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Chapter 1

Preface

These notes are intended as a text rather than as a reference. A text is what
you read in order to learn something. A reference is something you look back
on after you know the outlines of a subject in order to get difficult theorems
exactly right.

The organization is quite different from most books, which really are
intended as references. Most books first state a general theorem or apparatus,
and then show how applications are special cases of a grand general structure.
That’s how we organize things that we already know, but that’s not how we
learn things. We learn things by getting familiar with a bunch of examples,
and then seeing how they fit together in a more general framework. And the
point is the “examples”–knowing how to do something.

Thus, for example, I start with linear ARMA models constructed from
normal iid errors. Once familiar with these models, I introduce the concept
of stationarity and the Wold theorem that shows how such models are in fact
much more general. But that means that the discussion of ARMA processes
is not as general as it is in most books, and many propositions are stated in
much less general contexts than is possible.

I make no effort to be encyclopedic. One function of a text (rather than
a reference) is to decide what an average reader–in this case an average first
year graduate student in economics–really needs to know about a subject,
and what can be safely left out. So, if you want to know everything about a
subject, consult a reference, such as Hamilton’s (1993) excellent book.
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Chapter 2

What is a time series?

Most data in macroeconomics and finance come in the form of time series–a
set of repeated observations of the same variable, such as GNP or a stock
return. We can write a time series as

{x1, x2, . . . xT} or {xt}, t = 1, 2, . . . T
We will treat xt as a random variable. In principle, there is nothing about
time series that is arcane or different from the rest of econometrics. The only
difference with standard econometrics is that the variables are subscripted t
rather than i. For example, if yt is generated by

yt = xtβ + t, E( t | xt) = 0,
then OLS provides a consistent estimate of β, just as if the subscript was ”i”
not ”t”.

The word ”time series” is used interchangeably to denote a sample {xt},
such as GNP from 1947:1 to the present, and a probability model for that
sample—a statement of the joint distribution of the random variables {xt}.
A possible probability model for the joint distribution of a time series

{xt} is
xt = t, t ∼ i.i.d. N (0, σ2)

i.e, xt normal and independent over time. However, time series are typically
not iid, which is what makes them interesting. For example, if GNP today
is unusually high, GNP tomorrow is also likely to be unusually high.
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It would be nice to use a nonparametric approach—just use histograms
to characterize the joint density of {.., xt−1, xt, xt+1, . . .}. Unfortunately, we
will not have enough data to follow this approach in macroeconomics for at
least the next 2000 years or so. Hence, time-series consists of interesting
parametric models for the joint distribution of {xt}. The models impose
structure, which you must evaluate to see if it captures the features you
think are present in the data. In turn, they reduce the estimation problem
to the estimation of a few parameters of the time-series model.

The first set of models we study are linear ARMA models. As you will
see, these allow a convenient and flexible way of studying time series, and
capturing the extent to which series can be forecast, i.e. variation over time
in conditional means. However, they don’t do much to help model variation
in conditional variances. For that, we turn to ARCH models later on.
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Chapter 3

ARMA models

3.1 White noise

The building block for our time series models is the white noise process,
which I’ll denote t. In the least general case,

t ∼ i.i.d. N(0, σ2)

Notice three implications of this assumption:

1. E( t) = E( t | t−1, t−2 . . .) = E( t |all information at t− 1) = 0.
2. E( t t−j) = cov( t t−j) = 0

3. var ( t) =var ( t | t−1, t−2, . . .) =var ( t |all information at t−1) = σ2

The first and second properties are the absence of any serial correlation
or predictability. The third property is conditional homoskedasticity or a
constant conditional variance.

Later, we will generalize the building block process. For example, we may
assume property 2 and 3 without normality, in which case the t need not be
independent. We may also assume the first property only, in which case t is
a martingale difference sequence.
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By itself, t is a pretty boring process. If t is unusually high, there is
no tendency for t+1 to be unusually high or low, so it does not capture the
interesting property of persistence that motivates the study of time series.
More realistic models are constructed by taking combinations of t.

3.2 Basic ARMA models

Most of the time we will study a class of models created by taking linear
combinations of white noise. For example,

AR(1): xt = φxt−1 + t

MA(1): xt = t + θ t−1
AR(p): xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + t

MA(q): xt = t + θ1 t−1 + . . . θq t−q
ARMA(p,q): xt = φ1xt−1 + ...+ t + θ t−1+...

As you can see, each case amounts to a recipe by which you can construct
a sequence {xt} given a sequence of realizations of the white noise process
{ t}, and a starting value for x.
All these models are mean zero, and are used to represent deviations of

the series about a mean. For example, if a series has mean x̄ and follows an
AR(1)

(xt − x̄) = φ(xt−1 − x̄) + t

it is equivalent to
xt = (1− φ)x̄+ φxt−1 + t.

Thus, constants absorb means. I will generally only work with the mean zero
versions, since adding means and other deterministic trends is easy.

3.3 Lag operators and polynomials

It is easiest to represent and manipulate ARMA models in lag operator no-
tation. The lag operator moves the index back one time unit, i.e.

Lxt = xt−1

11



More formally, L is an operator that takes one whole time series {xt} and
produces another; the second time series is the same as the first, but moved
backwards one date. From the definition, you can do fancier things:

L2xt = LLxt = Lxt−1 = xt−2

Ljxt = xt−j

L−jxt = xt+j.

We can also define lag polynomials, for example

a(L)xt = (a0L
0 + a1L

1 + a2L
2)xt = a0xt + a1xt−1 + a2xt−2.

Using this notation, we can rewrite the ARMA models as

AR(1): (1− φL)xt = t

MA(1): xt = (1 + θL) t

AR(p): (1 + φ1L+ φ2L
2 + . . .+ φpL

p)xt = t

MA(q): xt = (1 + θ1L+ . . . θqL
q) t

or simply
AR: a(L)xt = t

MA: xt = b(L)
ARMA: a(L)xt = b(L) t

3.3.1 Manipulating ARMAs with lag operators.

ARMA models are not unique. A time series with a given joint distribution
of {x0, x1, . . . xT} can usually be represented with a variety of ARMA models.
It is often convenient to work with different representations. For example,
1) the shortest (or only finite length) polynomial representation is obviously
the easiest one to work with in many cases; 2) AR forms are the easiest to
estimate, since the OLS assumptions still apply; 3) moving average represen-
tations express xt in terms of a linear combination of independent right hand
variables. For many purposes, such as finding variances and covariances in
sec. 4 below, this is the easiest representation to use.
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3.3.2 AR(1) to MA(∞) by recursive substitution
Start with the AR(1)

xt = φxt−1 + t.

Recursively substituting,

xt = φ(φxt−2 + t−1) + t = φ2xt−2 + φ t−1 + t

xt = φkxt−k + φk−1 t−k+1 + . . .+ φ2 t−2 + φ t−1 + t

Thus, an AR(1) can always be expressed as an ARMA(k,k-1). More impor-
tantly, if | φ |< 1 so that limk→∞ φkxt−k = 0, then

xt =
∞X
j=0

φj t−j

so the AR(1) can be expressed as an MA(∞ ).

3.3.3 AR(1) to MA(∞) with lag operators.
These kinds of manipulations are much easier using lag operators. To invert
the AR(1), write it as

(1− φL)xt = t.

A natural way to ”invert” the AR(1) is to write

xt = (1− φL)−1 t.

What meaning can we attach to (1− φL)−1? We have only defined polyno-
mials in L so far. Let’s try using the expression

(1− z)−1 = 1 + z + z2 + z3 + . . . for | z |< 1
(you can prove this with a Taylor expansion). This expansion, with the hope
that | φ |< 1 implies | φL |< 1 in some sense, suggests

xt = (1− φL)−1 t = (1 + φL+ φ2L2 + . . .) t =
∞X
j=0

φj t−j

13



which is the same answer we got before. (At this stage, treat the lag operator
as a suggestive notation that delivers the right answer. We’ll justify that the
method works in a little more depth later.)

Note that we can’t always perform this inversion. In this case, we required
| φ |< 1. Not all ARMA processes are invertible to a representation of xt in
terms of current and past t.

3.3.4 AR(p) to MA(∞), MA(q) to AR(∞), factoring
lag polynomials, and partial fractions

The AR(1) example is about equally easy to solve using lag operators as using
recursive substitution. Lag operators shine with more complicated models.
For example, let’s invert an AR(2). I leave it as an exercise to try recursive
substitution and show how hard it is.

To do it with lag operators, start with

xt = φ1xt−1 + φ2xt−2 + t.

(1− φ1L− φ2L
2)xt = t

I don’t know any expansion formulas to apply directly to (1−φ1L−φ2L2)−1,
but we can use the 1/(1− z) formula by factoring the lag polynomial. Thus,
find λ1 and λ2 such that.

(1− φ1L− φ2L
2) = (1− λ1L)(1− λ2L)

The required vales solve
λ1λ2 = −φ2
λ1 + λ2 = φ1.

(Note λ1 and λ2 may be equal, and they may be complex.)

Now, we need to invert

(1− λ1L)(1− λ2L)xt = t.

We do it by

14



xt = (1− λ1L)
−1(1− λ2L)

−1
t

xt = (
∞X
j=0

λj1L
j)(

∞X
j=0

λj2L
j) t.

Multiplying out the polynomials is tedious, but straightforward.

(
∞X
j=0

λj1L
j)(

∞X
j=0

λj2L
j) = (1 + λ1L+ λ21L

2 + . . .)(1 + λ2L+ λ22L
2 + . . .) =

1 + (λ1 + λ2)L+ (λ
2
1 + λ1λ2 + λ22)L

2 + . . . =
∞X
j=0

(

jX
k=0

λk1λ
j−k
2 )Lj

There is a prettier way to express the MA(∞ ). Here we use the partial
fractions trick. We find a and b so that

1

(1− λ1L)(1− λ2L)
=

a

(1− λ1L)
+

b

(1− λ2L)
=

a(1− λ2L) + b(1− λ1L)

(1− λ1L)(1− λ2L)
.

The numerator on the right hand side must be 1, so

a+ b = 1

λ2a+ λ1b = 0

Solving,

b =
λ2

λ2 − λ1
, a =

λ1
λ1 − λ2

,

so

1

(1− λ1L)(1− λ2L)
=

λ1
(λ1 − λ2)

1

(1− λ1L)
+

λ2
(λ2 − λ1)

1

(1− λ2L)
.

Thus, we can express xt as

xt =
λ1

λ1 − λ2

∞X
j=0

λj1 t−j +
λ2

λ2 − λ1

∞X
j=0

λj2 t−j.

15



xt =
∞X
j=0

(
λ1

λ1 − λ2
λj1 +

λ2
λ2 − λ1

λj2) t−j

This formula should remind you of the solution to a second-order difference
or differential equation—the response of x to a shock is a sum of two expo-
nentials, or (if the λ are complex) a mixture of two damped sine and cosine
waves.

AR(p)’s work exactly the same way. Computer programs exist to find
roots of polynomials of arbitrary order. You can then multiply the lag poly-
nomials together or find the partial fractions expansion. Below, we’ll see a
way of writing the AR(p) as a vector AR(1) that makes the process even
easier.

Note again that not every AR(2) can be inverted. We require that the λ0s
satisfy | λ |< 1, and one can use their definition to find the implied allowed
region of φ1 and φ2. Again, until further notice, we will only use invertible
ARMA models.

Going from MA to AR(∞) is now obvious. Write the MA as

xt = b(L) t,

and so it has an AR(∞) representation
b(L)−1xt = t.

3.3.5 Summary of allowed lag polynomial manipula-
tions

In summary. one can manipulate lag polynomials pretty much just like regu-
lar polynomials, as if L was a number. (We’ll study the theory behind them
later, and it is based on replacing L by z where z is a complex number.)
Among other things,

1) We can multiply them

a(L)b(L) = (a0 + a1L+ ..)(b0 + b1L+ ..) = a0b0 + (a0b1 + b0a1)L+ . . .

2) They commute:
a(L)b(L) = b(L)a(L)

16



(you should prove this to yourself).

3) We can raise them to positive integer powers

a(L)2 = a(L)a(L)

4) We can invert them, by factoring them and inverting each term

a(L) = (1− λ1L)(1− λ2L) . . .

a(L)−1 = (1− λ1L)
−1(1− λ2L)

−1 . . . =
∞X
j=0

λj1L
j
∞X
j=0

λj2L
j . . . =

= c1(1− λ1L)
−1 + c2(1− λ2L)

−1...

We’ll consider roots greater than and/or equal to one, fractional powers,
and non-polynomial functions of lag operators later.

3.4 Multivariate ARMA models.

As in the rest of econometrics, multivariate models look just like univariate
models, with the letters reinterpreted as vectors and matrices. Thus, consider
a multivariate time series

xt =

∙
yt
zt

¸
.

The building block is a multivariate white noise process, t ˜ iid N(0,Σ),
by which we mean

t =

∙
δt
νt

¸
; E( t) = 0, E( t

0
t) = Σ =

∙
σ2δ σδν
σδν σ2ν

¸
, E( t

0
t−j) = 0.

(In the section on orthogonalizing VAR’s we’ll see how to start with an even
simpler building block, δ and ν uncorrelated or Σ = I.)
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The AR(1) is xt = φxt−1 + t. Reinterpreting the letters as appropriately
sized matrices and vectors,∙

yt
zt

¸
=

∙
φyy φyz
φzy φzz

¸ ∙
yt−1
zt−1

¸
+

∙
δt
νt

¸
or

yt = φyyyt−1 + φyzzt−1 + δt

zt = φzyyt−1 + φzzzt−1 + νt

Notice that both lagged y and lagged z appear in each equation. Thus, the
vector AR(1) captures cross-variable dynamics. For example, it could capture
the fact that when M1 is higher in one quarter, GNP tends to be higher the
following quarter, as well as the facts that if GNP is high in one quarter,
GNP tends to be higher the following quarter.

We can write the vector AR(1) in lag operator notation, (I − φL)xt = t

or
A(L)xt = t.

I’ll use capital letters to denote such matrices of lag polynomials.

Given this notation, it’s easy to see how to write multivariate ARMA
models of arbitrary orders:

A(L)xt = B(L) t,

where

A(L) = I−Φ1L−Φ2L2 . . . ; B(L) = I+Θ1L+Θ2L
2+. . . , Φj =

∙
φj,yy φj,yz
φj,zy φj,zz

¸
,

and similarly for Θj. The way we have written these polynomials, the first
term is I, just as the scalar lag polynomials of the last section always start
with 1. Another way of writing this fact is A(0) = I, B(0) = I. As with
Σ, there are other equivalent representations that do not have this feature,
which we will study when we orthogonalize VARs.

We can invert and manipulate multivariate ARMA models in obvious
ways. For example, the MA(∞)representation of the multivariate AR(1)
must be

(I − ΦL)xt = t ⇔ xt = (I − ΦL)−1 t =
∞X
j=0

Φj
t−j

18



More generally, consider inverting an arbitrary AR(p),

A(L)xt = t ⇔ xt = A(L)−1 t.

We can interpret the matrix inverse as a product of sums as above, or we
can interpret it with the matrix inverse formula:∙

ayy(L) ayz(L)
azy(L) azz(L)

¸ ∙
yt
zt

¸
=

∙
δt
νt

¸
⇒

∙
yt
zt

¸
= (ayy(L)azz(L)− azy(L)ayz(L))

−1
∙

azz(L) −ayz(L)
−azy(L) ayy(L)

¸ ∙
δt
νt

¸
We take inverses of scalar lag polynomials as before, by factoring them into
roots and inverting each root with the 1/(1− z) formula.

Though the above are useful ways to think about what inverting a matrix
of lag polynomials means, they are not particularly good algorithms for doing
it. It is far simpler to simply simulate the response of xt to shocks. We study
this procedure below.

The name vector autoregression is usually used in the place of ”vector
ARMA” because it is very uncommon to estimate moving average terms.
Autoregressions are easy to estimate since the OLS assumptions still apply,
where MA terms have to be estimated by maximum likelihood. Since every
MA has an AR(∞) representation, pure autoregressions can approximate
vector MA processes, if you allow enough lags.

3.5 Problems and Tricks

There is an enormous variety of clever tricks for manipulating lag polynomials
beyond the factoring and partial fractions discussed above. Here are a few.

1. You can invert finite-order polynomials neatly by matching represen-
tations. For example, suppose a(L)xt = b(L) t, and you want to find the
moving average representation xt = d(L) t. You could try to crank out
a(L)−1b(L) directly, but that’s not much fun. Instead, you could find d(L)
from b(L) t = a(L)xt = a(L)d(L) t, hence

b(L) = a(L)d(L),
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and matching terms in Lj to make sure this works. For example, suppose
a(L) = a0 + a1L, b(L) = b0 + b1L + b2L

2. Multiplying out d(L) = (ao +
a1L)

−1(b0 + b1L+ b2L
2) would be a pain. Instead, write

b0 + b1L+ b2L
2 = (a0 + a1L)(d0 + d1L+ d2L

2 + ...).

Matching powers of L,

b0 = a0d0
b1 = a1d0 + a0d1
b2 = a1d1 + a0d2
0 = a1dj+1 + a0dj; j ≥ 3.

which you can easily solve recursively for the dj . (Try it.)
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Chapter 4

The autocorrelation and
autocovariance functions.

4.1 Definitions

The autocovariance of a series xt is defined as

γj = cov(xt, xt−j)

(Covariance is defined as cov (xt, xt−j) = E(xt − E(xt))(xt−j − E(xt−j)), in
case you forgot.) Since we are specializing to ARMA models without constant
terms, E(xt) = 0 for all our models. Hence

γj = E(xtxt−j)

Note γ0 = var(xt)

A related statistic is the correlation of xt with xt−j or autocorrelation

ρj = γj/var(xt) = γj/γ0.

My notation presumes that the covariance of xt and xt−j is the same as
that of xt−1 and xt−j−1, etc., i.e. that it depends only on the separation
between two xs, j, and not on the absolute date t. You can easily verify that
invertible ARMA models posses this property. It is also a deeper property
called stationarity, that I’ll discuss later.

21



We constructed ARMA models in order to produce interesting models of
the joint distribution of a time series {xt}. Autocovariances and autocorre-
lations are one obvious way of characterizing the joint distribution of a time
series so produced. The correlation of xt with xt+1 is an obvious measure of
how persistent the time series is, or how strong is the tendency for a high
observation today to be followed by a high observation tomorrow.

