we cannot distinguish φ from ρ.

(Equation (76) follows by substituting the Taylor rule (74) into the AR(1) process for xt, (73).
To derive (75) write

Et(it+1 − ρπt+1) = Et ((φ− ρ)πt+1 + xt+1) = (φ− ρ) (φπt + xt) + ρxt

= φ (φπt + xt − ρπt) = φ (it − ρπt) .

Then define δt+1 as the unexpected component.)

We can also write (75) and (76) as

it+1 = ρit + φ(it − ρπt)−
φ

ρ− φδt+1 +
ρ

ρ− φεt+1

πt+1 = ρπt + (it − ρπt)−
1

ρ− φδt+1 +
1

ρ− φεt+1

Here we see in the new-Keynesian equilibrium choice it = ρπt, that only ρ remains identified since
the second term becomes zero.
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If we write the same dynamics in conventional VAR form,

it+1 = −φρπt + (ρ+ φ)it −
φ

ρ− φδt+1 +
ρ

ρ− φεt+1

πt+1 = it −
1

ρ− φδt+1 +
1

ρ− φεt+1

we see that the interest rate equation has all the information in the VAR. If we infer φ and ρ from
the interest rate equation of the VAR, we obtain a quadratic that treats ρ and φ as two roots, and
we can’t tell which is which.

4.2 Impulse-response functions

It’s useful to examine the message of the simple model in the language of impulse-response functions,
since we often think about model dynamics and predictions in that framework. Again, the model
is

it = r + Etπt+1

it = r + φπt + xt

xt+1 = ρxt + εt+1.

The equilibrium condition is
πt+1 = φπt + xt + δt+1

The new-Keynesian solution, Equations (6) and (7), are

πt = − xt
φ− ρ ; δt+1 = − εt+1

φ− ρ (77)

give us the impulse-response function of inflation to a monetary policy shock. Figure 3 plots the
response of xt, it and πt to the monetary policy shock.

Suppose there is a positive monetary policy shock in the Taylor rule it = r+φπt+xt. Equation
(77) predicts that inflation jumps down immediately and then slowly recovers as the shock dynamics
xt+1 = ρxt + εt+1 play out. This seems reasonable at first glance —monetary tightening lowers
inflation. On second glance, this response seems completely counterintuitive in the context of this
model. Real rates are constant, so the standard old-Keynesian intuition —higher nominal rates
mean higher real rates, higher real rates lower demand, demand leads to less inflation — cannot
possibly apply. The only way the Fed can possibly raise nominal rates in this model is to raise
expected inflation. How can raising expected inflation lead to a sudden and persistent decline in
actual inflation? In addition, notice that actual interest rates decline also throughout the episode.
To an observer, inflation and interest rates both spontaneously move downward. The sense of a
“tightening”is only that interest rates moved down less than φ times the downward movement in
inflation.

How can this happen? The answer is, inflation “jumps” (δ1 = −1/(φ − ρ)) to a new lower-
inflation equilibrium in response to the monetary policy shock. Actual interest rates decline, because
at each date the disturbance xt in the Taylor rule it = r+ φπt + xt is positive, but inflation πt has
jumped down by so much that actual interest rates are lower. An observer would never see a rise in
interest rates in this tightening. The observer would only see a decline in interest rates, coincident
with the large decline in inflation. The “tightening”comes because interest rates don’t decline as
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Figure 3: Response of the simple new-Keynesian model to a monetary policy shock. The model is
it = r +Etπt+1; it = φπt + xt+1; xt+1 = ρxt + εt+1; the equilibrium is πt = − xt

φ−ρ .Thin lines show
explosive paths if δ1 does not jump to the right value.

much as inflation, so if the observer knew φ = 1.5, he could infer a positive shock.

There is no economic force, no supply greater than demand, that forces the δ1 jump in inflation
in response to a shock. Any other value of δ1 and π1 would correspond to an equilibrium. But
all those other equilibria are explosive, as shown. Inflation could even not change at all, π1 = 0.
Then we would see an increase in interest rates it —a standard “tightening — followed by higher
subsequent inflation, which is what you might have expected from a nominal interest rate rise in
a frictionless economy. The response functions consist of jumps from one equilibrium to another,
following the rule that we select locally bounded equilibria. That’s how the model can achieve
apparent magic —a positive interest rate shock lowers inflation in a completely frictionless model.
It doesn’t really “lower inflation,” it “provokes the economy to jump to a different one of many
equilibria, which has lower inflation.

Now, the jump δ1 = −1/(φ − ρ) means that the Treasury will raise taxes or lower spending
just enough to change the present value of future surpluses as required by (22). From a fiscal point
of view, we can regard (21) as fundamentally determining the price level; but with the Ricardian
agreement of a passive fiscal policy, the whole point of the Taylor rule is just to induce the Treasury
to embark on the contractionary fiscal policy which generates the required δ1. From a fiscal point
of view, the new-Keynesian response combines two shocks, xt, the monetary policy shock, and δt,
a shock to the present value of future surpluses.

The alternative “non-Ricardian”view suggests we calculate a different response function —what
happens if there is a monetary policy shock xt, but no fiscal response, so δt = 0? Figure 4 presents
a calculation. While we can pair “active” fiscal policy with φ > 1, doing so leads to explosive
solutions, so I change parameters to φ = 0.8 in this example. Now, the policy shock xt = 1
produces a 1% rise in interest rates and no change in inflation. Expected inflation and nominal
rates are perfectly under the Fed’s control with no fiscal response needed, so Taylor rule dynamics
it = r+φπt+xt now kick in and both interest rates and inflation take a long hump-shaped excursion.
The monetary policy shock produces an increase in inflation, but that is what one might expect
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in a frictionless model.
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Figure 4: Impluse-response function of the simple model to a monetary policy shock, with no
contemporaenous change in present value of surpluses, so δt+1 = 0.

Now, the new-Keynesian view illustrated by Figure 3 and the non-Ricardian view illustrated
by Figure 4 are in fact observationally equivalent. In particular, the change in fiscal policy δ1 =
−1/(φ−ρ) of figure 3 could have happened just by chance along with the change in monetary policy.
The correlation between monetary and fiscal shocks could be exactly what the new-Keynesian model
suggests they must be. One has to add identification assumptions to try to test the two models,
which is beyond the scope of this paper. But the two models certainly suggest different responses
to policy interventions! Any impulse response function calculated with the assumption that δt+1

will change in a specific way to produce a particular value of inflation at πt+1 will be quite different
than an impulse-response function calculated assuming no fiscal cooperation, and thus δt+1 = 0.
The differences between the two responses in three-equation models are equally stark, but a subject
for a different paper.

5 Regressions in model data

In the simple model of section 2, we saw that if we ran the Taylor rule regression in data generated
by the very New-Keynesian model, we would recover the shock autocorrelation process, not the
Taylor rule parameter. What does happen if you run Taylor rule regressions in artificial data from
real New-Keynesian models, such as the standard three-equation model? The answer, is, in general,
that the regressions do not recover the structural φ parameters. Even if the real data were drawn
from the New-Keynesian model, the regressions do not measure its structural parameters. For an
example, once again I turn to Clarida, Galí and Gertler (2000), since their paper is so influential
and since they include a model in the same paper as an estimate: If you run the regressions of the
first half of Clarida Galí and Gertler’s paper on artificial data from the model in the second half
of their paper, you do not recover the Taylor rule parameters of that paper. (Jensen (2002) also
estimates Taylor rules in artificial data from new-Keynesian models, finding estimated coeffi cients
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far from the true ones, and often below one.)

5.1 Regressions in real data

As a backdrop, I replicate, update and slightly extend a simple version of Clarida, Galí, and
Gertler’s Taylor rule regressions in Table 1. I run regressions

it = a+ ρit−1 + (1− ρ)
[
φπ,0πt + φπ,1Etπt+1 + φy (yt − ȳt)

]
+ εt

in quarterly data. I instrument expected inflation Etπt+1 on the right hand with current inflation.

Row 1 gives the basic result: a very high 3.66 coeffi cient on expected inflation. In the earlier
period, row 9, this coeffi cient is only 0.85. Rows 5 and 13 show that the use of expected future
inflation is a refinement, and shows a stronger result, but even a simple rule using only current
inflation produces a 2.13 coeffi cient up from 0.78 in the earlier period. These coeffi cients are quite
similar to Clarida, Galí, and Gertler’s coeffi cients which range from a baseline 2.15 (Table IV) to
as much as 3.13 (Table V). Coeffi cients of this magnitude are typical of the literature.

Row 3 and 11 present the raw regression coeffi cients, i.e. not divided by (1 − ρ). Much of the
large φπ estimate comes from a rise in the persistence ρ from 0.68 to 0.90, which implies larger long-
run multipliers φπ from the same raw coeffi cients. Rows 7 and 15 remind us that these coeffi cients
require a dynamic model (it−1) and computation of the long-run multiplier φ = b/(1 − ρ). If you
just run a Taylor rule in levels, you recover the fact that long-run levels of inflation and interest
rates must move essentially one for one.

Row it−1 πt Etπt+1 yt − ȳt R2 R2(it − ρ̂it−1)

1984:1-2010:1
1 φ = b/(1− ρ) 0.90 3.66 0.64 0.95 0.23
2 s.e. (0.05) (1.69) (0.35)
3 b 0.90 0.36 0.06
4 s.e. (0.05) (0.14) (0.04)
5 φ = b/(1− ρ) 0.92 2.13 1.00 0.96 0.19
6 s.e. 0.02 (1.09) (0.33)
7 b 0.99 0.48 0.36
8 s.e. (NW 12Q) (0.35) (0.08)

1960:1-1979:2
9 φ = b/(1− ρ) 0.68 0.85 0.54 0.89 0.49
10 s.e. (0.08) (0.13) (0.16)
11 b 0.68 0.27 0.17
12 s.e. (0.08) (0.08) (0.03)
13 φ = b/(1− ρ) 0.74 0.78 0.76 0.89 0.43
14 s.e. 0.07 (0.17) (0.21)
15 b 0.75 0.28 0.75
16 s.e. (NW 12Q) (0.04) (0.08)

Table A1. Taylor rule regressions. i is the Federal funds rate, measured in the first
month of the quarter. π is the GDP deflator. y − ȳ is log GDP less log CBO potential
GDP. b give raw regression coeffi cients. b/(1− ρ) divide the coeffi cients on π and y − ȳ
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by 1 − ρ to give estimates of φ. “R2(it − ρ̂it−1)” gives 1 − σ2(ε)/σ2(it − ρ̂it−1). In
IV regressions I use πt as an instrument for Etπt+1 and R2 reports the variance of the
instrumented right hand side divided by the variance of the left hand variable. Standard
errors by GMM include ρ estimation error and correct for heteroskedasticity. NW12Q
also corrects for serial correlation with a 12 quarter Newey-West weight. See section 3
for standard error calculations.