Next, we calculate the autocorrelations of common ARMA processes,
both to characterize them, and to gain some familiarity with manipulating
time series.

4.2 Autocovariance and autocorrelation of ARMA

processes.

White Noise.

Since we assumed t ∼ iid N (0, σ2), it’s pretty obvious that
γ0 = σ2, γj = 0 for j 6= 0
ρ0 = 1, ρj = 0 for j 6= 0.

MA(1)

The model is:
xt = t + θ t−1

Autocovariance:

γ0 = var(xt) = var( t + θ t−1) = σ2 + θ2σ2 = (1 + θ2)σ2

γ1 = E(xtxt−1) = E(( t + θ t−1)( t−1 + θ t−2) = E(θ 2
t−1) = θσ2

γ2 = E(xtxt−2) = E(( t + θ t−1)( t−1 + θ t−2) = 0

γ3, . . . = 0

Autocorrelation:
ρ1 = θ/(1 + θ2); ρ2, . . . = 0

MA(2)
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Model:
xt = t + θ1 t−1 + θ2 t−2

Autocovariance:

γ0 = E[( t + θ1 t−1 + θ2 t−2)2] = (1 + θ21 + θ22)σ
2

γ1 = E[( t + θ1 t−1 + θ2 t−2)( t−1 + θ1 t−2 + θ2 t−3)] = (θ1 + θ1θ2)σ
2

γ2 = E[( t + θ1 t−1 + θ2 t−2)( t−2 + θ1 t−3 + θ2 t−4)] = θ2σ
2

γ3, γ4, . . . = 0

Autocorrelation:
ρ0 = 1

ρ1 = (θ1 + θ1θ2)/(1 + θ21 + θ22)

ρ2 = θ2/(1 + θ21 + θ22)

ρ3, ρ4, . . . = 0

MA(q), MA(∞)
By now the pattern should be clear: MA(q) processes have q autocorre-

lations different from zero. Also, it should be obvious that if

xt = θ(L) t =
∞X
j=0

(θjL
j) t

then

γ0 = var(xt) =

Ã ∞X
j=0

θ2j

!
σ2

γk =
∞X
j=0

θjθj+kσ
2

23



and formulas for ρj follow immediately.

There is an important lesson in all this. Calculating second moment
properties is easy for MA processes, since all the covariance terms (E( j k))
drop out.

AR(1)

There are two ways to do this one. First, we might use the MA(∞)
representation of an AR(1), and use the MA formulas given above. Thus,
the model is

(1− φL)xt = t ⇒ xt = (1− φL)−1 t =
∞X
j=0

φj t−j

so

γ0 =

Ã ∞X
j=0

φ2j

!
σ2 =

1

1− φ2
σ2; ρ0 = 1

γ1 =

Ã ∞X
j=0

φjφj+1

!
σ2 = φ

Ã ∞X
j=0

φ2j

!
σ2 =

φ

1− φ2
σ2; ρ1 = φ

and continuing this way,

γk =
φk

1− φ2
σ2; ρk = φk.

There’s another way to find the autocorrelations of an AR(1), which is
useful in its own right.

γ1 = E(xtxt−1) = E((φxt−1 + t)(xt−1)) = φσ2x; ρ1 = φ

γ2 = E(xtxt−2) = E((φ2xt−2 + φ t−1 + t)(xt−2)) = φ2σ2x; ρ2 = φ2

. . .

γk = E(xtxt−k) = E((φkxt−k + . . .)(xt−k) = φkσ2x; ρk = φk

AR(p); Yule-Walker equations

This latter method turns out to be the easy way to do AR(p)’s. I’ll do
an AR(3), then the principle is clear for higher order AR’s

xt = φ1xt−1 + φ2xt−2 + φ3xt−3 + t

24



multiplying both sides by xt, xt−1, ..., taking expectations, and dividing by
γ0, we obtain

1 = φ1ρ1 + φ2ρ2 + φ3ρ3 + σ2/γ0

ρ1 = φ1 + φ2ρ1 + φ3ρ2

ρ2 = φ1ρ1 + φ2 + φ3ρ1

ρ3 = φ1ρ2 + φ2ρ1 + φ3

ρk = φ1ρk−1 + φ2ρk−2 + φ3ρk−3

The second, third and fourth equations can be solved for ρ1, ρ2 and ρ3. Then
each remaining equation gives ρk in terms of ρk−1 and ρk−2, so we can solve
for all the ρs. Notice that the ρs follow the same difference equation as the
original x’s. Therefore, past ρ3, the ρ’s follow a mixture of damped sines and
exponentials.

The first equation can then be solved for the variance,

σ2x = γ0 =
σ2

1− (φ1ρ1 + φ2ρ2 + φ3ρ3)

4.2.1 Summary

The pattern of autocorrelations as a function of lag – ρj as a function of j –
is called the autocorrelation function. TheMA(q) process has q (potentially)
non-zero autocorrelations, and the rest are zero. The AR(p) process has p
(potentially) non-zero autocorrelations with no particular pattern, and then
the autocorrelation function dies off as a mixture of sines and exponentials.

One thing we learn from all this is that ARMA models are capable of
capturing very complex patters of temporal correlation. Thus, they are a
useful and interesting class of models. In fact, they can capture any valid
autocorrelation! If all you care about is autocorrelation (and not, say, third
moments, or nonlinear dynamics), then ARMAs are as general as you need
to get!

Time series books (e.g. Box and Jenkins ()) also define a partial autocor-
relation function. The j’th partial autocorrelation is related to the coefficient
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on xt−j of a regression of xt on xt−1, xt−2, . . . , xt−j. Thus for an AR(p), the
p + 1th and higher partial autocorrelations are zero. In fact, the partial
autocorrelation function behaves in an exactly symmetrical fashion to the
autocorrelation function: the partial autocorrelation of anMA(q) is damped
sines and exponentials after q.

Box and Jenkins () and subsequent books on time series aimed at fore-
casting advocate inspection of autocorrelation and partial autocorrelation
functions to “identify” the appropriate “parsimonious” AR, MA or ARMA
process. I’m not going to spend any time on this, since the procedure is
not much followed in economics anymore. With rare exceptions (for exam-
ple Rosen (), Hansen and Hodrick(1981)) economic theory doesn’t say much
about the orders of AR or MA terms. Thus, we use short order ARMAs to
approximate a process which probably is “really” of infinite order (though
with small coefficients). Rather than spend a lot of time on “identification”
of the precise ARMA process, we tend to throw in a few extra lags just to
be sure and leave it at that.

4.3 A fundamental representation

Autocovariances also turn out to be useful because they are the first of three
fundamental representations for a time series. ARMA processes with nor-
mal iid errors are linear combinations of normals, so the resulting {xt} are
normally distributed. Thus the joint distribution of an ARMA time series is
fully characterized by their mean (0) and covariances E(xtxt−j). (Using the
usual formula for a multivariate normal, we can write the joint probability
density of {xt} using only the covariances.) In turn, all the statistical prop-
erties of a series are described by its joint distribution. Thus, once we know
the autocovariances we know everything there is to know about the process.
Put another way,

If two processes have the same autocovariance function, they are
the same process.

This was not true of ARMA representations–an AR(1) is the same as a
(particular) MA(∞), etc.
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This is a useful fact. Here’s an example. Suppose xt is composed of two
unobserved components as follows:

yt = νt + ανt−1; zt = δt; xt = yt + zt

νt, δt iid, independent of each other. What ARMA process does xt follow?

One way to solve this problem is to find the autocovariance function
of xt, then find an ARMA process with the same autocovariance function.
Since the autocovariance function is fundamental, this must be an ARMA
representation for xt.

var(xt) = var(yt) + var(zt) = (1 + α2)σ2ν + σ2δ

E(xtxt−1) = E[(νt + δt + ανt−1)(νt−1 + δt−1 + ανt−2)] = ασ2ν

E(xtxt−k) = 0, k ≥ 1.
γ0 and γ1 nonzero and the rest zero is the autocorrelation function of an
MA(1), so we must be able to represent xt as an MA(1). Using the formula
above for the autocorrelation of an MA(1),

γ0 = (1 + θ2)σ2 = (1 + α2)σ2ν + σ2δ

γ1 = θσ2 = ασ2ν .

These are two equations in two unknowns, which we can solve for θ and σ2,
the two parameters of the MA(1) representation xt = (1 + θL) t.

Matching fundamental representations is one of the most common tricks
in manipulating time series, and we’ll see it again and again.

4.4 Admissible autocorrelation functions

Since the autocorrelation function is fundamental, it might be nice to gener-
ate time series processes by picking autocorrelations, rather than specifying
(non-fundamental) ARMA parameters. But not every collection of numbers
is the autocorrelation of a process. In this section, we answer the question,
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when is a set of numbers {1, ρ1, ρ2, . . .} the autocorrelation function of an
ARMA process?

Obviously, correlation coefficients are less that one in absolute value, so
choices like 2 or -4 are ruled out. But it turns out that | ρj |≤ 1 though
necessary, is not sufficient for {ρ1, ρ2, . . .} to be the autocorrelation function
of an ARMA process.

The extra condition we must impose is that the variance of any random
variable is positive. Thus, it must be the case that

var(α0xt + α1xt−1 + . . .) ≥ 0 for all {α0, α1, . . . .}.
Now, we can write

var(α0xt + α1xt−1) = γ0[α0 α1]

∙
1 ρ1
ρ1 1

¸ ∙
α0
α1

¸
≥ 0.

Thus, the matrices ∙
1 ρ1
ρ1 1

¸
,

⎡⎣ 1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

⎤⎦
etc. must all be positive semi-definite. This is a stronger requirement than
| ρ |≤ 1. For example, the determinant of the second matrix must be positive
(as well as the determinants of its principal minors, which implies | ρ1 |≤ 1
and | ρ2 |≤ 1), so

1 + 2ρ21ρ2 − 2ρ21 − ρ22 ≥ 0⇒ (ρ2 − (2ρ21 − 1))(ρ2 − 1) ≤ 0
We know ρ2 ≤ 1 already so,

ρ2 − (2ρ21 − 1) ≥ 0 ⇒ ρ2 ≥ 2ρ21 − 1.⇒ −1 ≤
ρ2 − ρ21
1− ρ21

≤ 1

Thus, ρ1 and ρ2 must lie
1 in the parabolic shaped region illustrated in figure

4.1.
1To get the last implication,

2ρ21 − 1 ≤ ρ2 ≤ 1⇒ −(1− ρ21) ≤ ρ2 − ρ21 ≤ 1− ρ21 ⇒ −1 ≤
ρ2 − ρ21
1− ρ21

≤ 1.
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For example, if ρ1 = .9, then 2(.81)− 1 = .62 ≤ ρ2 ≤ 1.
Why go through all this algebra? There are two points: 1) it is not

true that any choice of autocorrelations with | ρj |≤ 1 (or even < 1) is the
autocorrelation function of an ARMA process. 2) The restrictions on ρ are
very complicated. This gives a reason to want to pay the set-up costs for
learning the spectral representation, in which we can build a time series by
arbitrarily choosing quantities like ρ.

There are two limiting properties of autocorrelations and autocovariances
as well. Recall from the Yule-Walker equations that autocorrelations even-
tually die out exponentially.

1) Autocorrelations are bounded by an exponential. ∃ λ > 0 s.t.|γj| <
λj

Since exponentials are square summable, this implies
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2) Autocorrelations are square summable,
P∞

j=0 γ
2
j <∞ .

We will discuss these properties later.

4.5 Multivariate auto- and cross correlations.

As usual, you can remember the multivariate extension by reinterpreting the
same letters as appropriate vectors and matrices.

With a vector time series

xt =

∙
yt
zt

¸
we define the autocovariance function as

Γj = E(xtx
0
t−j) =

∙
E(ytyt−j) E(ytzt−j)
E(ztyt−j) E(ztzt−j)

¸
The terms E(ytzt−j) are called cross-covariances. Notice that Γj does not
= Γ−j. Rather, Γj = Γ0j or E(xtx

0
t−j) = [E(xtx

0
t+j)]

0. (You should stop and
verify this fact from the definition, and the fact that E(ytzt−j) = E(ztyt+j).)

Correlations are similarly defined as∙
E(ytyt−j)/σ2y E(ytzt−j)/σyσz
E(ztyt−j)/σyσz E(ztzt−j)/σ2z

¸
,

i.e., we keep track of autocorrelations and cross-correlations.
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Chapter 5

Prediction and
Impulse-Response Functions

One of the most interesting things to do with an ARMAmodel is form predic-
tions of the variable given its past. I.e., we want to know what is E(xt+j |all
information available at time t). For the moment, ”all information” will be
all past values of the variable, and all past values of the shocks. I’ll get more
picky about what is in the information set later. For now, the question is to
find

Et(xt+j) ≡ E(xt+j | xt, xt−1, xt−2, . . . t, t−1, t−2, . . .)

We might also want to know how certain we are about the prediction, which
we can quantify with

vart(xt+j) ≡ var(xt+j | xt, xt−1, xt−2, . . . t, t−1, t−2, . . .).

The left hand side introduces a short (but increasingly unfashionable) nota-
tion for conditional moments.

Prediction is interesting for a variety of reasons. First, it is one of the
few rationalizations for time-series to be a subject of its own, divorced from
economics. Atheoretical forecasts of time series are often useful. One can
simply construct ARMA or VAR models of time series and crank out such
forecasts. The pattern of forecasts is also, like the autocorrelation function,
an interesting characterization of the behavior of a time series.
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5.1 Predicting ARMA models

As usual, we’ll do a few examples and then see what general principles un-
derlie them.

AR(1)

For the AR(1), xt+1 = φxt + t+1, we have

Et(xt+1) = Et(φxt + t+1) = φxt
Et(xt+2) = Et(φ

2xt + φ t+1 + t+2) = φ2xt
Et(xt+k) = = φkxt.

Similarly,

vart(xt+1) = vart(φxt + t+1) = σ2

vart(xt+2) = var(φ2xt + φ t+1 + t+2) = (1 + φ2)σ2

vart(xt+k) = ... = (1 + φ2 + φ4 + ..+ φ2(k−1))σ2

These means and variances are plotted in figure 5.1.

Notice that
lim
k→∞

Et(xt+k) = 0 = E(xt)

lim
k→∞

vart(xt+k) =
∞X
j=0

φ2jσ2 =
1

1− φ2
σ2 = var(xt).

The unconditional moments are limits of the conditional moments. In this
way, we can think of the unconditional moments as the limit of conditional
moments of xt as of time t → −∞, or the limit of conditional moments of
xt+j as the horizon j →∞.

MA

Forecasting MA models is similarly easy. Since

xt = t + θ1 t−1 + θ2 t−2 + . . . ,
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Figure 5.1: AR(1) forecast and standard deviation

we have

Et(xt+1) = Et( t+1 + θ1 t + θ2 t−1 + . . .) = θ1 t + θ2 t−1 + . . .

Et(xt+k) = Et( t+k+θ1 t+k−1+...+ θk t+θk+1 t−1+. . .) = θk t+θk+1 t−1+. . .

vart(xt+1) = σ2

vart(xt+k) = (1 + θ21 + θ22 + ...+ θ2k−1)σ
2

AR’s and ARMA’s

The general principle in cranking out forecasts is to exploit the facts that
Et( t+j) = 0 and vart( t+j) = σ2 for j > 0 . You express xt+j as a sum of
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things known at time t and shocks between t and t+ j.

xt+j = {function of t+j, t+j−1, ..., t+1}+{function of t, t−1, ..., xt, xt−1, ...}

The things known at time t define the conditional mean or forecast and the
shocks between t and t+j define the conditional variance or forecast error.
Whether you express the part that is known at time t in terms of x’s or
in terms of ’s is a matter of convenience. For example, in the AR(1) case,
we could have written Et(xt+j) = φjxt or Et(xt+j) = φj t + φj+1 t−1 + ....
Since xt = t + φ t−1 + ..., the two ways of expressing Et(xt+j) are obviously
identical.

It’s easiest to express forecasts of AR’s and ARMA’s analytically (i.e. de-
rive a formula withEt(xt+j) on the left hand side and a closed-form expression
on the right) by inverting to theirMA(∞) representations. To find forecasts
numerically, it’s easier to use the state space representation described later
to recursively generate them.

Multivariate ARMAs

Multivariate prediction is again exactly the same idea as univariate pre-
diction, where all the letters are reinterpreted as vectors and matrices. As
usual, you have to be a little bit careful about transposes and such.

For example, if we start with a vector MA(∞), xt = B(L), we have

Et(xt+j) = Bj t +Bj+1 t−1 + . . .

vart(xt+j) = Σ+B1ΣB
0
1 + . . .+Bj−1ΣB0

j−1.

5.2 State space representation

The AR(1) is particularly nice for computations because both forecasts and
forecast error variances can be found recursively. This section explores a
really nice trick by which any process can be mapped into a vector AR(1),
which leads to easy programming of forecasts (and lots of other things too.)
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5.2.1 ARMAs in vector AR(1) representation

For example, start with an ARMA(2,1)

yt = φ1yt−1 + φ2yt−2 + t + θ1 t−1.

We map this into⎡⎣ yt
yt−1

t

⎤⎦ =
⎡⎣ φ1 φ2 θ1
1 0 0
0 0 0

⎤⎦⎡⎣ yt−1
yt−2
t−1

⎤⎦+
⎡⎣ 10
1

⎤⎦ [ t]
which we write in AR(1) form as

xt = Axt−1 + Cwt.

It is sometimes convenient to redefine the C matrix so the variance-
covariance matrix of the shocks is the identity matrix. To to this, we modify
the above as

C =

⎡⎣ σ
0
σ

⎤⎦ E(wtw
0
t) = I.

5.2.2 Forecasts from vector AR(1) representation

With this vector AR(1) representation, we can find the forecasts, forecast
error variances and the impulse response function either directly or with the
corresponding vector MA(∞) representation xt =

P∞
j=0A

jCwt−j. Either
way, forecasts are

Et(xt+k) = Akxt

and the forecast error variances are1

xt+1 −Et(xt+1) = Cwt+1 ⇒ vart(xt+1) = CC 0

xt+2 − Et(xt+2) = Cwt+2 +ACwt+1 ⇒ vart(xt+2) = CC 0 +ACC 0A0

1In case you forgot, if x is a vector with covariance matrix Σ and A is a matrix, then
var(Ax) = AΣA0.
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vart(xt+k) =
k−1X
j=0

AjCC 0Aj 0

These formulas are particularly nice, because they can be computed re-
cursively,

Et(xt+k) = AEt(xt+k−1)

vart(xt+k) = CC 0 +Avart(xt+k−1)A0.