5.2 Regressions in model data

Now, suppose data are generated from a New-Keynesian model. Will regressions such as the above
recover the structural coeffi cients? Alas, even the simple three-equation model is complex enough
that the answers, though computable, are algebraically large and hence not that enlightening.
Therefore, I report a numerical investigation. Start with the most straightforward three-equation
model,

yt = Etyt+1 − σ(it − Etπt+1) + xdt (78)

πt = βEtπt+1 + γyt + xπt

it = φπ0πt + xit

xjt = ρjxjt−1 + εjt; j = d, π, i. (79)

Here I have added shocks to each equation to allow us to avoid perfect correlations between vari-
ables4. Following Clarida, Galí and Gertler, I use

β = 0.99;σ = 1.0; γ = 0.3.

I assume all the shocks are independent of each other and have a common 0.9 autoregression
coeffi cient. I solve the model (see the online Appendix for details), simulate a very long series
of artificial data, and run Taylor rule regressions in the resulting artificial data. Table 2 collects
results.

The rows of Table 2, labeled “model”give the assumed value of policy parameters ρ and φ.We
want to see if regressions can recover these values.

In row 1, I simulate data with no monetary policy shock, σi = 0. This regression does recover

4Clarida, Gali and Gertler specify a slightly different model, their (6)-(9) p. 169 and in my notation

yt = Etyt+1 − σ(it − Etπt+1) + xdt (80)

πt = βEtπt+1 + γ (yt − ȳt)

it = ρit−1 + (1− ρ)
[
φπ1Etπt+1 + φy (yt − ȳt)

]
xd = ρdxdt−1 + εdt; ȳt = ρȳ ȳt−1 + εȳt. (81)

Potential output ȳt varies, there is no additional shock to the phillips curve, and there is no monetary policy shock.
I had hoped to calculate “what happens if you run Clardi Gali and Gertler’s regressions in data from Clarid Gali and
Gertler’s model,”but unfortunately this is impossible. This model produces a perfect correlation between πt, Etπt+1

and (yt − ȳt). Hence the right hand variables of the Taylor-rule regression are perfectly correlated; one cannot run
Clarida, Gali and Gertler’s regressions in artificial data from their model. If one adds errors to the Phillips curve or
monetary policy equation one can break that correlation, but then it’s no longer really their model, and no lessons
beyond what I find in the simpler model covered in the text emerge. The point of course is not to deconstruct one

paper, but to understand a whole literature using that paper as an example, so the model in the text which has a
better chance of success is appropriate.
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the true policy parameter. It must. With no stochastic intercept and no error term, it = φπ,0πt, if
there is any variation in inflation at all we must recover the true φπ0. The trick and cost is easy to
see —the R2 is 100%. Thus, we could easily reject this model in any real dataset.

Row 2 adds back a monetary policy shock with 1% standard deviation, to remove the 100%
R2 prediction. Now, as in the simple model, the right hand variable is correlated with the error
and we recover a coeffi cient of 1.44, not the true coeffi cient of 2.00. In row 3 we see that if
there is only a monetary policy shock (i.e. if the variance of the monetary policy shock is much
larger than that of the other shocks), the estimated coeffi cient declines to 0.86. Row 4 shows
what happens if we estimate an interest-rate persistence parameter ρ where there is none in the
underlying model. Interestingly we recover a rather large spurious persistence ρ = 0.42 estimate
along with the inconsistent φπ,0 estimate.

The second group of results in Table 2 add an output response and persistence in the Taylor
rule. The picture is the same, with larger inconsistencies. The estimated persistence parameter
ρ, is lower, 0.65-0.55, than the true value ρ = 0.90. In part as a result, the estimated φπ,0, are
0.86-0.78, much lower than the true φπ,0 = 2, and the φy estimate is destroyed to values near zero.
The estimated values are in the zone of multiple local equilibria. If you run Taylor rule regressions
in data generated from this model, you have no hope of recovering the true policy function.

Regressions in model data not only do not capture the true coeffi cients, they also produce far
higher R2 than in actual data, which is a revealing failure. If the model is right, regressions in
artificial data should produce all features of the estimated regression, including its R2. Yet even
with all three shocks, R2 is almost exactly one. The R2 of a highly serially correlated variable is
misleading, since so much explanatory power comes from the lagged dependent variable. Hence,
I also compute in Tables 1 and 2 the R2 of the component of interest rates not predicted by the
lagged interest rate, “R2(it− ρit−1)”which is 1−σ2(ε)/σ2(it− ρ̂it−1). These R2 in data generated
by the model are between 0.92 and 1, much higher than the values from actual data of 0.2-0.3,
shown in in table 1.

The prediction of very high R2 in artificial data seems hard to avoid. The reason for the high
R2 is that the right hand variables all jump when there is a monetary policy shock. Thus, even if we
have a very large policy shock, the right hand variables respond and incorporate its information. I
read this as an indication that right hand variables in the real world are not jumping as predicted
by the model.

The estimates in rows 8 and 9 of Table 2 assume and estimate a rule with expected future
inflation, using instrumental variables. Now we do not recover the true values even when there are
no policy shocks so that R2 = 1.00. Mechanically, the most important instrument for expected
inflation is past inflation, with a first-stage coeffi cient of about 0.5. Thus, the two-stage least squares
estimate is roughly double the OLS estimate. In addition, this estimate is much higher than the
true value, a counterexample to the impression one might otherwise get that estimated coeffi cients
are always lower than true ones. Once again, adding a monetary policy shock dramatically lowers
the estimate, without substantially changing the prediction of a very high R2.

Finally, rows 10 investigates the stochastic intercept. Here, I assume the policy rule is

it = ρit−1 + φππt + φy(yt − ȳt)

i.e. no error term, and policy responds to the output gap rather than output. In the model, I also
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write the Phillips curve as a function of the output gap,

πt = βEtπt+1 + γ(yt − ȳt) + xπt.

Now, if we can observe potential output and estimate a policy rule with that value, we can recover
the structural parameters, if we swallow the usual 100% R2. However, the Fed typically has much
more information about “potential output”than we do, and its assessment of potential is a prime
source of disturbances to estimated monetary policy equations. (Of course, potential output is
likely to be correlated to other shocks as well, but I ignore this fact for the calculation.) The
Fed’s “potential output’guess is a source of a stochastic intercept. Thus, what happens when we
estimate a policy rule using only actual output? Row 10 shows the answer, again showing that we
recover nothing like the true policy parameters, even without any monetary policy shock.

Row σi σd = σπ ρ φπ,0 φπ,1 φy R2 R2(it − ρ̂it−1)

Model: 0 2 0
1 0 1 2.00 1.00
2 1 1 1.44 0.85
3 1 0 0.86 1.00
4 1 1 0.42 1.55 0.90

Model: 0.90 2 1
5 1 1 0.65 0.86 0.03 0.99 0.92
6 1 0.5 0.59 0.78 -0.02 0.99 0.97
7 1 0.01 0.55 0.76 -0.03 1.00 1.00

Model: 0.90 3 1
8 IV 0 1 0.90 6.5 1.25 1.00 1.00
9 IV 1 1 0.72 1.02 0.01 0.98 0.87

Model: 0.90 2 1
10 0 0.5 0.85 1.30 0.28 0.99 0.90

Table A2. Regressions it = ρit−1 + (1 − ρ)
(
φπ,0πt + φπ,1Etπt+1 + φyyt

)
+ εt in long

(T = 20,000) artificial data from the three-equation New Keynesian model (78)-(79).
σi,σd, σπ give the standard deviation in percent of shocks. IV estimates use current
inflation to instrument for expected inflation. In row 10 the policy rule and Phillips
curve respond to yt − ȳt, but the regression only uses only yt. “R2(it − ρ̂it−1)” gives
1− σ2(ε)/σ2(it − ρ̂it−1).

5.3 Large estimates —A New-Keynesian interpretation

How do estimated Taylor rules recover large coeffi cients, and coeffi cients that change around 1980?
Really, the answer is “we don’t care.”Once we know the coeffi cients are mongrels, mixing irrelevant
model parameters and shock dynamics, who cares how they turn out? They are not measuring
anything important in the context of the New-Keynesian model.

But many of the examples so far have all shown a downward bias. Is the fact that estimated
Taylor rules show large coeffi cients embarrassing? Again, the answer is no. It is easy to give
plausible examples in which the estimated Taylor rules give much larger than actual coeffi cients, and
their coeffi cients change from below to above one depending on small other changes in specification.
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For example, introduce an “IS shock”zt, to the simple model of section 2, so the model is

it = r + Etπt+1 + zt; zt = ρzzt−1 + εzt;

it = r + φπt + xt; xt = ρxxt−1 + εxt.

Now the equilibrium is
Etπt+1 = φπt + xt − zt

and the forward-looking solutions are

πt = − xt
φ− ρx

+
zt

φ− ρz
it = − ρxxt

φ− ρx
+

φzt
φ− ρz

.

The x shock lowers inflation, so inflation and x are negatively correlated leading to downward
bias in a Taylor rule estimate. A z shock raises inflation, however, so if z and x are positively
correlated, we can have inflation positively correlated with the monetary disturbance x and a
positive bias in the Taylor rule estimate.

This is also a sensible specification. Left alone, the IS shocks zt would induce inflation variability.
A central bank that wants to minimize the variance of inflation would deliberately introduce a
policy disturbance xt = φ−ρx

φ−ρz zt in order to offset the IS shocks. This is an example of a “stochastic
intercept,”a “Wickesllian policy”in which the monetary policy disturbance offsets other structural
shocks.

The bias can be large, and it is largest when the central bank is close to doing its job of offsetting
z shocks. For example, let ρx = ρz = ρ, and let z and x be perfectly positively correlated. Then
the regression coeffi cient of it on πt is5

φ̂ =
cov(it, πt)

var(πt)
=
ρ− φσzσx
1− σz

σx

.

A parameter σz just slightly higher than σx gives large positive coeffi cients. For example, ρ = 0.7,
φ = 1.1, and σz/σx = 1.2 produces an estimated coeffi cient similar to the estimated values,

φ̂ =
(0.7− 1.1× 1.2)

(1− 1.2)
= 3.1. (82)

On the other hand, if the IS shocks zt and monetary policy shocks xt are uncorrelated, the
estimated coeffi cient is instead between ρ and φ,

φ̂ =
ρ+ φσ

2
z
σ2
x

1 + σ2
z
σ2
x

.

5Algebra:

cov(it, πt)

var(πt)
=
cov

(
− ρxt
φ−ρ + φzt

φ−ρ ,−
xt
φ−ρ + zt

φ−ρ

)
var

(
− xt
φ−ρ + zt

φ−ρ

) =
ρσ2

x + φσ2
z − (ρ+ φ)σxσz

σ2
x + σ2

z − 2σxσz

which simplifies to the given expression.

25



For example, then, ρ = 0.7, φ = 1.1, σz/σx = 1 gives

φ̂ =
0.7 + 1.1

2
= 0.9. (83)

Thus, one possibility consistent with standard estimates is this: A New-Keynesian model with
constant Taylor rule φ = 1.1 operated throughout the period. Before 1980, the Fed was not very
good at offsetting IS shocks, so we estimate φ̂ = 0.9 as in (83). After 1980, the Fed got much better
at offsetting IS shocks, and we estimate φ̂ = 3.1. Inflation volatility declined because the Fed got
better at offsetting IS shocks, not because it changed the Taylor rule parameter.

I do not argue that this is what happened. The point of the determinacy section of this
paper is that the φ > 1 passive-fiscal solutions are fundamentally flawed. It is simply one logical
possibility, and a way to remind ourselves that once estimated coeffi cients do not measure structural
parameters, changes in those mismeasured coeffi cients can reflect all sorts of changes in model
structure.

Further pursuit of an “explanation for Taylor-Rule results” is just not interesting. Producing
spurious φ̂ estimates consistent with the empirical findings is a necessary condition for the right
model, but not suffi cient. Many wrong models will also produce the observed φ̂ estimates. More
importantly, producing this mongrel coeffi cient is not likely to be much help in discriminating
between models focused on other effects. We don’t learn much about new models by asking if they
produce investment-equation regressions, consumption-function regressions, regressions of output
on lags of money stocks or any other now-spurious regression run in the past when thinking about
other models is that useful.

6 Rules with leads and lags

It is often claimed that the principle “raise interest rates more than one for one with inflation”is
quite robust to details of model and rule specification. (Taylor (1999) and Woodford (2003) among
many others.) In fact, determinacy is very sensitive to small changes in timing, whether the central
bank reacts to current, lagged, or expected future inflation. This is true both in the simple model
and in the standard three equation model. We have already seen a hint of this in Section 2.2; a
small change in timing there changed the crucial eigenvalue to infinity. This section also documents
a natural question from the text, “what happens if we change the timing?”“Robustness”may refer
to model fit, impulse-responses, and policy analysis given determinacy. I do not address this issue.

6.1 The frictionless model

Start with our simple Fisher equation model (1),but allow the Fed to respond to expected future
inflation rather than current inflation, and for simplicity ignore the disturbance xt. Determinacy
means πt = 0. Generalize the simple model to change the timing, i.e.

it = r + Etπt+1

it = r + φEtπt+j .

Again, we find equilibria by eliminating it between these two equations.
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For j = 0 (contemporaneous inflation), the equilibrium condition is

Etπt+1 = φπt

as we have seen, the condition for a unique local equilibrium is ‖φ‖ > 1.

For j = 1, a reaction to expected future inflation, the equilibrium condition becomes

Etπt+1 = φEtπt+1.

If φ = 1, anything is a solution. For any φ 6= 1 (both φ > 1 and φ < 1), solutions must obey

Etπt+1 = 0; πt = δt+1. (84)

We conclude that inflation must be white noise — real rates are constant. But that’s all we can
conclude. No value of φ gives even local determinacy.

For j = 2, we have
Etπt+1 = φEtπt+2

Now a necessary condition for “unstable” or “forward-looking” equilibrium is reversed, ‖φ‖ < 1.
Since interest rates react to inflation two periods ahead, and interest rates control expected inflation
one period ahead, the interest rate and one-period ahead inflation must move less than two period
ahead inflation if we want an explosive root. And even this specification is now not enough to give
us a unique local equilibrium, since there is an Et on both sides of the equation. πt+1 = δt+1,
Et(δt+1) = 0 is a solution for any value of φ.

In sum, in this simple model, Taylor determinacy disappears as soon as the Fed reacts to
expected future rather than current inflation, and the solution is extremely sensitive to the timing
convention. All the dynamics of the model, which are crucial to the idea of using forward-looking
solutions to determine expectational errors, rely entirely on the assumed dynamics by which the
Fed reacts to inflation.

j = −1 gives really weird dynamics, but preview what will happen in continuous time. Now
the equilibrium condition is

Etπt+1 = φπt−1

Even and odd periods live in their own disconnected equilibria!

6.2 Continuous time and dynamics

The timing issue drives the apparently strange modifications one needs to make in order to take
the continuous-time limit. Benhabib, Schmitt-Grohé and Uribe (2001) present one such model. If
we eliminate money from their perfect foresight model, the Fisher equation is simply

it = r + πt.

In continuous time (and with continuous sample paths) the distinction between past and expected
future inflation vanishes. If we write a Taylor rule

it = φ(πt),
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as they do, we see that this system behaves exactly as the it = r+ φEtπt+1 or j = 1 case above: If
φ(π) = r+πt anything is an equilibrium; otherwise there is a unique equilibrium in perfect foresight,
but the same multiplicity once we allow expectational errors. It seems there are no dynamics (or
the dynamics happen infinitely quickly), so the forward-looking trick to determine expectational
errors disappears.

Benhabib, Schmitt-Grohé and Uribe do have dynamics which look a lot like Figure 1 (see their
Figure 1). However, these dynamics come from an entirely different source. Their model has
money in the utility function. The dynamics of inflation in their model come from the standard
interest-elasticity of money demand, much like Cagan (1956) hyperinflation dynamics under a
money target.

Here is their argument in continuous time: With money in the utility function and a constant
endowment, the first-order condition for moneyMt vs. consumption Ct implies a “money demand”
curve (my notation) Mt/Pt = L(Y, it). Thus, we can write the marginal utility of consumption in
equilibrium as

uc(Ct,Mt/Pt) = uc [Y, L(Y, it)] = λ(it) = λ [φ(πt)]

where the last equalities define the function λ. Differentiating, and using the continuous-time first
order condition

u̇c
uc

= i− π − ρ

where ρ is the rate of time preference, we have

π̇t =
λ [φ(πt)] [φ(πt)− πt − ρ]

λ′ [φ(πt)]φ
′(πt)

.

This differential equation in πt turns out to look just like Figure 1.

The idea may be clearer in the discrete-time formulation. Using a Taylor rule it = φ (Πt+1),
Equation (25) becomes

Πt+1 = β [1 + φ(Πt+1)]
uc(Y,Mt+1/Pt+1)

uc(Y,Mt/Pt)
.

If we had no money in the utility function, you can see how once again we are stuck. There are no
dynamics. However, the interest-elasticity of money demand offers hope. Substituting for money
demand, we have

Πt+1 = β [1 + φ(Πt+1)]
uc [Y, L(Y, it+1)]

uc [Y,L(Y, it)]
.

Πt+1 = β [1 + φ(Πt+1)]
uc {Y,L [Y, φ(Πt+2)]}
uc {Y,L [Y, φ (Πt+1)]} .

Now we again have a difference equation that can look like Figure 1.

In sum, despite the superficially similar behavior of Benhabib, Schmitt-Grohé and Uribe’s (2002)
model to the frictionless models studied above, we see they are fundamentally different. Benhabib,
Schmitt-Grohé and Uribe’s model cannot work in a frictionless economy; it relies on the dynamics
induced by interest-elastic money demand rather than dynamics induced by the Policy rule.

To mirror the sort of dynamics we have seen from it = φ(πt) rules in continuos time, one
must specify some explicit time lag between inflation and the interest rate, it = φ(πt−k), or
it =

∫∞
k=0 f(k)π(t− k)dk. For example, Sims (2003) models a Taylor rule in continuous time in this
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way, as
di

dt
= θ0 + θ1

1

P

dP

dt
− θ2i. (85)

Here, more inflation causes the Fed to raise the rate of change of interest rates. Sims also has a
Fisher equation

i = ρ+
1

P

dP

dt

Sims solves for the interest rate,

di

dt
= θ0 + (θ1 − θ2) it − θ1ρ

thus wanting θ1 < θ2 for forward looking solutions. The specification (85) isn’t an ad-hoc pe-
culiarity, it is exactly the sort of modification we must make for Taylor-rule dynamics to work in
continuous time.

6.3 Timing in the three-equation model

One might think that sensitivity to timing is a peculiarity of the frictionless model; that price
stickiness will smooth things out in some sense. In particular, the forward-looking rule it = r +
φEtπt+1 seems to make much more sense in the three-equation model, because it ensures that real
rates rt = it −Etπt+1 will rise after an increase in inflation. In the frictionless model, a rise in real
rates is impossible, which could account for that model falling apart when the Taylor rule becomes
forward looking. However, that could be old-Keynesian intuition sneaking in. The point of the
Taylor rule is not to raise real rates, lower demand, and lower inflation; the point of the Taylor
rule in a new-Keynesian model is to destabilize the system so that it explodes for all but one initial
value. Let’s see.