Thus, you can program up a string of forecasts in a simple do loop.

5.2.3 VARs in vector AR(1) representation.

The multivariate forecast formulas given above probably didn’t look very
appetizing. The easy way to do computations with VARs is to map them
into a vector AR(1) as well. Conceptually, this is simple–just interpret
xt above as a vector [yt zt]

0 . Here is a concrete example. Start with the
prototype VAR,

yt = φyy1yt−1 + φyy2yt−2 + . . .+ φyz1zt−1 + φyz2zt−2 + . . .+ yt

zt = φzy1yt−1 + φzy2yt−2 + . . .+ φzz1zt−1 + φzz2zt−2 + . . .+ zt

We map this into an AR(1) as follows.⎡⎢⎢⎢⎢⎢⎣
yt
zt
yt−1
zt−1
...

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

φyy1 φyz1 φyy2 φyz2
φzy1 φzz1 φzy2 φzz2
1 0 0 0 . . .
0 1 0 0

. . .
. . .

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
yt−1
zt−1
yt−2
zt−2
...

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣
1 0
0 1
0 0
0 0
...
...

⎤⎥⎥⎥⎥⎥⎦
∙

yt

zt

¸

i.e.,
xt = Axt−1 + t, E( t

0
t) = Σ,

Or, starting with the vector form of the VAR,

xt = Φ1xt−1 + Φ2xt−2 + ...+ t,
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⎡⎢⎢⎢⎣
xt
xt−1
xt−2
...

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

Φ1 Φ2 . . .
I 0 . . .
0 I . . .

. . . . . .
. . .

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

xt−1
xt−2
xt−3
...

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

I
0
0
...

⎤⎥⎥⎥⎦ [ t]
Given this AR(1) representation, we can forecast both y and z as above.

Below, we add a small refinement by choosing the C matrix so that the shocks
are orthogonal, E( 0) = I.

Mapping a process into a vector AR(1) is a very convenient trick, for
other calculations as well as forecasting. For example, Campbell and Shiller
(199x) study present values, i.e. Et(

P∞
j=1 λ

jxt+j) where x = dividends, and
hence the present value should be the price. To compute such present values
from a VAR with xt as its first element, they map the VAR into a vector
AR(1). Then, the computation is easy: Et(

P∞
j=1 λ

jxt+j) = (
P∞

j=1 λ
jAj)xt =

(I − λA)−1xt. Hansen and Sargent (1992) show how an unbelievable variety
of models beyond the simple ARMA and VAR I study here can be mapped
into the vector AR(1).

5.3 Impulse-response function

The impulse response function is the path that x follows if it is kicked by a
single unit shock t, i.e., t−j = 0, t = 1, t+j = 0. This function is interesting
for several reasons. First, it is another characterization of the behavior of
our models. Second, and more importantly, it allows us to start thinking
about “causes” and “effects”. For example, you might compute the response
of GNP to a shock to money in a GNP-M1 VAR and interpret the result as
the “effect” on GNP of monetary policy. I will study the cautions on this
interpretation extensively, but it’s clear that it’s interesting to learn how to
calculate the impulse-response.

For an AR(1), recall the model is xt = φxt−1 + t or xt =
P∞

j=0 φ
j
t−j.

Looking at the MA(∞) representation, we see that the impulse-response is
t : 0 0 1 0 0 0 0
xt : 0 0 1 φ φ2 φ3 ...
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Similarly, for an MA(∞), xt =
P∞

j=0 θj t−j,

t : 0 0 1 0 0 0 0
xt : 0 0 1 θ θ2 θ3 ...

.

As usual, vector processes work the same way. If we write a vector
MA(∞) representation as xt = B(L) t, where t ≡ [ yt zt]

0 and B(L) ≡
B0 + B1L+ ..., then {B0, B1, ...} define the impulse-response function. Pre-
cisely, B(L) means

B(L) =

∙
byy(L) byz(L)
bzy(L) bzz(L)

¸
,

so byy(L) gives the response of yt+k to a unit y shock yt, byz(L) gives the
response of yt+k to a unit z shock, etc.

As with forecasts, MA(∞) representations are convenient for studying
impulse-responses analytically, but mapping to a vector AR(1) representa-
tion gives the most convenient way to calculate them in practice. Impulse-
response functions for a vector AR(1) look just like the scalar AR(1) given
above: for

xt = Axt−1 + C t,

the response function is

C,AC,A2C, ..., AkC, ..

Again, this can be calculated recursively: just keep multiplying by A. (If
you want the response of yt, and not the whole state vector, remember to
multiply by [1 0 0 . . . ]0 to pull off yt, the first element of the state vector.)

While this looks like the same kind of trivial response as the AR(1),
remember that A and C are matrices, so this simple formula can capture the
complicated dynamics of any finite order ARMA model. For example, an
AR(2) can have an impulse response with decaying sine waves.

5.3.1 Facts about impulse-responses

Three important properties of impulse-responses follow from these examples:

38



1. The MA(∞) representation is the same thing as the impulse-
response function.

This fact is very useful. To wit:

2. The easiest way to calculate an MA(∞) representation is to
simulate the impulse-response function.

Intuitively, one would think that impulse-responses have something to do
with forecasts. The two are related by:

3. The impulse response function is the same as Et(xt+j) −
Et−1(xt+j).

Since the ARMA models are linear, the response to a unit shock if the value
of the series is zero is the same as the response to a unit shock on top of
whatever other shocks have hit the system. This property is not true of
nonlinear models!
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Chapter 6

Stationarity and Wold
representation

6.1 Definitions

In calculating the moments of ARMA processes, I used the fact that the
moments do not depend on the calendar time:

E(xt) = E(xs) for all t and s

E(xtxt−j) = E(xsxs−j) for all t and s.

These properties are true for the invertible ARMA models, as you can show
directly. But they reflect a much more important and general property, as
we’ll see shortly. Let’s define it:

Definitions:

A process {xt} is strongly stationary or strictly stationary if the
joint probability distribution function of {xt−s, .., xt, . . . xt+s} is
independent of t for all s.

A process xt is weakly stationary or covariance stationary ifE(xt), E(x
2
t )

are finite and E(xtxt−j) depends only on j and not on t.
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Note that

1. Strong stationarity does not⇒ weak stationarity. E(x2t ) must be finite.
For example, an iid Cauchy process is strongly, but not covariance,
stationary.

2. Strong stationarity plus E(xt), E(xtx) <∞⇒ weak stationarity

3. Weak stationarity does not ⇒ strong stationarity. If the process is
not normal, other moments (E(xtxt−jxt−k)) might depend on t, so the
process might not be strongly stationary.

4. Weak stationarity plus normality ⇒ strong stationarity.

Strong stationarity is useful for proving some theorems. For example, a
nonlinear (measurable) function of a strongly stationary variable is strongly
stationary; this is not true of covariance stationarity. For most purposes,
weak or covariance stationarity is enough, and that’s the concept I will use
through the rest of these notes.

Stationarity is often misunderstood. For example, if the conditional co-
variances of a series vary over time, as in ARCH models, the series can still be
stationary. The definition merely requires that the unconditional covariances
are not a function of time. Many people use “nonstationary” interchangeably
with “has a unit root”. That is one form of nonstationarity, but there are
lots of others. Many people say a series is “nonstationary” if it has breaks
in trends, or if one thinks that the time-series process changed over time.
If we think that the trend-break or structural shift occurs at one point in
time, no matter how history comes out, they are right. However, if a series
is subject to occasional stochastic trend breaks or shifts in structure, then
the unconditional covariances will no longer have a time index, and the series
can be stationary.

6.2 Conditions for stationary ARMA’s

Which ARMA processes are stationary? First consider the MA processes
xt =

P∞
j=0 θj t−j.Recalling the formula for the variance, var(xt) =

P∞
j=0 θ

2
jσ

2,
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we see that Second moments exist if and only if theMA coefficients are square
summable,

Stationary MA ⇔
∞X
j=0

θ2j <∞.

If second moments exist, it’s easy to see that they are independent of the t
index.

Consider the AR(1). Inverting it to an MA, we get

xt =
kX

j=0

φj t−j + φkxt−k.

Clearly, unless | φ |< 1, we are not going to get square summable MA
coefficients, and hence the variance of x will again not be finite.

More generally, consider factoring an AR

A(L)xt = t = (1− λ1L)(1− λ2L) . . . xt = t.

For the variance to be finite, The AR lag polynomial must be invertible or
| λi |< 1 for all i. A more common way of saying this is to factor A(L)
somewhat differently,

A(L) = constant(L− ζ1)(L− ζ2) . . . .

the ζi are the roots of the lag polynomial, since A(z) = 0 when z = ζi. We
can rewrite the last equation as

A(L) = constant(−ζ1)(1− 1

ζ1
L)(−ζ2)(1− 1

ζ 2
L) . . .

Thus the roots ζ and the λs must be related by

ζi =
1

λi
.

Hence, the rule ”all | λ |< 1” means ”all | ζ |> 1”, or since λ and ζ can be
complex,

AR’s are stationary if all roots of the lag polynomial lie outside
the unit circle, i.e. if the lag polynomial is invertible.
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Both statements of the requirement for stationarity are equvalent to

ARMAs are stationary if and only if the impluse-response func-
tion eventually decays exponentially.

Stationarity does not require the MA polynomial to be invertible. That
means something else, described next.

6.3 Wold Decomposition theorem

The above definitions are important because they define the range of ”sen-
sible” ARMA processes (invertible AR lag polynomials, square summable
MA lag polynomials). Much more importantly, they are useful to enlarge
our discussion past ad-hoc linear combinations of iid Gaussian errors, as as-
sumed so far. Imagine any stationary time series, for example a non-linear
combination of serially correlated lognormal errors. It turns out that, so long
as the time series is covariance stationary, it has a linear ARMA representa-
tion! Therefore, the ad-hoc ARMA models we have studied so far turn out
to be a much more general class than you might have thought. This is an
enormously important fact known as the

Wold Decomposition Theorem: Any mean zero covariance
stationary process {xt} can be represented in the form

xt =
∞X
j=0

θj t−j + ηt

where

1. t ≡ xt − P (xt | xt−1, xt−2, . . . ..).
2. P ( t|xt−1, xt−2, . . . .) = 0, E( txt−j) = 0, E( t) = 0, E(

2
t ) = σ2 (same

for all t), E( t s) = 0 for all t 6= s,

3. All the roots of θ(L) are on or outside the unit circle, i.e. (unless there
is a unit root) the MA polynomial is invertible.
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4.
P∞

j=0 θ
2
j <∞, θ0 = 1

5. {θj} and { s} are unique.
6. ηt is linearly deterministic, i.e.ηt = P (ηt | xt−1, . . . .).

Property 1) just defines t as the linear forecast errors of xt. P (◦|◦) denotes
projection, i.e. the fitted value of a linear regression of the left hand variable
on the right hand variables. Thus, if we start with such a regression, say
xt = φ1xt−1+φ2xt−2+ ...+ t, 1) merely solves this regression for t. Proper-
ties 2) result from the definition of t as regression errors, and the fact from
1) that we can recover the t from current and lagged x’s, so t is orthogonal
to lagged as well as lagged x. Property 3) results from the fact that we
can recover t from current and lagged x. If θ(L) was not invertible, then
we couldn’t solve for t in terms of current and lagged x.Property 4) comes
from stationarity. If the θ were not square summable, the variance would be
infinite. Suppose we start with an AR(1) plus a sine wave. The resulting
series is covariance stationary. Property 6) allows for things like sine waves
in the series. We usually specify that the process {xt} is linearly regular,
which just means that deterministic components ηt have been removed.

Sargent (1987), Hansen and Sargent (1991) and Anderson (1972) all con-
tain proofs of the theorem. The proofs are very interesting, and introduce
you to the Hilbert space machinery, which is the hot way to think about
time series. The proof is not that mysterious. All the theorem says is that xt
can be written as a sum of its forecast errors. If there was a time zero with
information I0 and P (xj | I0) = 0, this would be obvious:

x1 = x1 − P (x1 | I0) = 1

x2 = x2 − P (x2 | x1, I0) + P (x2 | x1, I0) = 2 + θ1x1 = 2 + θ1x1 = 2 + θ1 1

x3 = x3 − P (x3 | x2, x1, I0) + P (x3 | x2, x1, I0) = 3 + φ1x2 + φ2x1

= 3 + φ1( 2 + θ1x1) + φ2x1 = 3 + φ1 2 + (φ1θ1) 1

and so forth. You can see how we are getting each x as a linear function of
past linear prediction errors. We could do this even for nonstationary x; the
stationarity of x means that the coefficients on lagged are independent of
the time index.
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6.3.1 What the Wold theorem does not say

Here are a few things the Wold theorem does not say:

1) The t need not be normally distributed, and hence need not be iid.

2) Though P ( t | xt−j) = 0, it need not be true that E( t | xt−j) = 0.
The projection operator P (xt | xt−1, . . .) finds the best guess of xt (minimum
squared error loss) from linear combinations of past xt, i.e. it fits a linear re-
gression. The conditional expectation operator E(xt | xt−1, . . .) is equivalent
to finding the best guess of xt using linear and all nonlinear combinations of
past xt, i.e., it fits a regression using all linear and nonlinear transformations
of the right hand variables. Obviously, the two are different.

3) The shocks need not be the ”true” shocks to the system. If the true
xt is not generated by linear combinations of past xt plus a shock, then the
Wold shocks will be different from the true shocks.

4) Similarly, the Wold MA(∞) is a representation of the time series, one
that fully captures its second moment properties, but not the representation
of the time series. Other representations may capture deeper properties of
the system. The uniqueness result only states that the Wold representation
is the unique linear representation where the shocks are linear forecast errors.
Non-linear representations, or representations in terms of non-forecast error
shocks are perfectly possible.

Here are some examples:

A) Nonlinear dynamics. The true system may be generated by a nonlinear
difference equation xt+1 = g(xt, xt−1, . . .) + ηt+1. Obviously, when we fit a
linear approximation as in the Wold theorem, xt = P (xt | xt−1, xt−2, . . .) +
t = φ1xt−1 + φ2xt−2 + . . . t, we will find that t 6= ηt. As an extreme
example, consider the random number generator in your computer. This is
a deterministic nonlinear system, ηt = 0. Yet, if you fit arbitrarily long AR’s
to it, you will get errors! This is another example in which E(.) and P (.) are
not the same thing.

B) Non-invertible shocks. Suppose the true system is generated by

xt = ηt + 2ηt−1. ηt iid, σ
2
η = 1

This is a stationary process. But the MA lag polynomial is not invertible
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(we can’t express the η shocks as x forecast errors), so it can’t be the Wold
representation. To find the Wold representation of the same process, match
autocorrelation functions to a process xt = t + θ t−1:

E(x2t ) = (1 + 4) = 5 = (1 + θ2)σ2

E(xtxt−1) = 2 = θσ2

Solving,
θ

1 + θ2
=
2

5
⇒ θ = {2 or 1/2}

and
σ2 = 2/θ = {1 or 4}

The original model θ = 2, σ2η = 1 is one possibility. But θ = 1/2, σ2 = 4
works as well, and that root is invertible. The Wold representation is unique:
if you’ve found one invertible MA, it must be the Wold representation.

Note that the impulse-response function of the original model is 1, 2; while
the impulse response function of the Wold representation is 1, 1/2. Thus,
the Wold representation, which is what you would recover from a VAR does
not give the “true” impulse-response.

Also, the Wold errors t are recoverable from a linear function of current
and pas xt. t =

P∞
j=0(−.5)jxt−jThe true shocks are not. In this example,

the true shocks are linear functions of future xt: ηt =
P∞

j=1(−.5)jxt+j!
This example holds more generally: any MA(∞) can be reexpressed as

an invertible MA(∞).

6.4 The Wold MA(∞) as another fundamen-
tal representation

One of the lines of the Wold theorem stated that the Wold MA(∞) repre-
sentation was unique. This is a convenient fact, because it means that the
MA(∞) representation in terms of linear forecast errors (with the autocorre-
lation function and spectral density) is another fundamental representation.
If two time series have the same Wold representation, they are the same time
series (up to second moments/linear forecasting).
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This is the same property that we found for the autocorrelation function,
and can be used in the same way.
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Chapter 7

VARs: orthogonalization,
variance decomposition,
Granger causality

7.1 Orthogonalizing VARs

The impulse-response function of a VAR is slightly ambiguous. As we will
see, you can represent a time series with arbitrary linear combinations of
any set of impulse responses. “Orthogonalization” refers to the process of
selecting one of the many possible impulse-response functions that you find
most interesting to look at. It is also technically convenient to transform
VARs to systems with orthogonal error terms.

7.1.1 Ambiguity of impulse-response functions

Start with a VAR expressed in vector notation, as would be recovered from
regressions of the elements of xt on their lags:

A(L)xt = t, A(0) = I, E( t
0
t) = Σ. (7.1)

Or, in moving average notation,

xt = B(L) t, B(0) = I, E( t
0
t) = Σ (7.2)
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where B(L) = A(L)−1. Recall that B(L) gives us the response of xt to unit
impulses to each of the elements of t. Since A(0) = I , B(0) = I as well.

But we could calculate instead the responses of xt to new shocks that
are linear combinations of the old shocks. For example, we could ask for the
response of xt to unit movements in yt and zt + .5 yt. (Just why you might
want to do this might not be clear at this point, but bear with me.) This is
easy to do. Call the new shocks ηt so that η1t = yt, η2t = zt + .5 yt, or

ηt = Q t, Q =

∙
1 0
.5 1

¸
.

We can write the moving average representation of our VAR in terms of these
new shocks as xt = B(L)Q−1Q t or

xt = C(L)ηt. (7.3)

where C(L) = B(L)Q−1. C(L) gives the response of xt to the new shocks
ηt. As an equivalent way to look at the operation, you can see that C(L) is
a linear combination of the original impulse-responses B(L).

So which linear combinations should we look at? Clearly the data are
no help here–the representations (7.2) and (7.3) are observationally equiv-
alent, since they produce the same series xt. We have to decide which linear
combinations we think are the most interesting. To do this, we state a set of
assumptions, called orthogonalization assumptions, that uniquely pin down
the linear combination of shocks (or impulse-response functions) that we find
most interesting.