The familiar three-equation model is also sensitive to timing. The Taylor-rule parameter regions
required to produce a forward-looking solution vary considerably whether the central bank reacts
to current or expected future inflation, and whether the central bank reacts to output. Section
4 of the technical appendix derives the eigenvalues and provides analytical characterization of the
determinacy regions. The equations aren’t that revealing: since we’re studying roots of quadratic
equations there are multiple special cases for real roots, imaginary roots, and roots equal to one or
to negative one, and one must check the smaller of two roots. Therefore, I focus here on a graphical
analysis of some special cases.

Figure 5 presents the simplest case, the region of determinacy for a Taylor rule it = φπ,0πt in
the standard three equation model.

The conventional determinacy region φπ,0 > 1 is visible. A region of large negative φπ,0 with
σγ > 0 is also visible, corresponding to the φ < −1 region studied in the simple model of Section
2. Finally, eigenvalues are a property of the whole model, not just the interest rate rule. Here, if
σγ < 0, all sorts of interesting φ regions lead to determinacy or not, including a region with φπ,0 > 1
that is nonetheless indeterminate, and one with

∥∥φπ,0∥∥ < 1 that is nonetheless determinate. Of
course σ > 0 an γ > 0 are conventional parameter restrictions, but this simple example alerts
us that in more complex models eigenvalues are likely to depend on all parameters, not just the
intuitively appealing (using old-Keynesian intuition!) Taylor rule parameters.

Figure 6 presents the regions of local determinacy in the three-equation model, for a policy rule
that responds to expected future inflation it = φπ,1Etπt+1—again, perhaps the most interesting
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Figure 5: Regions of unique local equilibrium (both roots greater than one) for the three-equation
new Keynesian model, in which the Fed follows a Taylor rule it = φπt. β = 0.95. Blue indicates
real roots, green indicates complex roots; +, - and · indicate positive, negative, and mixed roots
respectively. Lines denote regions in which one root is equal to one.

case. In the usual parameter region σγ > 0, we see a comforting region φπ,1 > 1. The rest of the
parameter space is quite different from the case it = φπ,0πt of Figure 5, however. In particular,
as King (2000, Figure 3b) notices, there is a second region of large φπ,1 that again leads to local
indeterminacy. In this region, both eigenvalues are negative, but one is less than one in absolute
value. “Sunspots” that combine movements in output and inflation, essentially offsetting in the
Phillips curve so that expected inflation doesn’t move much, lead to stable dynamics.

Figure 6 plots regions of local determinacy combining responses to current and future inflation
φπ,0 and φπ,1. We see the expected condition φπ,0 + φπ,1 > 1 in the downward-sloping line of the
left hand part of the plot. However, this line disappears when φπ,0 < − (1− β) /σγ = −0.025. A
greater φπ,1 cannot make up for an even slightly negative φπ,0. In fact, we see that the sum φπ,0+φπ,1
must be less than one for local determinacy when φπ,0 < 0, an excellent counterexample to the
view that φπ,0 + φπ,1 > 1 is a robust result. In both cases we see again that φπ,1 cannot get too
big or again we lose determinacy for any value of φπ,0.

King concludes from experiments such as these: “Forward-looking rules, then, suggest a very
different pattern of restrictions are necessary to assure that there is a neutral level of output.”He
also takes seriously the regions with local indeterminacy (one eigenvalue less than one) despite large
φπ,1 as important policy advice, writing (p.80) “It is important, though, that it [monetary policy]
not be too aggressive, since the figure shows that some larger values are also ruled out because
these lead to indeterminacies.”

As a slightly novel example, consider what happens if the Fed responds to expected inflation
two periods ahead as well as one period ahead, i.e. consider a Taylor rule of the form

it = φπ,0πt + φπ,1Etπt+1 + φπ,2Etπt+2.

Figure 8 presents the region of determinacy (both roots greater than one in absolute value) for this
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Figure 6: Zones of local determinacy —both eigenvalues greater than one in absolute value —when
the policy rule responds to expected future inflation it = φπ,1Etπt+1. The plotted boundaries are
φπ,1 = 1, φπ,1 = 1 + 2(1 + β)/(σγ).

1 0 1 2 3 4 5
2

1

0

1

2

3

φ
π,1

φ π,
0

Figure 7: Zones of local determinacy when the policy rule responds to both current and expected
future inflation, it = φπ,0πt + φπ,1πt+1, using β = 0.95 and σγ = 2. The plotted boundaries are
φπ,0 + φπ,1 = 1, φπ,1 − φπ,0 = 1 + 2(1 + β)/σγ and φπ,0 = −(1− β)/σγ.
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Figure 8: Region of local determinacy when the policy rule responds to expected future inflation
one and two periods ahead, it = φ1Etπt+1 + φ2Etπt+2, using β = 0.95, σγ = 2.

case. As you can see, there is some sense in the view that φπ,0 + φπ,1 + φπ,2 > 1 is important for
determinacy. (As one raises φπ,0, the region of local determinacy descends as you would expect.)
However, there’s more to it than that. We must have φπ,2 ≤ 0 —the Fed must respond negatively
if at all to expected inflation two periods out! Furthermore, we see another example in which too
large φπ,1 leads to indeterminacy for any φπ,2.

Allowing responses to output adds a whole interesting new range of possibilities. Figure 9
presents the determinacy region for rules limited to current output and inflation, it = φπ,0πt+φy,0yt,
for β = 0.95, σ = 2, γ = 1. Figure 10 presents the same region for rules limited to expected future
output and inflation, it = φπ,0Etπt+1 + φy,0Etyt+1.

In Figure 9, you can see that output responses can substitute for inflation responses. Rules
are possible that use only output responses, ignoring inflation all together. Depending on φy and
the other parameters of the model, almost any value of φπ can be consistent or inconsistent with
determinacy.

Figure 10 shows that the region of determinacy using expected future output and inflation is
radically different than that which uses current output and inflation. In particular, almost the
whole range φy < 0 is wiped out, and there are severe constraints on how strong the inflation and
output responses can be.

Two-dimensional graphs can only do so much justice to this 7-dimensional space (φπ,0, φπ,1,
φy,0, φy,1, β, γ, σ), of course. The determinacy ‖λ‖ = 1 boundaries in this case are as follows.
(These conditions are derived below and included in the plots. To turn them into boundaries, one
has to also check that the other eigenvalue is greater than one.)

1. σφy,1 6= 1, real roots, λ = 1

(
φπ,0 + φπ,1 − 1

)
+

1− β
γ

(
φy,1 + φy,0

)
= 0 (86)
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Figure 9: Region of determinacy in the three-equation model for a rule it = φπ,0πt + φy,0yt, using
β = 0.95, σ = 2, γ = 1.
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Figure 10: Region of determinacy for the three-equation model, for an interest rate rule it =
φπ,1Etπt+1 + φy,1Etyt+1, using β = 0.95, σ = 2, γ = 1.
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2. σφy,1 6= 1, real roots, λ = −1

(
1 + φπ,0 − φπ,1

)
− 1 + β

γ

(
φy,1 − φy,0

)
= −2

(1 + β)

σγ

3. σφy,1 6= 1, Complex roots

γφπ,0 + φy,0 + βφy,1 =
β − 1

σ
.

4. σφy,1 = 1, λ = 1,

(φπ,0 + φπ,1) +
(1− β)

σγ

(
1 + σφy,0

)
= 1

5. σφy,1 = 1, λ = −1 :

φπ,0 − φπ,1 +
(1 + β)

σγ

(
1 + σφy,0

)
= −1 (87)

Equations (86)-(87) show a variety of interesting additional interactions. Four of the five condi-
tions do not involve φπ,0 + φπ,1 and φy,0 + φy,1 —we see analytically that responding to current vs.
future output and inflation are not the same thing. In fact the second and last conditions includes
φπ,0−φπ,1 : The two responses have opposite effects. (Unsurprisingly, these are conditions in which
the eigenvalue is equal to negative one.) The other conditions trade off responses with coeffi cients
that depend on structural parameters.

The point of all these examples is to emphasize that the Taylor rule does not “stabilize inflation”
in new-Keynesian models; rather it threatens explosive equilibria. The examples emphasize that
the regions of determinacy depend on the entire system, not just the policy rule. The regions
are sensitive functions of policy rule parameters and timing, as well as economic parameters. The
“robustness”may be a feature of old-Keynesian models and stories, but not of these models.

6.4 Zero-inflation and zero-gap equilibria

With the solution (71) in hand we can easily check that the πt = 0 and yt = 0 (there is no ȳ here)
are not achievable, so to achieve those equilibria a “stochastic intercept”policy is necessary. The
Fed could set xit and hence zit to zero, eliminating this source of variance. Given that the variance
of the zt is not zero, there is nothing to do about any of the loadings of yt or πt except the loading
of yt on zπt. (Top, center.) That loading can be set to zero with φπ,0 = ρπ

(
1− φπ,1

)
. But the

other loadings remain. Hence, the only hope is to set to zero the variances of the zt, by altering
the coeffi cients that relate zt to xt. To obtain this result, we need to explode the denominators,

φπ,0 +
(
φπ,1 − 1

)
ρd → ∞

φπ,0 +
(
φπ,1 − 1

)
ρπ → ∞

The only way to do this is to send the individual φπ responses to ∞. Dong so sets πt = 0. The
loading of y on zπ offsets this operation, though, so even setting φπ =∞ does not give σ(y) = 0.
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Technical Appendix to “Determinacy and Identification with
Taylor Rules”

This technical appendix documents calculations made in the text and in the online Appendix.

1 Budget constraints in the frictionless model

This section presents a somewhat more careful discussion of budget constraints in the model of
Section 3.1.

The household flow budget constraint states that bonds sold + income + transfers = consump-
tion + (taxes-transfers) + bonds bought,

Bt−1 + PtYt = Pt (Ct + St) +Qt,t+1Bt.

The household also faces a constraint that the present value of terminal wealth is zero.

lim
j→∞

Et [Qt,t+jBt+j−1] = 0.