7.1.2 Orthogonal shocks

The first, and almost universal, assumption is that the shocks should be or-
thogonal (uncorrelated). If the two shocks yt and zt are correlated, it doesn’t
make much sense to ask “what if yt has a unit impulse” with no change in zt,
since the two usually come at the same time. More precisely, we would like
to start thinking about the impulse-response function in causal terms–the
“effect” of money on GNP, for example. But if the money shock is correlated
with the GNP shock, you don’t know if the response you’re seeing is the
response of GNP to money, or (say) to a technology shocks that happen to
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come at the same time as the money shock (maybe because the Fed sees the
GNP shock and accommodates it). Additionally, it is convenient to rescale
the shocks so that they have a unit variance.

Thus, we want to pick Q so that E(ηtη
0
t) = I. To do this, we need a Q

such that
Q−1Q−10 = Σ

With that choice of Q,

E(ηtη
0
t) = E(Q t

0
tQ

0) = QΣQ0 = I

One way to construct such a Q is via the Choleski decomposition. (Gauss
has a command CHOLESKI that produces this decomposition.)

Unfortunately there are many different Q’s that act as “square root”
matrices for Σ. (Given one such Q, you can form another, Q∗, by Q∗ = RQ,
where R is an orthogonal matrix, RR0 = I. Q∗Q∗0 = RQQ0R0 = RR0 = I.)
Which of the many possible Q’s should we choose?

We have exhausted our possibilities of playing with the error term, so we
now specify desired properties of the moving average C(L) instead. Since
C(L) = B(L)Q−1, specifying a desired property of C(L) can help us pin down
Q. To date, using “theory” (in a very loose sense of the word) to specify
features of C(0) and C(1) have been the most popular such assumptions.
Maybe you can find other interesting properties of C(L) to specify.

7.1.3 Sims orthogonalization–Specifying C(0)

Sims (1980) suggests we specify properties of C(0), which gives the instan-
taneous response of each variable to each orthogonalized shock η. In our
original system, (7.2) B(0) = I. This means that each shock only affects its
own variable contemporaneously. Equivalently, A(0) = I–in the autoregres-
sive representation (7.1), neither variable appears contemporaneously in the
other variable’s regression.

Unless Σ is diagonal (orthogonal shocks to start with), every diagonalizing
matrix Q will have off-diagonal elements. Thus, C(0) cannot = I. This
means that some shocks will have effects on more than one variable. Our job
is to specify this pattern.
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Sims suggests that we choose a lower triangular C(0),∙
yt
zt

¸
=

∙
C0yy 0
C0zy C0zz

¸ ∙
η1t
η2t

¸
+ C1ηt−1 + ...

As you can see, this choice means that the second shock η2t does not affect
the first variable, yt, contemporaneously. Both shocks can affect zt contem-
poraneously. Thus, all the contemporaneous correlation between the original
shocks t has been folded into C0zy.

We can also understand the orthogonalization assumption in terms of
the implied autoregressive representation. In the original VAR, A(0) = I, so
contemporaneous values of each variable do not appear in the other variable’s
equation. A lower triangular C(0) implies that contemporaneous yt appears
in the zt equation, but zt does not appear in the yt equation. To see this, call
the orthogonalized autoregressive representation D(L)xt = ηt, i.e., D(L) =
C(L)−1. Since the inverse of a lower triangular matrix is also lower triangular,
D(0) is lower triangular, i.e.∙

D0yy 0
D0zy D0zz

¸ ∙
yt
zt

¸
+D1xt−1 + ... = ηt

or
D0yyyt = −D1yyyt−1 −D1yzzt−1 +η1t
D0zzzt = −D0zyyt −D1zyyt−1 −D1zzzt−1 +η2t

. (7.4)

As another way to understand Sims orthogonalization, note that it is nu-
merically equivalent to estimating the system by OLS with contemporaneous
yt in the zt equation, but not vice versa, and then scaling each equation so
that the error variance is one. To see this point, remember that OLS esti-
mates produce residuals that are uncorrelated with the right hand variables
by construction (this is their defining property). Thus, suppose we run OLS
on

yt = a1yyyt−1 + ..+ a1yzzt−1 + ..+ ηyt
zt = a0zyyt + a1zyyt−1 + ..+ a1zzzt−1 + ..+ ηzt

(7.5)

The first OLS residual is defined by ηyt = yt − E(yt | yt−1, .., zt−1, ..) so ηyt
is a linear combination of {yt, yt−1, .., zt−1, ..}.OLS residuals are orthogonal
to right hand variables, so ηzt is orthogonal to any linear combination of
{yt, yt−1, .., zt−1, ..}, by construction. Hence, ηyt and ηzt are uncorrelated

51



with each other. a0zy captures all of the contemporaneous correlation of
news in yt and news in zt.

In summary, one can uniquely specify Q and hence which linear com-
bination of the original shocks you will use to plot impulse-responses by
the requirements that 1) the errors are orthogonal and 2) the instantaneous
response of one variable to the other shock is zero. Assumption 2) is equiv-
alent to 3) The VAR is estimated by OLS with contemporaneous y in the
z equation but not vice versa.

Happily, the Choleski decomposition produces a lower triangular Q. Since

C(0) = B(0)Q−1 = Q−1,

the Choleski decomposition produces the Sims orthogonalization already, so
you don’t have to do any more work. (You do have to decide what order to
put the variables in the VAR.)

Ideally, one tries to use economic theory to decide on the order of orthog-
onalization. For example, (reference) specifies that the Fed cannot see GNP
until the end of the quarter, so money cannot respond within the quarter
to a GNP shock. As another example, Cochrane (1993) specifies that the
instantaneous response of consumption to a GNP shock is zero, in order to
identify a movement in GNP that consumers regard as transitory.

7.1.4 Blanchard-Quah orthogonalization—restrictions on
C(1).

Rather than restrict the immediate response of one variable to another shock,
Blanchard and Quah (1988) suggest that it is interesting to examine shocks
defined so that the long-run response of one variable to another shock is zero.
If a system is specified in changes, ∆xt = C(L)ηt, then C(1) gives the long-
run response of the levels of xt to η shocks. Blanchard and Quah argued that
“demand” shocks have no long-run effect on GNP. Thus, they require C(1)
to be lower diagonal in a VAR with GNP in the first equation. We find the
required orthogonalizing matrix Q from C(1) = B(1)Q−1.
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7.2 Variance decompositions

In the orthogonalized system we can compute an accounting of forecast error
variance: what percent of the k step ahead forecast error variance is due to
which variable. To do this, start with the moving average representation of
an orthogonalized VAR

xt = C(L)ηt, E(ηtη
0
t) = I.

The one step ahead forecast error variance is

t+1 = xt+1 − Et(xt+1) = C0ηt+1 =

∙
cyy,0 cyz,0
czy,0 czz,0

¸ ∙
ηy,t+1
ηz,t+1

¸
.

(In the right hand equality, I denote C(L) = C0 + C1L+ C2L
2 + ... and the

elements of C(L) as cyy,0 + cyy,1L+ cyy,2L
2 + ..., etc.) Thus, since the η are

uncorrelated and have unit variance,

vart(yt+1) = c2yy,0σ
2(ηy) + c2yz,0σ

2(ηz) = c2yy,0 + c2yz,0

and similarly for z. Thus, c2yy,0 gives the amount of the one-step ahead
forecast error variance of y due to the ηy shock, and c

2
yz,0 gives the amount due

to the ηz shock. (Actually, one usually reports fractions c
2
yy,0/(c

2
yy,0 + c2yz,0).

)

More formally, we can write

vart(xt+1) = C0C
0
0.

Define

I1 =

∙
1 0
0 0

¸
, I2 =

∙
0 0
0 1

¸
, etc.

Then, the part of the one step ahead forecast error variance due to the first
(y) shock is C0I1C

0
0, the part due to the second (z) shock is C0I2C

0
0, etc.

Check for yourself that these parts add up, i.e. that

C0C
0
0 = C0 I1C

0
0 + C0 I2C

0
0 + . . .

You can think of Iτ as a new covariance matrix in which all shocks but
the τth are turned off. Then, the total variance of forecast errors must be
equal to the part due to the τth shock, and is obviously C0IτC

0
0.
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Generalizing to k steps ahead is easy.

xt+k −Et(xt+k) = C0ηt+k + C1ηt+k−1 + . . .+ Ck−1ηt+1

vart(xt+k) = C0C
0
0 + C1C

0
1 + . . .+ Ck−1C 0

k−1

Then

vk,τ =
k−1X
j=0

CjIτC
0
j

is the variance of k step ahead forecast errors due to the τth shock, and the
variance is the sum of these components, vart(xt+k) =

P
τ vk,τ .

It is also interesting to compute the decomposition of the actual variance
of the series. Either directly from the MA representation, or by recognizing
the variance as the limit of the variance of k-step ahead forecasts, we obtain
that the contribution of the τth shock to the variance of xt is given by

vτ =
∞X
j=0

CjIτC
0
j

and var(xt+k) =
P

τ vτ .

7.3 VAR’s in state space notation

For many of these calculations, it’s easier to express the VAR as an AR(1)
in state space form. The only refinement relative to our previous mapping is
how to include orthogonalized shocks η. Since ηt = Q t, we simply write the
VAR

xt = Φ1xt−1 + Φ2xt−2 + ...+ t

as ⎡⎢⎢⎢⎣
xt
xt−1
xt−2
...

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

Φ1 Φ2 . . .
I 0 . . .
0 I . . .

. . .
. . .

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

xt−1
xt−2
xt−3
...

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

Q−1

0
0
...

⎤⎥⎥⎥⎦ [ηt]
xt = Axt−1 + Cηt, E(ηtη

0
t) = I
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The impulse-response function is C, AC, A2C, ... and can be found re-
cursively from

IR0 = C, IRj = A IRj−1 .

If Q−1 is lower diagonal, then only the first shock affects the first variable,
as before. Recall from forecasting AR(1)’s that

vart(xt+j) =
k−1X
j=0

AjCC 0A0 j.

Therefore,

vk,τ =
k−1X
j=0

AjC Iτ C
0A0 j

gives the variance decomposition–the contribution of the τth shock to the
k-step ahead forecast error variance. It too can be found recursively from

vi,τ = CIτC
0, vk,t = Avk−1,tA0.

7.4 Tricks and problems:

1. Suppose you multiply the original VAR by an arbitrary lower triangular
Q. This produces a system of the same form as (7.4). Why would OLS (7.5)
not recover this system, instead of the system formed by multiplying the
original VAR by the inverse of the Choleski decomposition of Σ?

2.Suppose you start with a given orthogonal representation,

xt = C(L)ηt, E(ηtη
0
t) = I.

Show that you can transform to other orthogonal representations of the
shocks by an orthogonal matrix–a matrix Q such that QQ0 = I.

3. Consider a two-variable cointegrated VAR. y and c are the variables,
(1 − L)yt and (1 − L)ct, and yt − ct are stationary, and ct is a random
walk. Show that in this system, Blanchard-Quah and Sims orthogonalization
produce the same result.
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4. Show that the Sims orthogonalization is equivalent to requiring that
the one-step ahead forecast error variance of the first variable is all due to
the first shock, and so forth.

Answers:

1. The OLS regressions of (7.5) do not (necessarily) produce a diagonal
covariance matrix, and so are not the same as OLS estimates, even though
the same number of variables are on the right hand side. Moral: watch the
properties of the error terms as well as the properties of C(0) or B(0)!

2. We want to transform to shocks ξt, such that E(ξtξ
0
t) = I. To do it,

E(ξtξ
0
t) = E(Qηtη

0
tQ

0) = QQ0, which had better be I. Orthogonal matrices
rotate vectors without stretching or shrinking them. For example, you can
verify that

Q =

∙
cos θ sin θ
− sin θ cos θ

¸
rotates vectors counterclockwise by θ. This requirement means that the
columns of Q must be orthogonal, and that if you multiply Q by two or-
thogonal vectors, the new vectors will still be orthogonal. Hence the name.

3. Write the y, c system as ∆xt = B(L) t. y, c cointegrated im-
plies that c and y have the same long-run response to any shock–Bcc(1) =
Byc(1), Bcy(1) = Byy(1). A random walk means that the immediate response
of c to any shock equals its long run response, Bci(0) = Bci(1), i = c, y.
Hence, Bcy(0) = Bcy(1). Thus, B(0) is lower triangular if and only if B(1) is
lower triangular.

c a random walk is sufficient, but only the weaker condition Bci(0) =
Bci(1), i = c, y is necessary. c’s response to a shock could wiggle, so long as
it ends at the same place it starts.

4. If C(0) is lower triangular, then the upper left hand element of
C(0)C(0)0 is C(0)211.
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7.5 Granger Causality

It might happen that one variable has no response to the shocks in the
other variable. This particular pattern in the impulse-response function has
attracted wide attention. In this case we say that the shock variable fails to
Granger cause the variable that does not respond.

The first thing you learn in econometrics is a caution that putting x on
the right hand side of y = xβ + doesn’t mean that x ”causes” y. (The
convention that causes go on the right hand side is merely a hope that one
set of causes–x–might be orthogonal to the other causes . ) Then you
learn that ”causality” is not something you can test for statistically, but
must be known a priori.

Granger causality attracted a lot of attention because it turns out that
there is a limited sense in which we can test whether one variable “causes”
another and vice versa.

7.5.1 Basic idea

The most natural definition of ”cause” is that causes should precede effects.
But this need not be the case in time-series.

Consider an economist who windsurfs.1 Windsurfing is a tiring activity,
so he drinks a beer afterwards. With W = windsurfing and B = drink a beer,
a time line of his activity is given in the top panel of figure 7.1. Here we have
no difficulty determining that windsurfing causes beer consumption.

But now suppose that it takes 23 hours for our economist to recover
enough to even open a beer, and furthermore let’s suppose that he is lucky
enough to live somewhere (unlike Chicago) where he can windsurf every day.
Now his time line looks like the middle panel of figure 7.1. It’s still true that
W causes B, but B precedes W every day. The “cause precedes effects” rule
would lead you to believe that drinking beer causes one to windsurf!

How can one sort this out? The problem is that both B andW are regular
events. If one could find an unexpected W , and see whether an unexpected
B follows it, one could determine that W causes B, as shown in the bottom

1The structure of this example is due to George Akerlof.
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time

W B W B W B

time

W B WB WB

time

W B WB WBW B

??

Figure 7.1:

panel of figure 7.1. So here is a possible definition: if an unexpected W
forecasts B then we know that W “causes” B. This will turn out to be one
of several equivalent definitions of Granger causality.

7.5.2 Definition, autoregressive representation

Definition: wt Granger causes yt if wt helps to forecast yt, given
past yt.

Consider a vector autoregression

yt = a(L)yt−1 + b(L)wt−1 + δt

wt = c(L)yt−1 + d(L)wt−1 + νt
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our definition amounts to: wt does not Granger cause yt if b(L) = 0, i.e. if
the vector autoregression is equivalent to

yt = a(L)yt−1 +δt
wt = c(L)yt−1 +d(L)wt−1 +νt

We can state the definition alternatively in the autoregressive representation∙
yt
wt

¸
=

∙
a(L) b(L)
c(L) d(L)

¸ ∙
yt−1
wt−1

¸
+

∙
δt
νt

¸
∙
I − La(L) −Lb(L)
−Lc(L) I − Ld(L)

¸ ∙
yt
wt

¸
=

∙
δt
νt

¸
∙

a∗(L) b∗(L)
c∗(L) d∗(L)

¸ ∙
yt
wt

¸
=

∙
δt
νt

¸
Thus, w does not Granger cause y iff b∗(L) = 0, or if the autoregressive
matrix lag polynomial is lower triangular.

7.5.3 Moving average representation

We can invert the autoregressive representation as follows:∙
yt
wt

¸
=

1

a∗(L)d∗(L)− b∗(L)d∗(L)

∙
d∗(L) −b∗(L)
−c∗(L) a∗(L)

¸ ∙
δt
νt

¸
Thus, w does not Granger cause y if and only if the Wold moving average
matrix lag polynomial is lower triangular. This statement gives another in-
terpretation: if w does not Granger cause y, then y is a function of its shocks
only and does not respond to w shocks. w is a function of both y shocks and
w shocks.

Another way of saying the same thing is that w does not Granger cause y
if and only if y’s bivariate Wold representation is the same as its univariate
Wold representation, or w does not Granger cause y if the projection of y on
past y and w is the same as the projection of y on past y alone.

59



7.5.4 Univariate representations

Consider now the pair of univariate Wold representations

yt = e(L)ξt ξt = yt − P (yt | yt−1, yt−2, . . .);

wt = f(L)µt µt = wt − P (wt | wt−1, wt−2, . . .);

(I’m recycling letters: there aren’t enough to allow every representation to
have its own letters and shocks.) I repeated the properties of ξ and µ to
remind you what I mean.

wt does not Granger cause yt if E(µtξt+j) = 0 for all j > 0. In words, wt

Granger causes yt if the univariate innovations of wt are correlated with (and
hence forecast) the univariate innovations in yt. In this sense, our original
idea that wt causes yt if its movements precede those of yt was true iff it
applies to innovations, not the level of the series.

Proof: If w does not Granger cause y then the bivariate represen-
tation is

yt = a(L)δt
wt = c(L)δt +d(L)νt

The second line must equal the univariate representation of wt

wt = c(L)δt + d(L)νt = f(L)µt

Thus, µt is a linear combination of current and past δt and νt.
Since δt is the bivariate error, E(δt | yt−1 . . . wt−1 . . .) = E(δt |
δt−1 . . . νt−1 . . .) = 0. Thus, δt is uncorrelated with lagged δt and
νt, and hence lagged µt.

If E(µtξt+j) = 0, then past µ do not help forecast ξ, and thus
past µ do not help forecast y given past y. Since one can solve
for wt = f(L)µt(w and µ span the same space) this means past
w do not help forecast y given past y.

2
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7.5.5 Effect on projections

Consider the projection of wt on the entire y process,

wt =
∞X

j=−∞
bjyt−j + t

Here is the fun fact:

The projection of wt on the entire y process is equal to the projection of
wt on current and past y alone, (bj = 0 for j < 0 if and only if w does not
Granger cause y.

Proof: 1) w does not Granger cause y ⇒one sided. If w does not
Granger cause y, the bivariate representation is

yt = a(L)δt

wt = d(L)δt + e(L)νt

Remember, all these lag polynomials are one-sided. Inverting the
first,

δt = a(L)−1yt

substituting in the second,

wt = d(L)a(L)−1yt + e(L)νt.

Since δ and ν are orthogonal at all leads and lags (we assumed
contemporaneously orthogonal as well) e(L)νt is orthogonal to yt
at all leads and lags. Thus, the last expression is the projection
of w on the entire y process. Since d(L) and a(L)−1 are one sided
the projection is one sided in current and past y.

2) One sided⇒ w does not Granger cause y . Write the univariate
representation of y as yt = a(L)ξt and the projection of w on the
whole y process

wt = h(L)yt + ηt

The given of the theorem is that h(L) is one sided. Since this is
the projection on the whole y process, E(ytηt−s) = 0 for all s.
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ηt is potentially serially correlated, so it has a univariate repre-
sentation

ηt = b(L)δt.

Putting all this together, y and z have a joint representation

yt = a(L)ξt
wt = h(L)a(L)ξt +b(L)δt

It’s not enough to make it look right, we have to check the prop-
erties. a(L) and b(L) are one-sided, as is h(L) by assumption.
Since η is uncorrelated with y at all lags, δ is uncorrelated with
ξ at all lags. Since ξ and δ have the right correlation properties
and [y w] are expressed as one-sided lags of them, we have the
bivariate Wold representation.

2

7.5.6 Summary

w does not Granger cause y if

1) Past w do not help forecast y given past y –Coefficients in on w in a
regression of y on past y and past w are 0.

2) The autoregressive representation is lower triangular.

3) The bivariate Wold moving average representation is lower triangular.

4) Proj(wt |all yt) = Proj(wt |current and past y)
5) Univariate innovations in w are not correlated with subsequent uni-

variate innovations in y.

6) The response of y to w shocks is zero

One could use any definition as a test. The easiest test is simply an F-test
on the w coefficients in the VAR. Monte Carlo evidence suggests that this
test is also the most robust.
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7.5.7 Discussion

It is not necessarily the case that one pair of variables must Granger cause
the other and not vice versa. We often find that each variable responds to
the other’s shock (as well as its own), or that there is feedback from each
variable to the other.

The first and most famous application of Granger causality was to the
question “does money growth cause changes in GNP?” Friedman and Schwartz
(19 ) documented a correlation between money growth and GNP, and a ten-
dency for money changes to lead GNP changes. But Tobin (19 ) pointed
out that, as with the windsurfing example given above, a phase lead and a
correlation may not indicate causality. Sims (1972) applied a Granger causal-
ity test, which answers Tobin’s criticism. In his first work, Sims found that
money Granger causes GNP but not vice versa, though he and others have
found different results subsequently (see below).

Sims also applied the last representation result to study regressions of
GNP on money,

yt =
∞X
j=0

bjmt−j + δt.

This regression is known as a “St. Louis Fed” equation. The coefficients were
interpreted as the response of y to changes in m; i.e. if the Fed sets m, {bj}
gives the response of y. Since the coefficients were “big”, the equations
implied that constant money growth rules were desirable.

The obvious objection to this statement is that the coefficients may reflect
reverse causality: the Fed sets money in anticipation of subsequent economic
growth, or the Fed sets money in response to past y. In either case, the error
term δ is correlated with current and lagged m’s so OLS estimates of the b’s
are inconsistent.

Sims (1972) ran causality tests essentially by checking the pattern of
correlation of univariate shocks, and by running regressions of y on past and
futurem, and testing whether coefficients on futurem are zero. He concluded
that the “St. Louis Fed” equation is correctly specified after all. Again, as
we see next, there is now some doubt about this proposition. Also, even
if correctly estimated, the projection of y on all m’s is not necessarily the
answer to “what if the Fed changes m”.
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Explained by shocks to
Var. of M1 IP WPI
M1 97 2 1
IP 37 44 18
WPI 14 7 80

Table 7.1: Sims variance accounting

7.5.8 A warning: why “Granger causality” is not “Causal-
ity”

“Granger causality” is not causality in a more fundamental sense because
of the possibility of other variables. If x leads to y with one lag but to z
with two lags, then y will Granger cause z in a bivariate system− − y will
help forecast z since it reveals information about the “true cause” x. But it
does not follow that if you change y (by policy action), then a change in z
will follow. The weather forecast Granger causes the weather (say, rainfall
in inches), since the forecast will help to forecast rainfall amount given the
time-series of past rainfall. But (alas) shooting the forecaster will not stop
the rain. The reason is that forecasters use a lot more information than past
rainfall.

This wouldn’t be such a problem if the estimated pattern of causality in
macroeconomic time series was stable over the inclusion of several variables.
But it often is. A beautiful example is due to Sims (1980). Sims computed
a VAR with money, industrial production and wholesale price indices. He
summarized his results by a 48 month ahead forecast error variance, shown
in table 7.1

The first row verifies that M1 is exogenous: it does not respond to the
other variables’ shocks. The second row shows that M1 ”causes” changes in
IP , since 37% of the 48 month ahead variance of IP is due to M1 shocks.
The third row is a bit of a puzzle: WPI also seems exogenous, and not too
influenced by M1.

Table 7.2 shows what happens when we add a further variable, the interest
rate. Now, the second row shows a substantial response of money to interest
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Explained by shocks to
Var of R M1 WPI IP
R 50 19 4 28
M1 56 42 1 1
WPI 2 32 60 6
IP 30 4 14 52

Table 7.2: Sims variance accounting including interest rates

rate shocks. It’s certainly not exogenous, and one could tell a story about the
Fed’s attempts to smooth interest rates. In the third row, we now find that
M does influence WPI. And, worst of all, the fourth row shows that M does
not influence IP ; the interest rate does. Thus, interest rate changes seem to
be the driving force of real fluctuations, and money just sets the price level!
However, later authors have interpreted these results to show that interest
rates are in fact the best indicators of the Fed’s monetary stance.

Notice that Sims gives an economic measure of feedback (forecast error
variance decomposition) rather than F-tests for Granger causality. Since
the first flush of optimism, economists have become less interested in the
pure hypothesis of no Granger causality at all, and more interested in simply
quantifying how much feedback exists from one variable to another. And
sensibly so.

Any variance can be broken down by frequency. Geweke (19 ) shows how
to break the variance decomposition down by frequency, so you get measures
of feedback at each frequency. This measure can answer questions like “does
the Fed respond to low or high frequency movements in GNP?”, etc.

7.5.9 Contemporaneous correlation

Above, I assumed where necessary that the shocks were orthogonal. One can
expand the definition of Granger causality to mean that current and past w
do not predict y given past y. This means that the orthogonalized MA is
lower triangular. Of course, this version of the definition will depend on the
order of orthogonalization. Similarly, when thinking of Granger causality in
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terms of impulse response functions or variance decompositions you have to
make one or the other orthogonalization assumption.

Intuitively, the problem is that one variable may affect the other so quickly
that it is within the one period at which we observe data. Thus, we can’t
use our statistical procedure to see whether contemporaneous correlation is
due to y causing w or vice-versa. Thus, the orthogonalization assumption is
equivalent to an assumption about the direction of instantaneous causality.
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Chapter 8

Spectral Representation

The third fundamental representation of a time series is its spectral density.
This is just the Fourier transform of the autocorrelation/ autocovariance
function. If you don’t know what that means, read on.

8.1 Facts about complex numbers and trigonom-

etry

8.1.1 Definitions

Complex numbers are composed of a real part plus an imaginary part, z = A
+Bi, where i = (−1)1/2. We can think of a complex number as a point on
a plane with reals along the x axis and imaginary numbers on the y axis as
shown in figure 8.1.

Using the identity eiθ = cos θ + i sin θ, we can also represent complex
numbers in polar notation as z = Ceiθwhere C = (A2+B2)1/2 is the amplitude
or magnitude, and θ = tan−1(B/A) is the angle or phase. The length C of
a complex number is also denoted as its norm | z |.
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Figure 8.1: Graphical representation of the complex plane.

8.1.2 Addition, multiplication, and conjugation

To add complex numbers, you add each part, as you would any vector

(A+Bi) + (C +Di) = (A+ C) + (B +D)i.

Hence, we can represent addition on the complex plane as in figure 8.2

You multiply them just like you’d think:

(A+Bi)(C +Di) = AC +ADi+BCi+BDi = (AC −BD)+ (AD+BC)i.

Multiplication is easier to see in polar notation

Deiθ1Eeiθ2 = DEei(θ1+θ2)

Thus, multiplying two complex numbers together gives you a number whose
magnitude equals the product of the two magnitudes, and whose angle (or
phase) is the sum of the two angles, as shown in figure 8.3. Angles are
denoted in radians, so π = 1800, etc.

The complex conjugate * is defined by

(A+Bi)∗ = A−Bi and (Aeiθ)∗ = Ae−iθ.
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1z A Bi= +

2z C Di= +

1 2z z+

Figure 8.2: Complex addition

This operation simply flips the complex vector about the real axis. Note that
zz∗ =| z |2, and z + z∗ = 2Re(z) is real..

8.1.3 Trigonometric identities

From the identity
eiθ = cos θ + i sin θ,

two useful identities follow

cos θ = (eiθ + e−iθ)/2

sin θ = (eiθ − e−iθ)/2i

8.1.4 Frequency, period and phase

Figure 8.4 reminds you what sine and cosine waves look like.
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Figure 8.3: Complex multiplication

The period λ is related to the frequency ω by λ = 2π/ω. The period λ
is the amount of time it takes the wave to go through a whole cycle. The
frequency ω is the angular speed measured in radians/time. The phase is the
angular amount φ by which the sine wave is shifted. Since it is an angular
displacement, the time shift is φ/ω.

8.1.5 Fourier transforms

Take any series of numbers {xt}. We define its Fourier transform as

x(ω) =
∞X

t=−∞
e−iωtxt

Note that this operation transforms a series, a function of t, to a complex-
valued function of ω. Given x(ω), we can recover xt, by the inverse Fourier
transform

xt =
1

2π

Z π

−π
e+iωtx(ω)dω.
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Asin(ωt + φ)

Figure 8.4: Sine wave amplitude A, period λ and frequency ω.

Proof: Just substitute the definition of x(ω) in the inverse trans-
form, and verify that we get xt back.

1

2π

Z π

−π
e+iωt

Ã ∞X
τ=−∞

e−iωτxτ

!
dω =

1

2π

∞X
τ=−∞

xτ

Z π

−π
e+iωte−iωτdω

=
∞X

τ=−∞
xτ
1

2π

Z π

−π
eiω(t−τ)dω

Next, let’s evaluate the integral.

t = τ ⇒ 1

2π

Z π

−π
eiω(t−τ)dω =

1

2π

Z π

−π
dω = 1,

t− τ = 1⇒ 1

2π

Z π

−π
eiω(t−τ)dω =

1

2π

Z π

−π
eiωdω = 0
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since the integral of sine or cosine all the way around the circle
is zero. The same point holds for any t 6= τ , thus (this is another
important fact about complex numbers)

1

2π

Z π

−π
eiω(t−τ)dω = δ(t− τ) =

½
1 if t− τ = 0

0 if t− τ 6= 0
Picking up where we left off,

∞X
τ=−∞

xτ
1

2π

Z π

−π
eiω(t−τ)dω =

∞X
τ=−∞

xτδ(t− τ) = xt.

2

The inverse Fourier transform expresses xt as a sum of sines and cosines
at each frequency ω. We’ll see this explicitly in the next section.

8.1.6 Why complex numbers?

You may wonder why complex numbers pop up in the formulas, since all
economic time series are real (i.e., the sense in which they contain imaginary
numbers has nothing to do with the square root of -1). The answer is that
they don’t have to: we can do all the analysis with only real quantities.
However, it’s simpler with the complex numbers. The reason is that we
always have to keep track of two real quantities, and the complex numbers
do this for us by keeping track of a real and imaginary part in one symbol.
The answer is always real.

To see this point, consider what a more intuitive inverse Fourier transform
might look like:

xt =
1

π

Z π

0

| x(ω) | cos(ωt+ φ(ω))dω

Here we keep track of the amplitude | x(ω) | (a real number) and phase φ(ω)
of components at each frequency ω. It turns out that this form is exactly
the same as the one given above. In the complex version, the magnitude of
x(ω) tells us the amplitude of the component at frequency ω, the phase of
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x(ω) tells use the phase of the component at frequency ω, and we don’t have
to carry the two around separately. But which form you use is really only a
matter of convenience.

Proof:

Writing x(ω) = |x(ω)| eiφ(ω),

xt =
1

2π

Z π

−π
x(ω)eiωtdω =

1

2π

Z π

−π
| x(ω) | ei(ωt+φ(ω))dω

=
1

2π

Z π

0

¡| x(ω) | ei(ωt+φ(ω))+ | x(−ω) | ei(−ωt+φ(−ω))¢ dω.
But x(ω) = x(−ω)∗ (to see this, x(−ω) =Pt e

iωtxt = (
P

t e
−iωtxt)

∗
=

x(ω)∗), so | x(−ω) |=| x(ω) |, φ(−ω) = −φ(ω). Continuing,

xt =
1

2π

Z π

0

| x(ω) | ¡ei(ωt+φ(ω)) + e−i(ωt+φ(ω))
¢
dω =

1

π

Z π

0

| x(ω) | cos(ωt+φ(ω))dω.

2

As another example of the inverse Fourier transform interpretation, sup-
pose x(ω) was a spike that integrates to one (a delta function) at ω and −ω.
Since sin(−ωt) = − sin(ωt), we have xt = 2 cos(ωt).

8.2 Spectral density

The spectral density is defined as the Fourier transform of the autocovariance
function

S(ω) =
∞X

j=−∞
e−iωjγj

Since γj is symmetric, S(ω) is real

S(ω) = γ0 + 2
∞X
j=1

γj cos(jω)
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The formula shows that, again, we could define the spectral density using
real quantities, but the complex versions are prettier. Also, notice that the
symmetry γj = γ−j means that S(ω) is symmetric: S(ω) = S(−ω), and real.
Using the inversion formula, we can recover γj from S(ω).

γj =
1

2π

Z π

−π
e+iωjS(ω)dω.

Thus, the spectral density is an autocovariance generating function. In par-
ticular,

γ0 =
1

2π

Z π

−π
S(ω)dω

This equation interprets the spectral density as a decomposition of the vari-
ance of the process into uncorrelated components at each frequency ω (if
they weren’t uncorrelated, their variances would not sum without covariance
terms). We’ll come back to this interpretation later.

Two other sets of units are sometimes used. First, we could divide ev-
erything by the variance of the series, or, equivalently, Fourier transform the
autocorrelation function. Since ρj = γj/γ0,

f(ω) = S(ω)/γ0 =
∞X

j=−∞
e−iωjρj

ρj =
1

2π

Z π

−π
e+iωjf(ω)dω.

1 =
1

2π

Z π

−π
f(ω)dω.

f(ω)/2π looks just like a probability density: it’s real, positive and inte-
grates to 1. Hence the terminology “spectral density”. We can define the
corresponding distribution function

F (ω) =

Z ω

−π

1

2π
f(ν) dν. where F (−π) = 0, F (π) = 1 F increasing

This formalism is useful to be precise about cases with deterministic compo-
nents and hence with “spikes” in the density.
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8.2.1 Spectral densities of some processes

White noise
xt = t

γ0 = σ2, γj = 0 for j > 0

S(ω) = σ2 = σ2x

The spectral density of white noise is flat.

MA(1)
xt = t + θ t−1

γ0 = (1 + θ2)σ2, γ1 = θσ2, γj = 0 for j > 1

S(ω) = (1+θ2)σ2+2θσ2 cosω = (1+θ2+2θ cosω)σ2 = γ0(1+
2θ

1 + θ2
cosω)

Hence, f(ω) = S(ω)/γ0 is

f(ω) = 1 +
2θ

1 + θ2
cosω

Figure 8.5 graphs this spectral density.

As you can see, “smooth” MA(1)’s with θ > 0 have spectral densities that
emphasize low frequencies, while “choppy” ma(1)’s with θ < 0 have spectral
densities that emphasize high frequencies.

Obviously, this way of calculating spectral densities is not going to be very
easy for more complicated processes (try it for an AR(1).) A by-product of
the filtering formula I develop next is an easier way to calculate spectral
densities.

8.2.2 Spectral density matrix, cross spectral density

With xt = [yt zt]
0, we defined the variance-covariance matrix Γj = E(xtx

0
t−j),

which was composed of auto- and cross-covariances. The spectral density
matrix is defined as

Sx(ω) =
∞X

j=−∞
e−iωjΓj =

∙ P
j e
−iωjγy(j)

P
j e
−iωjE(ytzt−j)P

j e
−iωjE(ztyt−j)

P
j e
−iωjγz(j)

¸
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Figure 8.5: MA(1) spectral density

You may recognize the diagonals as the spectral densities of y and z. The
off-diagonals are known as the cross-spectral densities.

Syz(ω) =
∞X

j=−∞
e−iωjE(ytzt−j).

Recall that we used the symmetry of the autocovariance function γj = γ−j
to show that the spectral density is real and symmetric in ω. However, it is
not true that E(ytzt−j) = E(ztyt−j) so the cross-spectral density need not be
real, symmetric, or positive. It does have the following symmetry property:

Syz(ω) = [Szy(ω)]
∗ = Szy(−ω)
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Proof:

Syz(ω) =
∞X

j=−∞
e−ijωE(ytzt−j) =

∞X
j=−∞

e−ijωE(ztyt+j) =

∞X
k=−∞

eikωE(ztyt−k) = [Szy(ω)]∗ = Szy(−ω).

2

As with any Fourier transform, we can write the corresponding inverse
transform

E(ytzt−j) =
1

2π

Z π

−π
eiωjSyz(ω)dω

and, in particular,

E(ytzt) =
1

2π

Z π

−π
Syz(ω)dω.

The cross-spectral density decomposes the covariance of two series into the
covariance of components at each frequency ω. While the spectral density
is real, the cross-spectral density may be complex. We can characterize the
relation between two sine or cosine waves at frequency ω by the product
of their amplitudes, which is the magnitude of Syz(ω), and the phase shift
between them, which is the phase of Syz(ω).