This latter “transversality condition”can be weakened to a bound on borrowing, since the consumer
will never choose to overaccumulate wealth. In finite economies, you can’t die with debts, and this
is the limit of that condition for infinite-period economies. The condition also prevents consumers
from arbitrage between a sequence of spot markets and markets for infinitely-lived contingent claims.
Iterating forward, these two conditions are equivalent to the present value budget constraint,

Et

 ∞∑
j=0

Qt,t+jPt+jCt+j

 = Bt−1 + Et

 ∞∑
j=0

Qt,t+jPt+j (Yt+j − St+j) .


In real terms, these constraints are

Bt−1

Pt
+ Yt +Gt = Ct + St + Et

(
mt,t+1

Bt
Pt+1

)

lim
j→∞

Et

[
mt,t+j

Bt+j−1(t+ j)

Pt+j

]
= 0.

and hence

Et

∞∑
j=0

mt,t+jCt+j =
Bt−1

Pt
+ Et

∞∑
j=0

mt,t+j (Yt+j − St+j)

The government faces a flow identity, taxes plus bonds sold = spending plus bonds redeemed,

Qt,t+1Bt + PtSt = Bt−1

or, in real terms

Et

(
mt,t+1

Bt
Pt+1

)
+ St =

Bt−1

Pt
.

It is tempting to iterate this forward as well and derive a government “intertemporal budget con-
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straint.”However, the government does not face a transversality condition. This fact is easiest to
see in a finite economy. As a matter of budget constraint, we do not let agents die with debts. How-
ever, suppose agents developed a utility for government debt; they decide it makes nice wallpaper
and are willing to hold it in the last period rather than cash it in and consume the proceeds. They
can do this, and nothing in the government budget constraint should rule this out. The statement
that government debt is zero at the end of time is an equilibrium condition, deriving from the fact
that consumers without such utility will choose not to hold it. Thus, the government can, as a
matter of constraint, make policy plans that, at off-equilibrium prices, would violate the consumer’s
budget constraint.

Thus, Equation (21) is an equilibrium condition that derives from the consumer’s present value
budget constraint, equilibrium C = Y , and the transversality condition for the consumer’s choice
to be an optimum. It is not a “government budget constraint.” A “budget constraint” limits
the demands an agent can announce at off-equilibrium prices, and there is nothing that stops the
government from announcing plans that violate this equilibrium condition at off-equilibrium prices.
Cochrane (2005) gives an extended discussion of this point.

2 Expected values

In Appendix section 3.2, I exhibited a construction of the unobserved monetary policy shock process
xt = b(L)εt that rationalizes any equilibrium {it, πt} for hypothesized value of the Taylor parameter
φ. While my proof checked that the construction of b(L) in (66) and (67) works, it does not show
how I derived those formulas. At the cost of greater algebra, this section shows where they come
from.

We often generate one series (price, consumption, inflation) as an expected discounted sum of
another (dividends, income, policy disturbances)

yt = Et

∞∑
j=0

θjxt+j

xt = b(L)εt

Task 1 Find a representation for yt = a(L)εt. The answer is (Hansen and Sargent (1980))

yt =

(
Lb(L)− θb(θ)

L− θ

)
εt.

Here’s why. Start by writing out

y∗t =

∞∑
j=0

θjxt+j =
1

1− θL−1
xt =

1

1− θL−1
b(L)εt.

y∗t =

b0εt +b1εt−1 +b2εt−2 +...
+(θb0εt+1) +θb1εt +θb2εt−1 +θb3εt−2 +...

+(θ2b0εt+2) +(θ2b1εt+1) +θ2b2εt +θ2b3εt−1 +θ2b4εt−2 +...
+(θ3b0εt+3) +(θ3b1εt+2) +(θ3b2εt+1) +θ3b3εt +θ3b4εt−1 +θ3b5εt−2 +...

Now, yt is formed by simply getting rid of all the terms involving future εt+j , which I put in
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parentheses. Next sum the columns. For example, the εt+1 term is

θb0 + θ2b1 + θ3b2 + ... = θb(θ)

Thus, we can write

yt =

{
b(L)

1− θL−1
−
[
θb(θ)L−1 + θ2b(θ)L−2 + θ3b(θ)L−3 + ...

]}
εt

=

{
b(L)

1− θL−1
− b(θ)

[
θL−1 + θ2L−2 + θ3L−3 + ...

]}
εt

=

{
b(L)

1− θL−1
− b(θ)θL−1

1− θL−1

}
εt

=

{
Lb(L)− b(θ)θ

L− θ

}
εt

Example. Suppose
xt = ρxt−1 + εt.

It’s easy to work out by hand that

Et
∑
j=0

θjxt+j =
∑

θjρjxt =
1

1− ρθxt =
1

1− ρθ
1

1− ρLεt.

Our formula gives

Et
∑
j=0

θjxt+j =

{
L

1−ρL −
θ

1−ρθ
L− θ

}
εt

=


L(1−ρθ)−θ(1−ρL)

(1−ρL)(1−ρθ)
L− θ

 εt

=

{
L−θ

(1−ρL)(1−ρθ)
L− θ

}
εt

=
1

(1− ρL) (1− ρθ)εt

just as it should.

Task 2, reverse engineering Suppose you have a representation for yt = a(L)εt. Construct an
xt = b(L)εt that justifies it by yt = Et

∑∞
j=0 θ

jxt+j . We want to end up with

a(L) =
Lb(L)− θb(θ)

L− θ .

Solving,
a(L)(L− θ) = Lb(L)− θb(θ).
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Evaluate at L = 0 to find b(θ)

a(0)(−θ) = −b(θ)θ
a(0) = b(θ)

Then substitute

a(L)(L− θ) = Lb(L)− a(0)θ

b(L) =
a(L)(L− θ) + a(0)θ

L
b(L) = a(L)(1− θL−1) + a(0)θL−1

b(L) = a(L)− θL−1 (a(L)− a(0)) (88)

That’s the answer.

We can also write the answer out explicitly:

b(L) = a0 + a1L+ a2L
2 + a3L

3 + ...− θL−1
(
a1L+ a2L

2 + ...
)

= (a0 − θa1) + (a1 − θa2)L+ (a2 − θa3)L2 + ...

i.e.
bj = aj − θaj+1 (89)

Our application. We have yt = −φ−1Et
∑∞

j=0 φ
−jxt+j , i.e. θ = φ−1 and we need to multiply xt

by an additional −φ after we’re done. Equation (88) becomes

b(L) = −φ
[
a(L)− φ−1L−1 (a(L)− a(0))

]
b(L) = −φa(L) + L−1 (a(L)− a(0))

b(L) =
(
L−1 − φ

)
a(L)− L−1a(0)

3 Standard error algebra

This section documents the standard errors calculated in Table A1. For linear instrumental vari-
ables, the coeffi cients are

β =
(
E(xtz

′
t)E(ztz

′
t)
−1E(ztx

′
t)
)−1

E(xtz
′
t)E(ztz

′
t)
−1E(ztyt)

This is GMM with a specific a matrix,

a = E(xtz
′
t)E(ztz

′
t)
−1

i.e.
gT = E(ztεt) = E(zt(yt − x′tβ))

E(xtz
′
t)E(ztz

′
t)
−1E(zt(yt − x′tβ)) = 0

E(xtz
′
t)E(ztz

′
t)
−1E(ztyt)− E(xtz

′
t)E(ztz

′
t)
−1E(ztx

′
t)β = 0
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The GMM formula for standard errors is then

Tcov(b̂) = (ad)−1aSa′(ad)−1′

d =
∂gT
∂b′

= E(ztx
′
t)

The standard formula assuming conditionally homoskedastic errors and no lags is

S = σ2
εE(ztz

′
t)

hence

Tcov(b̂) = σ2
ε(E(xtz

′
t)E(ztz

′
t)
−1E(ztx

′
t))
−1E(xtz

′
t)E(ztz

′
t)
−1 ×

×E(ztx
′
t)((E(xtz

′
t)E(ztz

′
t)
−1E(ztx

′
t))
−1

= σ2
ε(E(xtz

′
t)E(ztz

′
t)
−1E(ztx

′
t))
−1

For heteroskedasticity-consistent standard errors

S = E(ztz
′
tε

2
t )

so

Tcov(b̂) = σ2
ε(E(xtz

′
t)E(ztz

′
t)
−1E(ztx

′
t))
−1E(xtz

′
t)E(ztz

′
t)
−1 ×

×E(ztz
′
tε

2
t )E(ztz

′
t)
−1E(ztx

′
t)((E(xtz

′
t)E(ztz

′
t)
−1E(ztx

′
t))
−1

To develop standard errors for φ when it’s estimated as b/(1−ρ), I map into GMM. The moment
conditions and estimates are unaffected. The standard errors are based on.

gT = E
{
zt
[
it −

(
a+ ρit−1 + (1− ρ)x̃′tφ

)]}
d =

∂gT

∂
[
a ρ φ′

] =
[
E(zt) E(ztit−1)− E (ztx̃

′
t)φ (1− ρ)E(ztx̃

′
t)
]

Here x̃ is only the subset of variables that are used for the Taylor rule, i.e. [πt yt].

In the case of OLS,

d =
∂gT

∂
[
a ρ φ′

] =

 E

 1
it−1

x̃t

 E

 1
it−1

x̃t

 it−1

− E
 1

it−1

x̃t

 x̃′t
φ (1− ρ)E

 1
it−1

x̃t

 x̃′t
 

We can also form standard errors for b/(1− ρ) = φ by the delta method.

b/(1− ρ) ≈ 1/(1− ρ̄) ∗
(
b− b̄

)
+ b̄/(1− ρ̄)2(ρ− ρ̄)

var(b/(1− ρ)) = 1/(1− ρ̄)2var(b) + b̄2/(1− ρ̄)4var(ρ) + 2b̄/(1− ρ̄)3cov(b, ρ)
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Comparing delta method and GMM,

gT = E(xt
(
yt − x′tb

)
) = 0

b̂ = E(xtx
′
t)
−1E(xtyt)

d = E(xtx
′
t)

a = I

var(b) = d−1Sd−1′/T

They give the same result,

φ = f(b); b = h(φ)

gT = E(xt
(
yt − x′th(φ)

)
) = 0

dgT
∂φi

= E(xtx
′
t)
∂h

∂φi
dgT
∂φ′

= E(xtx
′
t)
∂h

∂φ′

var(φ) =
(
∂h/∂φ′

)−1
E(xtx

′
t)
−1S.../T

=
(
∂f/∂φ′

)
E(xtx

′
t)
−1S.../T

4 Three-equation model algebra

This section summarizes analytic solutions of the standard three-equation model. The model is
usually solved numerically, but using computer algebra I am able to find analytic expressions for
the eigenvectors which allow an analytic expression for the model solution. I follow the standard
methodology, as outlined in Text Section 3.3.