8.2.3 Spectral density of a sum

Recall that the variance of a sum is var(a+b) = var(a) + var(b) + 2cov(a, b).
Since spectral densities are variances of “components at frequency ω” they
obey a similar relation,

Sx+y(ω) = Sx(ω) + Sy(ω) + Sxy(ω) + Syx(ω)

= Sx(ω) + Sy(ω) + (Sxy(ω) + Sxy(ω)
∗)

= Sx(ω) + Sy(ω) + 2Re(Sxy(ω))

where Re(x) = the real part of x.
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Proof: As usual, use the definitions and algebra:

Sx+y(ω) =
X
j

e−iωjE[(xt + yt)(xt−j + yt−j)] =

=
X
j

e−iωj (E(xtxt−j) +E(ytyt−j) +E(xtyt−j) +E(ytxt−j)) =

= Sx(ω) + Sy(ω) + Sxy(ω) + Syx(ω).

2

In particular, if x and y are uncorrelated at all leads and lags, their
spectral densities add.

E(xtyt−j) = 0 for all j ⇒ Sx+y(ω) = Sx(ω) + Sy(ω)

8.3 Filtering

8.3.1 Spectrum of filtered series

Suppose we form a series yt by filtering a series xt, i.e. by applying a moving
average

yt =
∞X

j=−∞
bjxt−j = b(L)xt.

It would be nice to characterize the process yt given the process xt.

We could try to derive the autocovariance function of yt given that of xt.
Let’s try it:

γk(y) = E(ytyt−k) = E

Ã ∞X
j=−∞

bjxt−j
∞X

l=−∞
blxt−k−l

!

=
X
j,l

bjblE(xt−jxt−k−l) =
X
j,l

bjblγk+l−j(x)

This is not a pretty convolution.
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However, the formula for the spectral density of y given the spectral den-
sity of x turns out to be very simple:

Sy(ω) = | b(e−iω) |2 Sx(ω).
b(e−iω) is a nice notation for the Fourier transform of the bj coefficients.
b(L) =

P
j bjL

j, so
P

j e
−iωjbj = b(e−iω).

Proof: Just plug in definitions and go.

Sy(ω) =
X
k

e−iωkγk(y) =
X
k,j,l

e−iωkbjblγk+l−j(x)

Let h = k + l − j, so k = h− l + j

Sy(ω) =
X
h,j,l

e−iω(h−l+j)bjblγh(x) =
X
j

e−iωjbj
X
l

e+iωlbl
X
h

e−iωhγh(x)

= b(e−iω)b(e+iω)Sx(ω) = | b(e−iω) |2 Sx(ω).
The last equality results because b(z∗) = b(z)∗ for polynomials.

2

The filter yt = b(L)xt is a complex dynamic relation. Yet the filtering
formula looks just like the scalar formula y = bx⇒var(y) = b2 var(x). This
starts to show you why the spectral representation is so convenient: opera-
tions with a difficult dynamic structure in the time domain (convolutions)
are just multiplications in the frequency domain.

8.3.2 Multivariate filtering formula

The vector version of the filtering formula is a natural extension of the scalar
version.

yt = B(L)xt ⇒ Sy(ω) = B(e−iω)Sx(ω)B(eiω)0.

This looks just like the usual variance formula: if x is a vector-valued random
variable with covariance matrix Σ and y = Ax, then the covariance matrix
of y is AΣA0.
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8.3.3 Spectral density of arbitrary MA(∞)
Since the MA(∞) representation expresses any series as a linear filter of
white noise, an obvious use of the filtering formula is a way to derive the
spectral density of any ARMA expressed in Wold representation,

xt = θ(L) t =
∞X
j=0

θj t−j.

By the filtering formula,

Sx(ω) = θ(e−iω)θ(e+iω)σ2

Now you know how to find the spectral density of any process. For example,
the MA(1), xt = (1 + θL) t gives

Sx(ω) = (1+θe
−iω)(1+θeiω)σ2 =

¡
1 + θ(eiω + e−iω) + θ2

¢
σ2 = (1+2θ cos(ω)+θ2)σ2

as before.

8.3.4 Filtering and OLS

Suppose
yt = b(L)xt + t, E(xt t−j) = 0 for all j.

This is what OLS of yt on the entire xt process produces. Then, adding the
filtering formula to the fact that spectral densities of uncorrelated processes
add, we have

Sy(ω) = Sb(L)x(ω) + S (ω) =| b(e−iω) |2 Sx(ω) + S (ω).

This formula looks a lot like yt = xtβ+ t ⇒ σ2y = β2σ2x+σ
2, and the resulting

formula for R2. Thus, it lets us do an R2 decomposition – how much of the
variance of y at each frequency is due to x and ?

More interestingly, we can relate the cross-spectral density to b(L),

Syx(ω) = b(e−iω)Sx(ω).
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Proof: The usual trick: write out the definition and play with the
indices until you get what you want.

Syx(ω) =
X
k

e−iωkE(ytxt−k) =
X
k

e−iωk
X
j

bjE(xt−jxt−k)

=
X
k

e−iωk
X
j

bjγk−j(x)

Let l = k − j, so k = l + j,

Syx(ω) =
X
l

e−iω(l+j)
X
j

bjγl(x) =
X
j

e−iωjbj
X
l

e−iωlγl(x) = b(e−iω)Sx(ω)

2

This formula has a number of uses. First, divide through to express

b(e−iω) =
Syx(ω)

Sx(ω)
.

This looks a lot like β =cov(y, x)/var(x). Again, the spectral representation
reduces complex dynamic representations to simple scalar multiplication, at
each frequency ω. Second, you can estimate the lag distribution, or think
about lag distributions this way;

b̂j =
1

2π

Z π

−π
eijωb(e−iω) dω =

1

2π

Z π

−π
eijω

Syx(ω)

Sx(ω)
dω

is known as “Hannan’s inefficient estimator.” Third, we can turn the formula
around, and use it to help us to understand the cross-spectral density:

Syx = b(e−iω)Sx(ω).

For example, if xt = t, σ
2 = 1, and yt = xt−1, then Sy(ω) = Sx(ω) = 1,

but Syx(ω) = eiω. The real part of this cross-spectral density is 1.0–x is
neither stretched nor shrunk in its transformation to y. But the one-period
lag shows up in the complex part of the cross-spectral density–y lags x by
ω.
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8.3.5 A cosine example

The following example may help with the intuition of these filtering formulas.
Suppose xt = cos(ωt). Then we can find by construction that

yt = b(L)xt =| b(e−iω) | cos(ωt+ φ(ω)).

where
b(e−iω) =| b(e−iω) | eiφ(ω).

The quantity b(e−iω) is known as the frequency response of the filter. Its
magnitude (or magnitude squared) is called the gain of the filter and its
angle φ is known as the phase. Both are functions of frequency.

The spectral representation of the filter shows you what happens to sine
waves of each frequency. All you can do to a sine wave is stretch it or shift
it, so we can represent what happens to a sine wave at each frequency by two
numbers, the gain and phase of the b(e−iω). The usual representation b(L)
shows you what happens in response to a unit impulse. This is, of course,
a complex dynamic relation. Then, we can either think of yt as the sum of
impulses times the complex dynamic response to each impulse, or as the sum
of sine and cosine waves times the simple gain and phase -

Proof:

yt =
1

2

X
j

bj(e
iω(t−j) + e−iω(t−j)) =

1

2

Ã
eiωt

X
j

bje
−iωj + e−iωt

X
j

bje
iωj

!
=

1

2

¡
eiωtb(e−iω) + e−iωtb(eiω)

¢
=| b(e−iω) | cos(ωt+ φ(ω)).

(| b(e−iω) |=| b(eiω) |for polynomial b(L)).

2

8.3.6 Cross spectral density of two filters, and an in-
terpretation of spectral density

Here’s a final filtering formula, which will help give content to the interpre-
tation of the spectral density as the variance of components at frequency
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ω.
y1t = b1(L)xt, y2t = b2(L)xt ⇒ Sy1y2(ω) = b1(e

−iω)b2(eiω)Sx(ω)

Note this formula reduces to Sy(ω) =| b(e−iω) |2 Sx(ω) if b1(L) = b2(L).

Proof: As usual, write out the definition, and play with the sum
indices.

Sy1y2(ω) =
X
j

e−iωjE(y1ty2t−j) =
X
j

e−iωjE

ÃX
k

b1kxt−k
X
l

b2lxt−j−l

!

=
X
j

e−iωj
X
k,l

b1kb2lE(xt−kxt−j−l) =
X
j

e−iωj
X
k,l

b1kb2lγj+l−k(x)

Let m = j + l − k, so j = m− l + k,X
m

e−iω(m−l+k)
X
k

X
l

b1kb2lγm =
X
k

b1ke
−iωkX

l

b2le
iωl
X
m

e−iωmγm(x).

2

Now, suppose b(L) is a bandpass filter,

b(e−iω) =
½
1, | ω |∈ [α, β]
0 elsewhere

,

as displayed in 8.6. Then, the variance of filtered data gives the average
spectral density in the window. (We’ll use this idea later to construct spectral
density estimates.)

var(b(L)xt) =
1

2π

Z π

−π
| b(e−iω) |2 Sx(ω)dω = 1

2π

Z
|ω|∈[α,β]

Sx(ω)dω.

Next, subdivide the frequency range from −π to π into nonoverlapping in-
tervals

var(xt) =
1

2π

Z π

−π
Sx(ω)dω =

1

2π

µZ
b1

Sx(ω)dω +

Z
b2

Sx(ω)dω..

¶
=

var(b1(L)xt) + var(b2(L)xt) + . . .
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Figure 8.6: Frequency response (all real) of a bandpass filter that includes
frequencies ω from α to β.

Since the windows do not overlap, the covariance terms are zero. As the
windows get smaller and smaller, the windows approach a delta function, so
the components bj(L)xt start to look more and more like pure cosine waves at
a single frequency. In this way, the spectral density decomposes the variance
of the series into the variance of orthogonal sine and cosine waves at different
frequencies.

8.3.7 Constructing filters

Inversion formula

You may have wondered in the above, how do we know that a filter exits
with a given desired frequency response? If it exists, how do you construct
it? The answer, of course, is to use the inversion formula,

bj =
1

2π

Z π

−π
eiωjb(e−iω)dω

For example, let’s find the moving average representation bj of the bandpass
filter.

bj =
1

2π

Z
|ω|∈[α,β]

eiωjdω =
1

2π

Z −α

−β
eiωjdω +

1

2π

Z β

α

eiωjdω =
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=
1

2π

eiωj

ij

¸−α
−β
+
1

2π

eiωj

ij

¸β
α

=
e−ijα − e−ijβ + eijβ − eijα

2πij
=

sin(jβ)

πj
− sin(jα)

πj
.

Each term is a two-sided infinite order moving average filter. Figure 8.7 plots
the filter. Then, you just apply this two-sided moving average to the series.
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Figure 8.7: Moving average weights of a bandpass filter.

Extracting unobserved components by knowledge of spectra.

Of course, you may not know ahead of time exactly what frequency response
b(e−iω) you’re looking for. One situation in which we can give some help
is a case of unobserved components. In seasonal adjustment, growth/cycle
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decompositions, and many other situations, you think of your observed se-
ries Xt as composed of two components, xt and ut that you do not observe
separately. However, you do have some prior ideas about the spectral shape
of the two components. Growth is long-run, seasonals are seasonal, etc.

Assume that the two components are uncorrelated at all leads and lags.

Xt = xt + ut, E(xtus) = 0

The only thing you can do is construct a “best guess” of xt given your data
on Xt, i.e., construct a filter that recovers the projection of xt on the X
process,

xt =
∞X

j=−∞
hjXt−j + t ⇒ x̂t =

∞X
j=−∞

hjXt−j.

The parameters hj are given from inverting

h(e−iω) =
Sx(ω)

Sx(ω) + Su(ω)
=

Sx(ω)

SX(ω)

Proof: (left as a problem)

This formula is an example of a problem that is much easier to solve
in the frequency domain! (A fancy name might be “optimal seasonal (or
trend/cycle) extraction”. )

8.3.8 Sims approximation formula

Often, (always) we approximate true, infinite-order ARMA processes by finite
order models. There is a neat spectral representation of this approximation
given by the Sims approximation formula: Suppose the true projection of yt
on {xt} is

yt =
∞X

j=−∞
b0jxt−j + t
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but a researcher fits by OLS a restricted version,

yt =
∞X

j=−∞
b1jxt−j + ut

The {b1j} lie in some restricted space, for example, the MA representations
of an ARMA(p,q). In population, OLS (or maximum likelihood with normal
iid errors) picks b1j to minimizeZ π

−π
| b0(e−iω)− b1(e−iω) |2 Sx(ω)dω.

Proof: (left as a problem)

OLS tries to match an average of b0(e−iω)− b1(e−iω) over the entire spec-
trum from −π to π. How hard it tries to match them depends on the spectral
density of x. Thus, OLS will sacrifice accuracy of the estimated b(L) is a small
frequency window, and/or a window in which Sx(ω) is small, to get better
accuracy in a large window, and/or a window in which Sx(ω) is large.

8.4 Relation between Spectral, Wold, and Au-

tocovariance representations

We have discussed three different fundamental representations for time series
processes: the autocovariance function, the Wold MA(∞) and the spectral
density. The following diagram summarizes the relation between the three
representations.

Autoregresions
↓

Wold MA(∞)
% xt =

P∞
j=0 θj t−j, -

Infer AR . θ(L) invertible & S(ω) = θ(e−iω)θ(eiω)σ2

γk =
P∞

j=0 θjθj+kσ
2 σ2 = e

1
2π

R π
−π lnS(ω)dω

Autocovariance → S(ω) =
P∞

k=−∞ e−ikωγk → Spectral density S(ω)
γk = E(xtxt−k) ← γk =

1
2π

R π
−π e

−kωS(ω)dω ←
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Each of the three representations can be estimated directly: we find the
Wold MA by running autoregressions and simulating the impulse-response
function; we can find the autocovariances by finding sample autocovariances.
The next chapter discusses spectral density estimates. From each represen-
tation we can derive the others, as shown.

The only procedure we have not discussed so far is how to go from
spectral density to Wold. The central insight to doing this is to realize
that the roots of the spectral density function are the same as the roots
of the Wold moving average, plus the inverses of those roots. If xt =
θ(L) t =const.(L−λ1)(L−λ2)..., so that θ(z) =const.(z−λ1)(z−λ2).., λ and
λ1, λ2, ...are roots, then Sx(z) =const.

2(z−λ1)(z−λ2)...(z−1−λ1)(z−1−λ2)...so
that λ1, λ2, ... and λ

−1
1 , λ−12 ... are roots. Thus, find roots of the spectral den-

sity, those outside the unit circle are the roots of the Wold lag polynomial. To
find σ2, either make sure that the integral of the spectral density equals the
variance of the Wold representation, or use the direct formula given above.
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Chapter 9

Spectral analysis in finite
samples

So far, we have been characterizing population moments of a time series. It’s
also useful to think how spectral representations work with a finite sample
of data in hand. Among other things, we need to do this in order to think
about how to estimate spectral densities.

9.1 Finite Fourier transforms

9.1.1 Definitions

For a variety of purposes it is convenient to think of finite-sample counter-
parts to the population quantities we’ve introduced so far. To start off, think
of fourier transforming the data xt rather than the autocovariance function.
Thus, let

xω =
1

T 1/2

TX
t=1

e−iωtxt

Where T = sample size. We can calculate xω for arbitrary ω. However, I will
mostly calculate it for T ω0s, spread evenly about the unit circle. When the
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ω0s are spread evenly in this way, there is an inverse finite fourier transform,

xt =
1

T 1/2

X
ω

eiωtxω

Proof: Just like the proof of the infinite size inverse transform.

1

T 1/2

X
ω

eiωtxω =
1

T 1/2

X
ω

eiωt
1

T 1/2

TX
j=1

e−iωjxj =
1

T

TX
j=1

xj
X
ω

eiω(t−j).

X
ω

eiω(t−j) =
½
T if t− j = 0

0 if t− j 6= 0 .

2

It is handy to put this transformation in matrix notation. Let

W = T 1/2

⎡⎢⎣ e−iω1 e−2iω2 . . .
e−iω2 e−2iω2 . . .

. . .
. . .

⎤⎥⎦ ; xt =
⎡⎢⎣ x1

x2
...

⎤⎥⎦ ; xω =
⎡⎢⎣ xω1

xω2
...

⎤⎥⎦
Then, we can write the fourier transform and its inverse as

xω =Wxt, xt =W Txω

where W T = (W 0)∗ = (W ∗)0 denotes “complex conjugate and transpose”.
Note W TW = WW T = I, i.e., fourier transforming and then inverse trans-
forming gets you back where you started. MatricesW with this property are
called unitary matrices.

9.2 Band spectrum regression

9.2.1 Motivation

We very frequently filter series before we look at relations between them–
we detrend them, deseasonlaize them, etc. Implicitly, these procedures mean

90



that we think relations are different at different frequencies, and we want to
isolate the frequencies of interest before we look at the relation, rather than
build an encompassing model of the relation between series at all frequencies.
“Band spectrum regression” is a technique designed to think about these
situations. I think that it is not so useful in itself, but I find it a very
useful way of thinking about what we’re doing when we’re filtering, and how
relations that differ across frequencies influence much time series work.

Here are some examples of situations in which we think relations vary
across frequencies, and for which filtered data have been used:

Example 1: Kydland and Prescott.

Kydland and Prescott simulate a model that gives rise to stationary time
series patterns for GNP, consumption, etc. However, the GNP, consumption,
etc. data are not stationary: not only do they trend upwards but they include
interesting patterns at long horizons, such as the “productivity slowdown”
of the 700s, as well as recessions. Kydland and Prescott only designed their
model to capture the business cycle correlations of the time series; hence
they filtered the series with the Hodrick-Prescott filter (essentially a high-
pass filter) before computing covariances.

Example 2: Labor supply.

The Lucas-Prescott model of labor supply makes a distinction between
”permanent” and ”transitory” changes in wage rates. A transitory change
in wage rates has no income effect, and so induces a large increase in labor
supply (intertemporal substitution). A permanent increase has an income
effect, and so induces a much smaller increase in labor supply. This model
might (yes, I know this is static thinking in a dynamic model — this is only
a suggestive example!) make time series predictions as illustrated in figure
9.1:

As you can see, we might expect a different relation between wages and
labor supply at business cycle frequencies vs. longer horizons.