The standard three-equation model with Taylor responses to current and future output and
inflation is, in deviation form

yt = Etyt+1 − σrt
it = rt + Etπt+1

πt = βEtπt+1 + γyt

it = φπ,0πt + φπ,1Etπt+1 + φy,0yt + φy,1Etyt+1

The steps to solution are

1. Express the model in standard form

2. Find eigenvalues; characterize the region of local determinacy

3. Find eigenvectors; express the solution of the model as endogenous variable = function of
shocks.

6



4.1 Express the model in standard form.

The standard form of the model is[
Etyt+1

Etπt+1

]
=

1

β

[
β+σβφy,0−σγ(φπ,1−1)

1−σφy,1
σ
βφπ,0+(φπ,1−1)

1−σφy,1
−γ 1

] [
yt
πt

]
. (90)

Derivation: Eliminating i and r,

yt = Etyt+1 − σ
(
φπ,0πt +

(
φπ,1 − 1

)
Etπt+1 + φy,0yt + φy,1Etyt+1

)
.

(
1− σφy,1

)
Etyt+1 − σ

(
φπ,1 − 1

)
Etπt+1 =

(
1 + σφy,0

)
yt + σφπ,0πt

βEtπt+1 = −γyt + πt[
1− σφy,1 −σ

(
φπ,1 − 1

)
0 β

] [
Etyt+1

Etπt+1

]
=

[
1 + σφy,0 σφπ,0
−γ 1

] [
yt
πt

]
[
Etyt+1

Etπt+1

]
=

 1
1−σφy,1

σ(φπ,1−1)
β(1−σφy,1)

0 1
β

[ 1 + σφy,0 σφπ,0
−γ 1

] [
yt
πt

]
[
Etyt+1

Etπt+1

]
=

[
1+σφy,0−σγ(φπ,1−1)/β

1−σφy,1
σ
φπ,0+(φπ,1−1)/β

1−σφy,1
− γ
β

1
β

] [
yt
πt

]
[
Etyt+1

Etπt+1

]
=

1

β

[
β+σβφy,0−σγ(φπ,1−1)

1−σφy,1
σ
βφπ,0+(φπ,1−1)

1−σφy,1
−γ 1

] [
yt
πt

]

4.2 Find Eigenvalues

The eigenvalues of the transition matrix solve the following quadratic equation:

β
(
1− σφy,1

)
λ2 −

[
1 + β + σγ(1− φπ,1) + σβφy,0 − σφy,1

]
λ+ 1 + σφy,0 + σγφπ,0 = 0

Derivation: ∥∥∥∥∥
1+σφy,0+σγ(1−φπ,1)/β

1−σφy,1
− λ σ

φπ,0−(1−φπ,1)/β

1−σφy,1
−γ/β 1/β − λ

∥∥∥∥∥ = 0

(
1 + σφy,0 + σγ(1− φπ,1)/β

1− σφy,1
− λ

)
(1/β − λ) + σγ

(
φπ,0 − (1− φπ,1)/β

1− σφy,1

)
/β = 0[

1 + σφy,0 + σγ(1− φπ,1)/β − λ
(
1− σφy,1

)]
(1− λβ) + σγ

(
φπ,0 − (1− φπ,1)/β

)
= 0

0 = β
(
1− σφy,1

)
λ2 −

[(
1 + σφy,0 + σγ(1− φπ,1)/β

)
β +

(
1− σφy,1

)]
λ

+1 + σφy,0 + σγ(1− φπ,1)/β + σγ
(
φπ,0 − (1− φπ,1)/β

)
7



β
(
1− σφy,1

)
λ2 −

[
1 + β + σγ(1− φπ,1) + σβφy,0 − σφy,1

]
λ+ 1 + σφy,0 + σγφπ,0 = 0.

There are two solutions of the quadratic equation defining eigenvalues, depending on parameter
values:

1. If σφy,1 6= 1,

λ =
1

2β
(
1− σφy,1

) {1 + β + σγ
(
1− φπ,1

)
+ σβφy,0 − σφy,1

±
√(

1 + β + σγ
(
1− φπ,1

)
+ σβφy,0 − σφy,1

)2 − 4β
(
1− σφy,1

) (
1 + σφy,0 + σγφπ,0

)}
2. If σφy,1 = 1,

β
(
1− σφy,1

)
λ2 −

[
1 + β + σγ(1− φπ,1) + σβφy,0 − σφy,1

]
λ+ 1 + σφy,0 + σγφπ,0 = 0

−
[
β + σγ(1− φπ,1) + σβφy,0

]
λ+ 1 + σφy,0 + σγφπ,0 = 0

λ =
1 + σ

(
φy,0 + γφπ,0

)
β + σ

[
γ(1− φπ,1) + βφy,0

]
4.3 Characterize the region of local determinacy

The region of local determinacy is the part of the parameter space that produces two eigenvalues
greater than one. That region is not as simple as “the sum of the Taylor coeffi cients on inflation is
greater than one.”

To find the regions of determinacy, write

λ =
1

2a

(
b±

√
b2 − 4ac

)
a ≡ β

(
1− σφy,1

)
b ≡ 1 + β + σγ

(
1− φπ,1

)
+ σβφy,0 − σφy,1

c ≡ 1 + σφy,0 + σγφπ,0

The boundaries ‖λ‖ = 1 are as follows. (See “Detailed Algebra”below.)

1. σφy,1 6= 1, real roots b2 − 4ac > 0, λ = 1:

(
φπ,0 + φπ,1 − 1

)
+

1− β
γ

(
φy,1 + φy,0

)
= 0

2. σφy,1 6= 1, real roots b2 − 4ac > 0, λ = −1 :

(
1 + φπ,0 − φπ,1

)
− 1 + β

γ

(
φy,1 − φy,0

)
= −2

(1 + β)

σγ
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3. σφy,1 6= 1, Complex roots b2 − 4ac < 0,

γφπ,0 + φy,0 + βφy,1 =
β − 1

σ
.

4. σφy,1 = 1, λ = 1,

φπ,0 + φπ,1 +
(1− β)

σγ

(
1 + σφy,0

)
= 1

5. σφy,1 = 1, λ = −1 :

φπ,0 − φπ,1 +
(1 + β)

σγ

(
1 + σφy,0

)
= −1

4.4 Special cases

a. Only φπ,0 6= 0.

λ =
1

2β

(
(1 + β + σγ)±

√
(1 + β + σγ)2 − 4β

(
1 + σγφπ,0

))
The condition for real roots is (1 + β + σγ)2 − 4β

(
1 + σγφπ,0

)
> 0. The ‖λ‖ = 1 regions are then

φπ,0 = 1

φπ,0 = −
(

1 + 2
(1 + β)

σγ

)
for complex roots, we have

φπ,0 =
β − 1

σγ

b. No output response, both inflation responses. φπ,0, φπ,1 6= 0.

λ =
1

2β

(
1 + β + σγ

(
1− φπ,1

)
±
√(

1 + β + σγ
(
1− φπ,1

))2 − 4β
(
1 + σγφπ,0

))
The boundaries ‖λ‖ = 1 are as follows.

1. Real roots, λ = 1
φπ,0 + φπ,1 = 1

2. Real roots, λ = −1 :

φπ,0 − φπ,1 = −
(

1 + 2
(1 + β)

σγ

)
3. Complex roots

φπ,0 =
β − 1

σγ
.
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In the case φπ,0 = 0, we have

‖λ‖2 =
1

4β2 4β =
1

β
> 1

in the entire complex root region. (The complex root region in the plot with φπ,0 = 0 has a
very small band of real roots surrounding the plotted complex roots, and these decline quickly
to one at the plotted boundary.)

c. Contemporaneous output and inflation responses. φπ,0, φy,0

λ =
1

2a

(
b±

√
b2 − 4ac

)
a ≡ β

b ≡ 1 + β + σγ + σβφy,0

c ≡ 1 + σφy,0 + σγφπ,0

The boundaries ‖λ‖ = 1 in this case are as follows.

1. σφy,1 6= 1, real roots b2 − 4ac > 0, λ = 1:

φπ,0 +
1− β
γ

φy,0 = 1

2. σφy,1 6= 1, real roots b2 − 4ac > 0, λ = −1 :

φπ,0 +
1 + β

γ
φy,0 = −

(
1 + 2

(1 + β)

σγ

)

3. σφy,1 6= 1, Complex roots b2 − 4ac < 0,

γφπ,0 + φy,0 =
β − 1

σ
.

Detailed algebra for determinacy regions:

1. σφy,1 6= 1, real roots, λ = 1.
1

2a

(
b±

√
b2 − 4ac

)
= 1

b±
√
b2 − 4ac = 2a

b2 − 4ac = (2a− b)2

0 =
(
1 + β + σγ

(
1− φπ,1

)
+ σβφy,0 − σφy,1

)2 − 4β
(
1− σφy,1

) (
1 + σφy,0 + σγφπ,0

)
−
(
2β − 2βσφy,1 −

(
1 + β + σγ

(
1− φπ,1

)
+ σβφy,0 − σφy,1

))2
10



0 = −4σβφy,0 − 4βσφy,1 + 4σ2βφy,0φy,1 − 4βσγφπ,1 − 4βσγφπ,0

−4βσ2φy,1γ − 4β2σ2φy,1φy,0 + 4σβ2φy,0 + 4βσγ

+4β2σφy,1 − 4β2σ2φ2
y,1 + 4βσ2φ2

y,1 + 4βσ2φy,1γφπ,0 + 4βσ2φy,1γφπ,1

0 = −φy,0 − φy,1 + σφy,0φy,1 − γφπ,1 − γφπ,0 − σφy,1γ − βσφy,1φy,0
+βφy,0 + γ + βφy,1 − βσφ2

y,1 + σφ2
y,1 + σφy,1γφπ,0 + σφy,1γφπ,1(

1− σφy,1
) (
βφy,1 − φy,1 − φy,0 + γ + βφy,0 − γφπ,0 − γφπ,1

)
= 0(

1− σφy,1
) (

(β − 1)
(
φy,1 + φy,0

)
− γ

(
φπ,0 + φπ,1 − 1

))
= 0

We have already assumed σφy,1 6= 1,so

(β − 1)

γ

(
φy,1 + φy,0

)
−
(
φπ,0 + φπ,1 − 1

)
= 0

(
φπ,0 + φπ,1 − 1

)
+

1− β
γ

(
φy,1 + φy,0

)
= 0

This identifies parameters at which one eigenvalue is equal to one. We also have to check
that the other one is greater than one. I do this numerically to make the plots.