Example 3: Money supply and interest rates

Conventional textbooks tell you that money growth increases have a short
run negative impact on real and hence nominal interest rates, but a long run,
one-for-one impact on inflation and hence nominal interest rates. The general
view is that the time-series relation between money and interest rates looks

91



Labor supply

Wages

Time

Figure 9.1: Time series of wages and labor supply

something like figure 9.2

Again, the relation between money growth and nominal interest rates
depends on the frequency at which you look at it. At high frequencies we
expect a negative relation, at low frequencies we expect a positive relation. (I
wrote my PhD thesis on this idea, see “The Return of the Liquidity Effect: A
Study of the Short Run Relation Between Money Growth and Interest Rates”
Journal of Business and Economic Statistics 7 (January 1989) 75-83.)

Example 4: Seasonal adjustment.

Most of the time we use seasonally adjusted data. Seasonal adjustment
is a band pass filter that attenuates or eliminates seasonal frequencies. This
procedure must reflect a belief that there is a different relation between
variables at seasonal and nonseasonal frequencies. For example, there is
a tremendous seasonal in nondurable and services consumption growth; the
use of seasonally adjusted consumption data in asset pricing reflects a belief
that consumers do not try to smooth these in asset markets.

WARNING: Though filtering is very common in these situations, it is
probably “wrong”. The “Right” thing to do is generally specify the whole
model, at long, short, seasonal, and nonseasonal frequencies, and estimate
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Money growth

Nominal interest

Inflation

Figure 9.2: Money and interest rates

the entire dynamic system. The underlying economics typically does not
separate by frequency. An optimizing agent facing a shock with a seasonal
and nonseasonal component will set his control variable at nonseasonal fre-
quencies in a way that reflects the seasonals. ”Growth theory” and ”business
cycle theory” may each make predictions at each others’ frequencies, so one
cannot really come up with separate theories to explain separate bands of the
spectrum. The proper distinction between shocks may be “expected” and
“unexpected” rather than “low frequency” vs. “high frequency”. Nonethe-
less, removing frequency bands because you have a model that ”only applies
at certain frequencies” is very common, even if that characterization of the
model’s predictions is not accurate.

9.2.2 Band spectrum procedure

Suppose y and x satisfy the OLS assumptions,

yt = xtβ + ²t, E(²t²
0
t) = σ2I, E(xt²

0
t) = 0

SinceW is a unitary matrix, the fourier transformed versions also satisfy the
OLS assumptions:

Wyt =Wxtβ +W²t
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or
yω = xωβ + ²ω

where
E(²ω²

T
ω) = E(W²t²

0
tW

T ) = σ2I,

E(xω²
0
ω) = E(Wxt²

0
tW

T ) = 0.

Thus, why not run OLS using the frequency transformed data,

β̂ = (xTωxω)
−1(xTωyω)?

In fact, this β is numerically identical to the usual OLS β :

(xTωxω)
−1(xTωyω) = (x

0
tW

TWxt)
−1(x0tW

TWyt) = (x
0
txt)

−1(x0tyt).

So far, pretty boring. But now, recall what we do with OLS in the
presence of a “structural shift”. The most common example is war, where
you might think that behavioral relationships are different for the data points
1941-1945. (This usually means that you haven’t specified your behavior at
a deep enough level.) Also, it is common to estimate different relationships
in different “policy regimes”, such as pre-and post 1971 when the system of
fixed exchange rates died, or in 1979-1982 and outside that period, when the
Fed (supposedly) followed a nonborrowed reserve rather than interest rate
targeting procedure. Thus, suppose you thought

yt = xtβ1 + t (period A)

yt = xtβ2 + t (period B)

What do you do? You estimate separate regressions, or you drop from your
sample the time periods in which you think β changed from the “true value”
that you want to estimate.

The equivalence of the regular and frequency domain OLS assumptions
shows you that OLS assumes that β is the same across frequencies, as it
assumes that β is the same over time. Band spectrum regression becomes
useful when you don’t think this is true: when you think that the relationship
you want to investigate only holds at certain frequencies.

The solution to this problem is obvious: drop certain frequencies from the
frequency transformed regression, i.e. transform the data and then estimate
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separate β1 and β2; yω = xωβ1 + ω in frequency interval A and yω = xωβ2 +

ω in frequency interval B. If you believe the model holds only at certain
frequencies, just run yω = xωβ + ωω in given frequency band.

One way to formalize these operations is to let A be a “selector matrix”
that picks out desired frequencies. It has ones on the diagonal corresponding
to the “good” frequencies that you want to keep, and zeros elsewhere. Then,
if you run

Ayω = Axωβ +A²ω.

Only the “good” frequencies are included. The β you get is

β̂ = (xTωAAxω)
−1(xTωAAyω).

As you might suspect, filtering the data to remove the unwanted frequen-
cies and then running OLS (in time domain) on the filtered data is equivalent
to this procedure. To see this, invert the band spectrum regression to time-
domain by running

W TAyω =W TAxωβ +W TA²ω

This regression gives numerically identical results. Writing the definition of
xω, this is in turn equivalent to

W TAWyt =W TAWxtβ +W TAW²t

So, what’sW TAW? It takes time domain to frequency domain, drops a band
of frequencies, and reverts to time domain. Thus it’s a band pass filter!

There is one warning: If we drop k frequencies in the band-spectrum
regression, OLS on the frequency domain data will pick up the fact that only
T − k degrees of freedom are left. However, there are still T time-domain
observations, so you need to correct standard errors for the lost degrees
of freedom. Alternatively, note that t is serially uncorrelated, W

TAWt is
serially correlated, so you have to correct for serial correlation of the error in
inference.

Of course, it is unlikely that your priors are this sharp—that certain fre-
quencies belong, and certain others don’t. More likely, you want to give more
weight to some frequencies and less weight to others, so you use a filter with
a smoother response than the bandpass filter. Nonetheless, I find it useful to
think about the rationale of this kind of procedure with the band-pass result
in mind.
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9.3 Cramér or Spectral representation

The spectral or Cramér representation makes precise the sense in which the
spectral density is a decomposition of the variance of a series into the variance
of orthogonal components at each frequency. To do this right (in population)
we need to study Brownian motion, which we haven’t gotten to yet. But we
can make a start with the finite fourier transform and a finite data set.

The inverse fourier transform of the data is

xt =
1

T 1/2

X
ω

eiωtxω =
1

T 1/2

Ã
x0 + 2

X
ω>0

| xω | cos(ωt+ φω)

!
where xω =| xω | eiφω .Thus it represents the time series xt as a sum of cosine
waves of different frequencies and phase shifts.

One way to think of the inverse fourier transform is that we can draw
random variables {xω} at the beginning of time, and then let xt evolve ac-
cording to the inverse transform. It looks like this procedure produces a
deterministic time series xt, but that isn’t true. ”Deterministic” means that
xt is perfectly predictable given the history of x, not given {xω}. If you have
k x0ts you can only figure out k x

0
ws.

So what are the statistical properties of these random variables xω? Since
xt is mean zero, E(xω) = 0. The variance and covariances are

lim
T→∞

E(xωx
∗
λ) =

½
Sx(ω) if ω = λ

0 if ω 6= λ

Proof:

E(xωx
∗
λ) = E

1

T

X
t

e−iωtxt
X
j

eiλjxj = E
1

T

X
t,j

eiλje−iωtxtxj.

setting j = t− k, thus k = j − t,

= E
1

T

X
t,k

eiλ(t−k)e−iωtxtxt−k =
X
k

e−iλk
1

T

X
t

ei(λ−ω)tγk(x)

=
X
k

e−iλkγk(x)
1

T

X
t

ei(λ−ω)t.
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If ω = λ, the last term is T , so we get

lim
T→∞

E(xωx
∗
ω) =

X
k

e−iωkγk = Sx(ω)

If ω 6= λ, the last sum is zero, so

lim
T→∞

E(xωx
∗
λ) = 0.

2

Though it looks like finite-sample versions of these statements also go
through, I was deliberately vague about the sum indices. When these do not
go from −∞ to ∞, there are small-sample biases.

Thus, when we think of the time series by picking {xω} and then gener-
ating out {xt} by the inversion formula, the xω are uncorrelated. However,
they are heteroskedastic, since the variance of xω is the spectral density of x,
which varies over ω.

The Cramér or spectral representation takes these ideas to their limit. It
is

xt =
1

2π

Z π

−π
eiωtdz(ω)

where

E(dz(ω)dz(λ)∗) =
½
Sx(ω)dω for ω = λ

0 for ω 6= λ

The dz are increments of a Brownian motion (A little more precisely, the
random variable

Z(ω) =

Z ω

−π
dz(λ)

has uncorrelated increments: E[Z(.3)− Z(.2))(Z(.2)− Z(.1))] = 0.) Again,
the idea is that we draw this Brownian motion from −π to π at the beginning
of time, and then fill out the xt. As before, the past history of x is not
sufficient to infer the whole Z path, so x is still indeterministic.

This is what we really mean by “the component at frequency ω” of a
non-deterministic series. As you can see, being really precise about it means
we have to study Brownian motions, which I’ll put off for a bit.
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9.4 Estimating spectral densities

We will study a couple of approaches to estimating spectral densities. A
reference for most of this discussion is Anderson (1971) p. 501 ff.

9.4.1 Fourier transform sample covariances

The obvious way to estimate the spectral density is to use sample counter-
parts to the definition. Start with an estimate of the autocovariance function.

γ̂k =
1

T − k

TX
t=k+1

xtxt−k or γ̂k =
1

T

TX
t=k+1

xtxt−k.

(I’m assuming the x’s have mean zero. If not, take out sample means first.
This has small effects on what follows.) Both estimates are consistent. The
first is unbiased; the second produces positive definite autocovariance se-
quences in any sample. The first does not (necessarily) produce positive
definite sequences, and hence positive spectral densities. One can use either;
I’ll use the second.

We can construct spectral density estimates by fourier transforming these
autocovariances:

Ŝ(ω) =
T−1X

k=−(T−1)
e−iωkγ̂k

9.4.2 Sample spectral density

A second approach is suggested by our definition of the finite fourier trans-
form. Since

lim
T→∞

E(xωx
∗
ω) = S(ω),
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why not estimate S(ω) by the sample spectral density 1 I(ω) :

Ŝ(ω) = I(ω) = xωx
∗
ω =

1

T

Ã
TX
t=1

e−iωtxt

!Ã
TX
t=1

eiωtxt

!
=
1

T

¯̄̄̄
¯

TX
t=1

e−iωtxt

¯̄̄̄
¯
2

9.4.3 Relation between transformed autocovariances
and sample density

The fourier transform of the sample autocovariance is numerically identical
to the sample spectral density!

Proof:

1

T

Ã
TX
t=1

e−iωtxt

!Ã
TX
t=1

eiωtxt

!
=
1

T

Ã
TX

t=1j

TX
=1

eiω(j−t)xtxj

!
Let k = t− j, so j = t− k.

=
T−1X

k=−(T−1)
e−iωk

1

T

TX
t=|k|+1

xtxt−|k| =
T−1X

k=−(T−1)
e−iωkγ̂k

(To check the limits on the sums, verify that each xtxj is still
counted once. It may help to plot each combination on a t vs.
j grid, and verify that the second system indeed gets each one
once. You’ll also have to use x1x1−(−3) = x4x1, etc. when k < 0.)

2

Thus, the sample spectral density is the fourier transform of the sample
autocovariances,

I(ω) =
T−1X

k=−(T−1)
e−iωkγ̂k =

∞X
k=−∞

e−iωkγ̂k

1This quantity is also sometimes called the periodogram. Many treatements of the pe-
riodogram divide by an extra T. The original periodogram was designed to ferret out pure
sine or cosine wave components, which require dividing by an extra T for the periodogram
to stay stable as T → ∞. When there are only non-deterministic components, we divide
only by one T . I use ”sample spectral density” to distinguish the two possibilities.
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where the latter equality holds by the convention that γ̂k = 0 for k > T − 1.
Applying the inverse fourier transform, we know that

γ̂k =
1

2π

Z π

−π
eiωkI(ω)dω.

Thus, the sample autocovariances (using 1/T ) and sample spectral density
have the same relation to each other as the population autocovariance and
spectral density.

γk ⇔ S(ω)

just like
γ̂k ⇔ I(ω).

The sample spectral density is completely determined by its values at T
different frequencies, which you might as well take evenly spaced. (Analo-
gously, we defined xω for T different ω above, and showed that they carried
all the information in a sample of length T.) To see this, note that there are
only T autocovariances(including the variance). Thus, we can recover the
T autocovariances from T values of the spectral density, and construct the
spectral density at any new frequency from the T autocovariances.

As a result, you might suspect that there is also a finite fourier transform
relation between I(ω) and γ̂(ω), and there is,

γ̂k =
1

T

X
ω

eiωkI(ω).

Proof:

1

T

X
ω

eiωkI(ω) =
1

T

X
ω

eiωk
X
j

e−iωj γ̂j =
1

T

X
j

X
ω

eiω(k−j)γ̂j

=
1

T

X
j

Tδ(k − j)γ̂j = γ̂k.

(Since we did not divide by 1/T 1/2 going from γ̂ to I, we divide by T going
back.)

2
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9.4.4 Asymptotic distribution of sample spectral den-
sity

Here are some facts about the asymptotic distribution of these spectral den-
sity estimates:

lim
T→∞

E(I(ω)) = S(ω)

lim
T→∞

var(I(ω)) =

½
2S2(0) for ω = 0

S2(ω) for ω 6= 0
lim
T→∞

cov(I(ω), I(λ)) = 0 for | ω |6=| λ |

2I(ω)/S(ω)→ χ22

Note that the variance of the sample spectral density does not go to
zero, as the variance of most estimators (not yet scaled by T 1/2) does. The
sample spectral density is not consistent, since its distribution does not col-
lapse around the true value. This variance problem isn’t just a problem of
asymptotic mumbo-jumbo. Plots of the sample spectral density of even very
smooth processes show a lot of jumpiness.

There are two ways to understand this inconsistency intuitively. First,
recall that I(ω) = xωx

0
ω. Thus, I(ω) represents one data point’s worth of

information. To get consistent estimates of anything, you need to include
increasing numbers of data points. Second, look at the definition as the sum
of sample covariances; the high autocovariances are on average weighted just
as much as the low autocovariances. But the last few autocovariances are
bad estimates: γT−1 = (xTx1)/T no matter how big the sample. Thus I(ω)
always contains estimates with very high variance.

9.4.5 Smoothed periodogram estimates

Here is one solution to this problem: Instead of estimating S(ω) by I(ω),
average I(ω) over several nearby ω0s. Since S(ω) is a smooth function and
adjacent I(ω) are uncorrelated in large samples, this operation reduces vari-
ance without adding too much bias. Of course, how many nearby I(ω) to
include will be a tricky issue, a trade-off between variance and bias. As
T → ∞, promise to slowly reduce the range of averaged ω0s. You want to
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reduce it so that as T → ∞ you are in fact only estimating S(ω), but you
want to reduce it slowly so that larger and larger numbers of x0ω enter the
band as T →∞.
Precisely, consider a smoothed periodogram estimator Ŝ(ω) =

R π
−π h(λ−

ω)I(λ)dλ or Ŝ(ω) =
P

λi
h(λi−ω)I(λi) where h is a moving average function

as shown in figure 9.3 To make the estimate asymptotically unbiased and its

ωωω

Small T Medium T

Large T

Figure 9.3: Smoothed periodogram estimate as sample size increases. Note
that the window size decreases with sample size, but the number of frequen-
cies in the window increases.

variance go to zero (and also consistent) you want to make promises as shown
in the figure: Since more and more periodogram ordinates enter as T →∞,
the variance goes to zero. But since the size of the window goes to zero as
T →∞, the bias goes to zero as well.

9.4.6 Weighted covariance estimates

Viewing the problem as the inclusion of poorly measured, high-order auto-
covariances, we might try to estimate the spectral density by lowering the
weight on the high autocovariances. Thus, consider

Ŝ(ω) =
T−1X

k=−(T−1)
e−iωkg(k)γ̂k

where g(k) is a function as shown in figure 9.4 For example, the Bartlett
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Figure 9.4: Covariance weighting function

window has a triangular shape,

Ŝ(ω) =
rX

k=−r
e−iωk(1− | k |

r
)γ̂k

Again, there is a trade off between bias and variance. Down weighting
the high autocovariances improves variance but introduces bias. Again, one
can make promises to make this go away in large samples. Here, one wants
to promise that g(k) → 1 as T → ∞ to eliminate bias. Thus, for example,
an appropriate set of Bartlett promises is r → ∞ and r/T → 0 as T → ∞;
this can be achieved with r ∼ T 1/2.

9.4.7 Relation between weighted covariance and smoothed
periodogram estimates

Not surprisingly, these two estimates are related. Every weighted covari-
ance estimate is equivalent to a smoothed periodogram estimate, where the
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smoothing function is proportional the fourier transform of the weighting
function; and vice-versa.

Proof:

Ŝ(ω) =
X
k

e−iωkg(k)γ̂k =
X
k

e−iωkg(k)
1

2π

Z π

−π
eiνkI(λ)dλ =

Z π

−π

1

2π

ÃX
k

e−i(ω−λ)kg(k)

!
I(λ)dν =

Z π

−π
h(ω − λ)I(λ)dν

Similarly, one can use the finite fourier transform at T frequencies,

Ŝ(ω) =
X
k

e−iωkg(k)γ̂k =
X
k

e−iωkg(k)
1

T

X
ν

eiλkI(λ) =

X
ν

Ã
1

T

X
k

e−i(ω−λ)kg(k)

!
I(λ) =

X
ν

h(ω − λ)I(λ)

2

9.4.8 Variance of filtered data estimates

A last, equivalent approach is to filter the data with a filter that isolates
components in a frequency window, and then take the variance of the fil-
tered series. After all, spectral densities are supposed to be the variance of
components at various frequencies. With a suitably chosen filter, this ap-
proach is equivalent to weighted periodogram or covariance estimates. Thus,
let

xft = F (L)xt

Hence,

var(xft ) =
1

2π

Z π

−π
| F (e−iλ) |2 Sx(λ)dλ

So all you have to do is pick F (L) so that

1

2π
| F (e−iλ) |2= h(ω − λ)

Variance ratio estimates of the spectral density at frequency zero are exam-
ples of this procedure.
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9.4.9 Spectral density implied by ARMA models

All of the above estimates are non-parametric. One reason I did them is
to introduce you to increasingly fashionable non-parametric estimation. Of
course, one can estimate spectral densities parametrically as well. Fit an AR
or ARMA process, find its Wold representation

xt = θ(L) t

and then
Ŝ(ω) =| θ(e−iω) |2 s2.