2. σφy,1 6= 1, real roots, λ = −1

1

2a

(
b+

√
b2 − 4ac

)
= −1

b2 − 4ac = (2a+ b)2

0 =
(
1 + β + σγ

(
1− φπ,1

)
+ σβφy,0 − σφy,1

)2 − 4β
(
1− σφy,1

) (
1 + σφy,0 + σγφπ,0

)
−
(
2β − 2βσφy,1 +

(
1 + β + σγ

(
1− φπ,1

)
+ σβφy,0 − σφy,1

))2
0 = −4σβφy,0 + 12βσφy,1 − 8β2 − 8β + 4σ2βφy,0φy,1 + 4βσγφπ,1 − 4βσγφπ,0

+4βσ2φy,1γ + 4β2σ2φy,1φy,0 − 4σβ2φy,0 − 4βσγ

+12β2σφy,1 − 4β2σ2φ2
y,1 − 4βσ2φ2

y,1 + 4βσ2φy,1γφπ,0 − 4βσ2φy,1γφπ,1(
σφy,1 − 1

) (
−βσφy,1 − σφy,1 + σβφy,0 + σγ + σφy,0 + σγφπ,0 − σγφπ,1 + 2 + 2β

)
= 0

−βσφy,1 − σφy,1 + σβφy,0 + σγ + σφy,0 + σγφπ,0 − σγφπ,1 + 2 + 2β = 0

(1 + β)
(
φy,1 − φy,0

)
+ γ

(
φπ,1 − φπ,0 − 1

)
= 2

(1 + β)

σ(
φπ,1 − φπ,0 − 1

)
+

(1 + β)

γ

(
φy,1 − φy,0

)
= 2

(1 + β)

σγ(
1− φπ,1 + φπ,0

)
− (1 + β)

γ

(
φy,1 − φy,0

)
= −2

(1 + β)

σγ
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3. σφy,1 6= 1, Complex roots, ∥∥∥∥ 1

2a

(
b±

√
b2 − 4ac

)∥∥∥∥ = 1

(
b− i

√
‖(b2 − 4ac)‖

)(
b+ i

√
‖(b2 − 4ac)‖

)
= ‖2a‖(

b2 +
∥∥(b2 − 4ac

)∥∥) = (2a)2

the roots are complex because b2 − 4ac < 0(
b2 −

(
b2 − 4ac

))
= (2a)2

4ac = 4a2

c = a

1 + σφy,0 + σγφπ,0 = β
(
1− σφy,1

)
γφπ,0 + φy,0 + βφy,1 =

β − 1

σ
.

In the special case σφy,1 = 1, we have

λ =
1 + σ

(
φy,0 + γφπ,0

)
β + σ

[
γ(1− φπ,1) + βφy,0

]
4. λ = 1 :

1 + σ
(
φy,0 + γφπ,0

)
= β + σ

[
γ(1− φπ,1) + βφy,0

]
1− β
σ

= γ(1− φπ,1) + βφy,0 −
(
φy,0 + γφπ,0

)
1− β
σ

= −γ
(
φπ,1 + φπ,0 − 1

)
+ (β − 1)φy,0

−1− β
σγ

=
(
φπ,0 + φπ,1 − 1

)
+

(1− β)

γ
φy,0(

φπ,0 + φπ,1 − 1
)

= −(1− β)

σγ

(
1 + σφy,0

)
φπ,0 + φπ,1 +

(1− β)

σγ

(
1 + σφy,0

)
= 1

5. λ = −1 :
1 + σ

(
φy,0 + γφπ,0

)
= −β − σ

[
γ(1− φπ,1) + βφy,0

]
(1 + φπ,0 − φπ,1) = −(1 + β)

σγ
σφy,0 −

1 + β

σγ

(1 + φπ,0 − φπ,1) = −(1 + β)

σγ

(
1 + σφy,0

)
φπ,0 − φπ,1 +

(1 + β)

σγ

(
1 + σφy,0

)
= −1
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4.5 Dynamics, responses, and estimated coeffi cients.

Next, we want to exhibit artificial data, compute impulse responses, and evaluate model dynamics.
To that end, I add shocks to the IS, Phillips curves, and monetary policy rule. With shocks, the
system is

yt = Etyt+1 − σrt + xdt

it = rt + Etπt+1

πt = βEtπt+1 + γyt + xπt

it = φπ,0πt + φπ,1Etπt+1 + φy,0yt + φy,1Etyt+1 + xit

Standard form. I eliminate i, r to express the model in standard form, as above. Adding the
responses of each variable to the x shocks, and including AR(1) dynamics for the disturbances, and
including expectational errors δt+1, the standard form is


yt+1

πt+1

xdt+1

xπt+1

xit+1

 =



1+σφy,0+σγ
β (1−φπ,1)

1−σφy,1
σ
φπ,0−

(1−φπ,1)
β

1−σφy,1
− 1

1−σφy,1
σ
β

(1−φπ,1)
(1−σφy,1)

σ
1−σφy,1

− γ
β

1
β 0 − 1

β 0

0 0 ρd 0 0
0 0 0 ρπ 0
0 0 0 0 ρi




yt
πt
xdt
xπt
xit

+


δyt+1

δπt+1

εdt+1

επt+1

εit+1



Derivation:
Etπt+1 =

1

β
(πt − γyt − xπt)

rt = φπ,0πt +
(
φπ,1 − 1

)
Etπt+1 + φy,0yt + φy,1Etyt+1 + xit

Etyt+1 = yt + σrt − xdt
Etyt+1 = yt + σ

(
φπ,0πt +

(
φπ,1 − 1

)
Etπt+1 + φy,0yt + φy,1Etyt+1 + xit

)
− xdt

(1− σφy,1)Etyt+1 = (1 + σφy,0)yt + σφπ,0πt +
σ

β

(
φπ,1 − 1

)
(πt − γyt − xπt) + σxit − xdt

(1− σφy,1)Etyt+1 =

(
1 + σφy,0 +

σγ

β

(
1− φπ,1

))
yt + σ

(
φπ,0 −

(
1− φπ,1

)
β

)
πt +

+
σ

β

(
1− φπ,1

)
xπt + σxit − xdt

Eigenvectors: The eigenvectors corresponding to the stable eigenvalues are (thanks to Scientific
Workplace, but verified)

1− βρd
γ

(1− ρd) (1− ρdβ) + σ (1− βρd)
(
φy,0 + ρdφy,1

)
+ σγ

(
φπ,0 + ρd

(
φπ,1 − 1

))
0
0

↔ ρd,
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−σ
(
φπ,0 + ρπ

(
φπ,1 − 1

))
(1− ρπ) + σ

(
φy,0 + ρπφy,1

)
0

(1− ρπ) (1− ρπβ) + σ (1− βρπ)
(
φy,0 + ρπφy,1

)
+ σγ

(
φπ,0 + ρπ

(
φπ,1 − 1

))
0

↔ ρπ,


−σ (1− βρi)
−σγ

0
0

(1− ρi) (1− ρiβ) + σ (1− βρi)
(
φy,0 + ρiφy,1

)
+ σγ

(
φπ,0 + ρi

(
φπ,1 − 1

))

↔ ρi

Solution for {y, π} . Thus, the solution is

[
yt
πt

]
=

[
1− ρdβ σ

(
ρπ
(
1− φπ,1

)
− φπ,0

)
−σ (1− ρiβ)

γ (1− ρπ) + σ(φy,0 + ρπφy,1) −σγ

] zdt
zπt
zit


 zdt
zπt
zit

 =

 ρd 0 0
0 ρπ 0
0 0 ρi

 zdt−1

zπt−1

zit−1

+
vdt
vπt
vit

xdt =
[
(1− ρd) (1− ρdβ) + σ (1− βρd)

(
φy,0 + ρdφy,1

)
+ σγ

(
φπ,0 + ρd

(
φπ,1 − 1

))]
zdt

xπt =
[
(1− ρπ) (1− ρπβ) + σ (1− βρπ)

(
φy,0 + ρπφy,1

)
+ σγ

(
φπ,0 + ρπ

(
φπ,1 − 1

))]
zπt

xit =
[
(1− ρi) (1− ρiβ) + σ (1− βρi)

(
φy,0 + ρiφy,1

)
+ σγ

(
φπ,0 + ρi

(
φπ,1 − 1

))]
zit

Here I express the solution in terms of z variables. Since the z are simply scalar multiples of the x
one can also express the solution in terms of x.

Include interest rates. Adding interest rates back to the system, the full solution is yt
πt
it

 = A

 zdt
zπt
zit

 (91)
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where the columns of A are

A:,1 =

 1− ρdβ
γ

(1− βρd)
(
φy,0 + ρdφy,1

)
+ γ

(
φπ,0 + ρdφπ,1

)


A:,2: =

 σ
(
ρπ
(
1− φπ,1

)
− φπ,0

)
(1− ρπ) + σ(φy,0 + ρπφy,1)

(1− ρπ)
(
φπ,0 + ρπφπ,1

)
+ ρπσ(φy,0 + ρπφy,1)


A:,3 =

 −σ (1− ρiβ)
−σγ

(1− ρi) (1− ρiβ)− σγρi

 ;

and  zdt
zπt
zit

 =

 ρd 0 0
0 ρπ 0
0 0 ρi

 zdt−1

zπt−1

zit−1

+
vdt
vπt
vit

(92)

xdt =
[
(1− ρd) (1− ρdβ) + σ (1− βρd)

(
φy,0 + ρdφy,1

)
+ σγ

(
φπ,0 + ρd

(
φπ,1 − 1

))]
zdt

xπt =
[
(1− ρπ) (1− ρπβ) + σ (1− βρπ)

(
φy,0 + ρπφy,1

)
+ σγ

(
φπ,0 + ρπ

(
φπ,1 − 1

))]
zπt

xit =
[
(1− ρi) (1− ρiβ) + σ (1− βρi)

(
φy,0 + ρiφy,1

)
+ σγ

(
φπ,0 + ρi

(
φπ,1 − 1

))]
zit

Since the z are just multiples of the x, one can eliminate them, at the cost of larger formulas.

The formula seems daunting, but it simplifies usefully in the obvious special cases.

Derivation

yt = Etyt+1 − σ(it − Etπt+1) + xdt

it =
1

σ
(Etyt+1 − yt) +

1

σ
xdt + Etπt+1

it =

[
− 1
σ (1− ρd) (1− ρdβ) + ρdγ

+ 1
σ

((
(1− ρd) (1− ρdβ) + σ (1− βρd)

(
φy,0 + ρdφy,1

)
+ σγ

(
φπ,0 + ρd

(
φπ,1 − 1

)))) ] zdt
+

[
1

σ
(ρπ − 1)σ

(
ρπ
(
1− φπ,1

)
− φπ,0

)
+ ρπ

(
(1− ρπ) + σ(φy,0 + ρπφy,1)

)]
zπt

+

[
1

σ
(ρi − 1) (−σ (1− ρiβ))− σγρi

]
zit

it =
[

(1− βρd)
(
φy,0 + ρdφy,1

)
+ γ

(
φπ,0 + ρdφπ,1

) ]
zdt

+
[
(1− ρπ)

(
φπ,0 + ρπφπ,1

)
+ ρπσ(φy,0 + ρπφy,1)

]
zπt

+ [(1− ρi) (1− ρiβ)− σγρi] zit
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4.6 Dynamics with potential output

Adding potential output as another AR(1) shock, and assuming the Taylor rule responds to poten-
tial output, we have

yt = Etyt+1 − σrt + xdt

it = rt + Etπt+1

πt = βEtπt+1 + γ (yt − ȳt) + xπt

it = φπ,0πt + φπ,1Etπt+1 + φy,0 (yt − ȳt) + φy,1Et (yt+1 − ȳt) + xit

Following the same steps, the standard form is


yt+1

πt+1

xdt+1

xπt+1

xit+1

 = A



yt
πt
xdt
xπt
xit
ȳt

+



δyt+1

δπt+1

εdt+1

επt+1

εit+1

εȳt+1


where the columns of A are

A:,1:2 =



1+σφy,0+σγ
β (1−φπ,1)

1−σφy,1

σ

(
φπ,0−

(1−φπ,1)
β

)
1−σφy,1

− γ
β

1
β

0 0
0 0
0 0
0 0



A:,3:6 =



− 1
1−σφy,1

σ
β

(1−φπ,1)
(1−σφy,1)

σ
(1−σφy,1)

σ
(
γ
β (φπ,1−1)−φy,0−φy,1ρȳ

)
(1−σφy,1)

0 − 1
β 0 γ

β

ρd 0 0 0
0 ρπ 0 0
0 0 ρi 0
0 0 0 ρȳ


The eigenvectors corresponding to the stable eigenvalues are

−σ
(
φπ,0 − ρπ

(
φπ,1 − 1

))
(1− ρπ) + σ

(
φy,0 + ρπφy,1

)
0

(1− ρπ) (1− ρπβ) + σ (1− βρπ)
(
φy,0 + ρπφy,1

)
+ σγ

(
φπ,0 + ρπ

(
φπ,1 − 1

))
0
0

↔ ρπ
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1− βρd
γ

(1− ρd) (1− ρdβ) + σ (1− βρd)
(
φy,0 + ρdφy,1

)
+ σγ

(
φπ,0 + ρd

(
φπ,1 − 1

))
0
0
0

↔ ρd



−σ (1− βρi)
−σγ

0
0

(1− ρi) (1− ρiβ) + σ (1− βρi)
(
φy,0 + ρiφy,1

)
+ σγ

(
φπ,0 + ρi

(
φπ,1 − 1

))
0

↔ ρi



σ
(
−γρy +

(
1− βρy

)
φy,0 + ρy

(
1− βρy

)
φy,1 + γ

(
φπ,0 + ρyφπ,1

))
−γ
(
1− ρy

)
0
0
0(

1− ρy
)

(1− ρyβ) + σ
(
1− βρy

) (
φy,0 + ρyφy,1

)
+ σγ

(
φπ,0 + ρy

(
φπ,1 − 1

))

↔ ρy

Thus, the solution is [
yt
πt

]
= A


zdt
zπt
zit
zyt


where the columns of A are

A:,1:2 =

[
1− ρdβ σ

(
ρπ
(
1− φπ,1

)
− φπ,0

)
γ (1− ρπ) + σ(φy,0 + ρπφy,1)

]
A:,3:4 =

[
−σ (1− ρiβ) σ

(
−γρy +

(
1− βρy

)
φy,0 + ρy

(
1− βρy

)
φy,1 + γ

(
φπ,0 + ρyφπ,1

))
−σγ −γ

(
1− ρy

) ]
[zt] = ρ [zt−1] + [vt]

xdt =
(
(1− ρd) (1− ρdβ) + σ (1− βρd)

(
φy,0 + ρdφy,1

)
+ σγ

(
φπ,0 + ρd

(
φπ,1 − 1

)))
zdt

xπt =
(
(1− ρπ) (1− ρπβ) + σ (1− βρπ)

(
φy,0 + ρπφy,1

)
+ σγ

(
φπ,0 + ρπ

(
φπ,1 − 1

)))
zπt

xit =
(
(1− ρi) (1− ρiβ) + σ (1− βρi)

(
φy,0 + ρiφy,1

)
+ σγ

(
φπ,0 + ρi

(
φπ,1 − 1

)))
zit

xyt =
((

1− ρy
)

(1− ρyβ) + σ
(
1− βρy

) (
φy,0 + ρyφy,1

)
+ σγ

(
φπ,0 + ρy

(
φπ,1 − 1

)))
zyt
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Adding interest rates

yt = Etyt+1 − σ(it − Etπt+1) + xdt

it =
1

σ
(Etyt+1 − yt) +

1

σ
xdt + Etπt+1

[
it
]

=

[
− 1
σ (1− ρd) (1− ρdβ) + ρdγ + 1

σ (1− ρd) (1− ρdβ)
+ (1− βρd)

(
φy,0 + ρdφy,1

)
+ γ

(
φπ,0 + ρd

(
φπ,1 − 1

)) ] zdt
+

[
1
σ (ρπ − 1)σ

(
ρπ
(
1− φπ,1

)
− φπ,0

)
+ρπ

(
(1− ρπ) + σ(φy,0 + ρπφy,1)

) ] zπt
+

[
1

σ
(ρi − 1) (−σ (1− ρiβ))− σγρi

]
zit

+

[
(ρy − 1)

(
−γρy +

(
1− βρy

)
φy,0 + ρy

(
1− βρy

)
φy,1 + γ

(
φπ,0 + ρyφπ,1

))
−γρy

(
1− ρy

) ]
zyt

[
it
]

=
[

(1− βρd)
(
φy,0 + ρdφy,1

)
+ γ

(
φπ,0 + ρdφπ,1

) ]
zdt

+
[
(1− ρπ)

(
φπ,0 + ρπφπ,1

)
+ ρπσ(φy,0 + ρπφy,1)

]
zπt

+ [(1− ρi) (1− ρiβ)− σγρi] zit
−
[
(1− ρy)

(
γ
(
φπ,0 + ρyφπ,1

)
+
(
1− βρy

)
φy,0 + ρy

(
1− βρy

)
φy,1

)]
zyt

The overall solution is then  yt
πt
it

 = A


zdt
zπt
zit
zyt



A:,1:2 =

 1− ρdβ σ
(
ρπ
(
1− φπ,1

)
− φπ,0

)
γ (1− ρπ) + σ(φy,0 + ρπφy,1)

(1− βρd)
(
φy,0 + ρdφy,1

)
+ γ

(
φπ,0 + ρdφπ,1

)
(1− ρπ)

(
φπ,0 + ρπφπ,1

)
+ ρπσ(φy,0 + ρπφy,1)


A:,3:4 =

 −σ (1− ρiβ) σ
(
−γρy +

(
1− βρy

)
φy,0 + ρy

(
1− βρy

)
φy,1 + γ

(
φπ,0 + ρyφπ,1

))
−σγ −γ

(
1− ρy

)
(1− ρi) (1− ρiβ)− σγρi −

[
(1− ρy)

(
γ
(
φπ,0 + ρyφπ,1

)
+
(
1− βρy

)
φy,0 + ρy

(
1− βρy

)
φy,1

)]


and

xdt =
[
(1− ρd) (1− ρdβ) + σ (1− βρd)

(
φy,0 + ρdφy,1

)
+ σγ

(
φπ,0 + ρd

(
φπ,1 − 1

))]
zdt

xπt =
[
(1− ρπ) (1− ρπβ) + σ (1− βρπ)

(
φy,0 + ρπφy,1

)
+ σγ

(
φπ,0 + ρπ

(
φπ,1 − 1

))]
zπt

xit =
[
(1− ρi) (1− ρiβ) + σ (1− βρi)

(
φy,0 + ρiφy,1

)
+ σγ

(
φπ,0 + ρi

(
φπ,1 − 1

))]
zit

ȳt =
[(

1− ρy
) (

1− ρyβ
)

+ σ
(
1− βρy

) (
φy,0 + ρyφy,1

)
+ σγ

(
φπ,0 + ρy

(
φπ,1 − 1

))]
zyt
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