How well this works depends on the quality of the parametric approximation.
Since OLS tries to match the whole frequency range, this technique may
sacrifice accuracy in small windows that you might be interested in, to get
more accuracy in larger windows you might not care about.

9.4.10 Asymptotic distribution of spectral estimates

The asymptotic distribution of smoothed periodogram / weighted covariance
estimates obviously will depend on the shape of the window / weighting
function, and the promises you make about how that shape varies as T →∞.
When you want to use one, look it up.
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Chapter 10

Unit Roots

10.1 Random Walks

The basic random walk is

xt = xt−1 + t; Et−1( t) = 0

Note the property
Et(xt+1) = xt.

As a result of this property, random walks are popular models for asset prices.

Random walks have a number of interesting properties.

1) The impulse-response function of a random walk is one at all horizons.
The impulse-response function of stationary processes dies out eventually.

2) The forecast variance of the random walk grows linearly with the fore-
cast horizon

var(xt+k | xt) = var(xt+k − xt) = kσ2.

The forecast error variance of a stationary series approaches a constant, the
unconditional variance of that series. Of course, the variance of the random
walk is infinite, so in a sense, the same is true.

3) The autocovariances of a random walk aren’t defined, strictly speaking.
However, you can think of the limit of an AR(1), xt = φxt−1 + t as the
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autoregression parameter φ goes to 1. Then, for a random walk,

ρj = 1 for all j.

Thus, a sign of a random walk is that all the estimated autocorrelations are
near one, or die out “too slowly”.

4) The spectral density (normalized by the variance) of the AR(1) is

f(ω) = [(1− φe−iω)(1− φeiω)]−1 =
1

1 + φ2 − 2φ cos(ω) .

In the limit φ→ 1 we get

f(ω) =
1

2(1− cos(ω)) .

As ω → 0, S(ω)→∞. Thus, the variance of a random walk is primarily due
to low-frequency components. The signature of a random walk is its tendency
to wander around at low frequencies.

10.2 Motivations for unit roots

10.2.1 Stochastic trends

One reason macroeconomists got interested in unit roots is the question of
how to represent trends in time series. Until the late 700s it was common to
simply fit a linear trend to log GNP (by OLS), and then define the stochastic
part of the time series as deviations from this trend. This procedure let to
problems when it seemed like the “trend”, “potential” etc. GNP growth
rate slowed down. Since the slowdown was not foreseen it was hard to go
about business as usual with more complex deterministic trends, such as
polynomials. Instead, macroeconomists got interested in stochastic trends,
and random-walk type processes give a convenient representation of such
trends since they wander around at low frequencies.
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10.2.2 Permanence of shocks

Once upon a time, macroeconomists routinely detrended data, and regarded
business cycles as the (per-force) stationary deviation about that trend. It
was wisely accepted that business cycles were short-run (no more than a
few years, at most) deviations from trend. However, macroeconomists have
recently questioned this time-honored assumption, and have started to won-
der whether shocks to GNP might not more closely resemble the permanent
shocks of a random walk more than the transitory shocks of the old AR(2)
about a linear trend. In the first round of these tests, it was claimed that the
permanence of shocks shed light on whether they were “real” (“technology”)
or “monetary”, “supply” or “demand”, etc. Now, it’s fairly well accepted
that nothing of direct importance hangs on the permanence of shocks, but it
is still an interesting stylized fact.

At the same time, financial economists got interested in the question
of whether stock returns are less than perfect random walks. It turns out
that the same techniques that are good for quantifying how much GNP does
behave like a random walk are useful for quantifying the extent to which
stock prices do not exactly follow a random walk. Again, some authors once
thought that these tests were convincing evidence about “efficient markets”,
but now most recognize that this is not the case.

10.2.3 Statistical issues

At the same time, the statistical issue mentioned above made it look likely
that we could have mistaken time series with unit roots for trend stationary
time series. This motivated Nelson and Plosser (1982) to test macroeconomic
time series for unit roots. They found they could not reject unit roots in most
time series. They interpreted this finding as evidence for technology shocks,
though Campbell and Mankiw (1987) interpreted the exact same findings as
evidence for long-lasting Keynesian stickiness. Whatever the interpretation,
we became more aware of the possibility of long run movements in time-series.

Here are a few examples of the statistical issues. These are for motivation
only at this stage; we’ll look at distribution theory under unit roots in more
detail in chapter x.
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Distribution of AR(1) estimates

Suppose a series is generated by a random walk

yt = yt−1 + t.

You might test for a random walks by running

yt = µ+ φyt−1 + t

by OLS and testing whether φ = 1. However, the assumptions underlying the
usual asymptotic distribution theory for OLS estimates and test statistics are
violated here, sincex0x/T does not converge in probability.

Dickey and Fuller looked at the distribution of this kind of test statistic
and found that OLS estimates are biased down (towards stationarity) and
OLS standard errors are tighter than the actual standard errors. Thus, it is
possible that many series that you would have thought were stationary based
on ols regressions were in fact generated by random walks.

Inappropriate detrending

Things get worse with a trend in the model. Suppose the real model is

yt = µ+ yt−1 + t

Suppose you detrend by OLS, and then estimate an AR(1), i.e., fit the model

yt = bt+ (1− φL)−1 t

This model is equivalent to

(1− φL)yt = (1− φL)bt+ t = bt− φb(t− 1) + t = φb+ b(1− φ)t+ t

or
yt = α+ γt+ φyt−1 + t,

so you could also directly run y on a time trend and lagged y.

It turns out that this case is even worse than the last one, in that φ̂ is
biased downward and the OLS standard errors are misleading. Intuitively,
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the random walk generates a lot of low-frequency movement. In a relatively
small sample, the random walk is likely to drift up or down; that drift could
well be (falsely) modeled by a linear (or nonlinear, “breaking” , etc. ) trend.
Claims to see trends in series that are really generated by random walks are
the central fallacy behind much “technical analysis” of asset markets.

Spurious regression

Last, suppose two series are generated by independent random walks,

xt = xt−1 + t

yt = yt−1 + δt E( tδs) = 0 for all t, s

Now, suppose we run yt on xt by OLS,

yt = α+ βxt + νt

Again, the assumptions behind the usual distribution theory are violated. In
this case, you tend to see ”significant” β more often than the OLS formulas
say you should.

There are an enormous number of this kind of test in the literature. They
generalize the random walk to allow serial correlation in the error (unit root
processes; we’ll study these below) and a wide variety of trends in both the
data generating model and the estimated processes. Campbell and Perron
(1991) give a good survey of this literature.

10.3 Unit root and stationary processes

The random walk is an extreme process. GNP and stock prices may follow
processes that have some of these properties, but are not as extreme. One
way to think of a more general process is as a random walk with a serially
correlated disturbance

(1− L)yt = µ+ a(L) t
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These are called unit root or difference stationary (DS) processes. In the
simplest version a(L) = 1 the DS process is a random walk with drift,

yt = µ+ yt−1 + t.

Alternatively, we can consider a process such as log GNP to be stationary
around a linear trend:

yt = µt+ b(L) t.

These are sometimes called trend-stationary (TS) processes.

The TS model can be considered as a special case of the DS model. If
a(L) contains a unit root, we can write the DS model as

yt = µt+ b(L) t ⇒ (1− L)yt = µ+ (1− L)b(L) t = µ+ a(L) t

(a(L) = (1− L)b(L))

Thus if the TS model is correct, the DS model is still valid and stationary.
However, it has a noninvertible unit MA root.

The DS model is a perfectly normal model for differences. We can think
of unit roots as the study of the implications for levels of a process that is
stationary in differences, rather than as a generalized random walk. For this
reason, it is very important in what follows to keep track of whether you are
thinking about the level of the process yt or its first difference.

Next, we’ll characterize some of the ways in which TS and DS processes
differ from each other

10.3.1 Response to shocks

The impulse-response function 1 of the TS model is the same as before, bj =
j period ahead response. For the DS model, aj gives the response of the
difference (1 − L)yt+j to a shock at time t. The response of the level of log
GNP yt+j is the sum of the response of the differences,

response of yt+jto shock at t = yt(−yt−1) + (yt+1 − yt) + ..+ (yt+j − yt+j−1)

1Since these models have means and trends in them, we define the impulse-response
function as Et(yt+j) − Et−1(yt+j) when there is a unit shock at time t. It doesn’t make
much sense to define the response to a unit shock when all previous values are zero!
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= a0 + a1 + a2 + . . .+ aj

See figure 10.1 for a plot.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

Σ aj = Response of y

aj = response of ∆ y

j

Figure 10.1: Response of differences and level for a series yt with a unit root.

The limiting value of the impulse-response of the DS model is

∞X
j=0

aj = a(1).

Since the TS model is a special case in which a(L) = (1− L)b(L), a(1) = 0
if the TS model is true. As we will see this (and only this) is the feature that
distinguishes TS from DS models once we allow arbitrary serial correlation,
i.e. arbitrary a(L) structure.
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What the DS model allows, which the random walk does not, is cases
intermediate between stationary and random walk. Following a shock, the
series could come back towards, but not all the way back to, its initial value.
This behavior is sometimes called “long-horizon mean-reverting”. For ex-
ample, if stock prices are not pure random walks, they should decay over a
period of years following a shock, or their behavior would suggest unexploited
profit opportunities. Similarly, GNP might revert back to trend following a
shock over the course of a business cycle, say a few years, rather than never
(random walk) or in a quarter or two.

Figure 10.2 shows some possibilities.

(1) 1a >

(1) 1a =

0 (1) 1a< <

(1) 0a =

“Mean reversion’’

Stationary

Random walk

Figure 10.2: Impluse-response functions for different values of a(1).

10.3.2 Spectral density

The spectral density of the DS process is

S(1−L)yt(ω) = | a(e−iω) |2 σ2.
The spectral density at frequency zero is S(1−L)yt(0) = a(1)2σ2 Thus, if |
a(1) |> 0, then the spectral density at zero of ∆yt is greater than zero. If
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a(1) = 0 (TS), then the spectral density of ∆yt at zero is equal to zero.
Figure 10.3 shows some intermediate possibilities.

(1) 1a =

0 (1) 1a< <

(1) 0a =

“Mean reversion’’

Stationary

Random walk

ω

Figure 10.3: Spectral densities for different values of a(1).

Here ”long horizon mean reversion” shows up if the spectral density is
high quite near zero, and then drops quickly.

10.3.3 Autocorrelation

The spectral density at zero is

S(1−L)yt(0) = γ0 + 2
∞X
j=1

γj =

Ã
1 + 2

∞X
j=1

ρj

!
γ0 = a(1)2σ2

Thus, if the process is DS, | a(1) |> 0, the sum of the autocorrelations is
non-zero. If it is TS, a(1) = 0, the sum of the autocorrelations is zero. If
it is a random walk, the sum of the autocorrelations is one; if it is mean
reverting, then the sum of the autocorrelations is less than one.

The ”long horizon” alternative shows up if there are many small negative
autocorrelations at high lags that draw the process back towards its initial
value following a shock.
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10.3.4 Random walk components and stochastic trends

A second way to think of processes more general than a random walk, or
intermediate between random walk and stationary is to think of combinations
of random walks and stationary components. This is entirely equivalent to
our definition of a DS process, as I’ll show.

Fact: every DS process can be written as a sum of a random walk and a
stationary component.

I need only exhibit one way of doing it. A decomposition with particularly
nice properties is the

Beveridge-Nelson decomposition: If (1 − L)yt = µ + a(L) t then we can
write

yt = ct + zt

where
zt = µ+ zt−1 + a(1) t

ct = a∗(L) t; a∗j = −
∞X

k=j+1

ak.

Proof: The decomposition follows immediately from the algebraic
fact that any lag polynomial a(L) can be written as

a(L) = a(1) + (1− L)a∗(L); a∗j = −
∞X

k=j+1

ak.

Given this fact, we have (1− L)yt = µ+ a(1) t + (1− L)a∗(L) t

= (1 − L)zt + (1 − L)ct, so we’re done. To show the fact, just
write it out:

a(1) : a0 +a1 +a2 +a3 ..
(1− L)a∗(L) : −a1 −a2 −a3 ..

+a1L +a2L +a3L ...
−a2L −a3L ...

...

When you cancel terms, nothing but a(L) remains.

2

115



There are many ways to decompose a unit root into stationary and ran-
dom walk components. The B-N decomposition has a special property: the
random walk component is a sensible definition of the “trend” in yt. zt is the
limiting forecast of future y, or today’s y plus all future expected changes
in y. If GNP is forecasted to rise, GNP is “below trend” and vice-versa.
Precisely,

zt = lim
k→∞

Et(yt+k − kµ) = yt +
∞X
j=1

(Et∆yt+j − µ)

The first definition is best illustrated graphically, as in figure 10.4

( )t t jE y +

tz

tc

Figure 10.4: Beveridge-Nelson decomposition

Given this definition of zt, we can show that it’s the same z as in the
B-N decomposition:

zt − zt−1 = lim
k→∞

(Et(yt+k)−Et−1(yt+k) + µ)

Et(yt+k) − Et−1(yt+k) is the response of yt+k to the shock at t, Et(yt+k) −
Et−1(yt+k) =

Pk
j=1 aj t. Thus

lim
k→∞

(Et(yt+k)−Et−1(yt+k)) = a(1) t
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and
zt = µ+ zt−1 + a(1) t.

The construction of the B-N trend shows that the innovation variance of
the random walk component is a(1)2σ2. Thus, if the series is already TS, the
innovation variance of the random walk component is zero. If the series has
a small a(1), and thus is “mean-reverting”, it will have a small random walk
component. If the series already is a random walk, then a0 = 1, aj = 0, so
yt = zt.

Beveridge and Nelson defined the trend as above, and then derived the
process for ct as well as zt. I went about it backward with the advantage of
hindsight.

In the Beveridge-Nelson decomposition the innovations to the stationary
and random walk components are perfectly correlated. Consider instead an
arbitrary combination of stationary and random walk components, in which
the innovations have some arbitrary correlation.

yt = zt + ct

zt = µ+ zt−1 + νt

ct = b(L)δt

Fact: In Every decomposition of yt into stationary and random walk com-
ponents, the variance of changes to the random walk component is the same,
a(1)2 σ2.

Proof: Take differences of yt,

(1− L)yt = (1− L)zt + (1− L)ct = µ+ νt + (1− L)b(L)δt

(1− L)yt is stationary, so must have a Wold representation

(1− L)yt = µ+ νt + (1− L)b(L)δt = µ+ a(L) t,

Its spectral density at frequency zero is

S∆y(0) = a(1)2σ2 = σ2νhelp
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The (1 − L) means that the δ term does not affect the spectral
density at zero. Thus, the spectral density at zero of (1− L)yt is
the innovation variance of ANY random walk component.

2

The ”long-horizon mean reverting” case is one of a small a(1). Thus
this case corresponds to a small random walk component and a large and
interesting stationary component.

10.3.5 Forecast error variances

Since the unit root process is composed of a stationary plus random walk
component, you should not be surprised if the unit root process has the
same variance of forecasts behavior as the random walk, once the horizon is
long enough that the stationary part has all died down.

To see this, use the Beveridge Nelson decomposition.

yt+k = zt+k + ct+k

= zt + kµ+ a(1)( t+1 + t+2 + . . .+ t+k) + a∗(L) t+k

The variance of the first term is

ka(1)2σ2

for large k, the variance of the second term approaches its unconditional
variance var(ct) = var(a

∗(L) t). Since the a
∗(L) die out, the covariance term

is also dominated by the first term. r (If a∗(L) only had finitely many terms
this would be even more obvious.) Thus, at large k,

vart(yt+k)→ ka(1)2σ2 + (terms that grow slower than k).

The basic idea is that the random walk component will eventually dominate,
since its variance goes to infinity and the variance of anything stationary is
eventually limited.
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10.3.6 Summary

In summary, the quantity a(1) controls the extent to which a process looks
like a random walk. If

(1− L)yt = µ+ a(L) t

then
a(1) = limit of yt impulse-response

a(1)2σ2 = S(1−L)yt(0)
a(1)2σ2 = var (1− L) random walk component

a(1)2σ2 =
³
1 + 2

P∞
j=1 ρj

´
var(∆yt)

a(1)2σ2 = 1 + 2
P∞

j=1 γj
a(1)2σ2 = limk→∞ vart(yt+k)/k
a(1)2σ2 =

In these many ways a(1) quantifies the extent to which a series ”looks like”
a random walk.

10.4 Summary of a(1) estimates and tests.

Obviously, estimating and testing a(1) is going to be an important task.
Before reviewing some approaches, there is a general point that must be
made.

10.4.1 Near- observational equivalence of unit roots
and stationary processes in finite samples

So far, I’ve shown that a(1) distinguishes unit root from stationary processes.
Furthermore a(1) is the only thing that distinguishes unit roots from station-
ary processes. There are several ways to see this point.

1) Given a spectral density, we could change the value at zero to some
other value leaving the rest alone. If the spectral density at zero starts
positive, we could set it to zero, making a stationary process out of a unit
root process and vice versa.
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2) Given a Beveridge-Nelson decomposition, we can construct a new se-
ries with a different random walk component. Zap out the random walk
component, and we’ve created a new stationary series; add a random walk
component to a stationary series and you’ve created a unit root. The variance
of the random walk component was determined only by a(1).

3) And so forth (See Cochrane (1991) for a longer list).

(Actually the statement is only true in a finite sample. In population, we
also know that the slope of the spectral density is zero at frequency zero:

S(ω) = γ0 + 2
∞X
j=1

cos(jω)γj

dS(ω)

dω

¯̄̄̄
ω=0

= −2
∞X
j=1

j sin(jω)γj

¯̄̄̄
¯
ω=0

= 0.

Thus, you can’t just change the point at zero. Changing the spectral den-
sity at a point also doesn’t make any difference, since it leaves all integrals
unchanged. However, in a finite sample, you can change the periodogram
ordinate at zero leaving all the others alone.)

Another way of stating the point is that (in a finite sample) there are
unit root processes arbitrarily ”close” to any stationary process, and there
are stationary processes arbitrarily ”close” to any unit root process. To see
the first point, take a stationary process and add an arbitrarily small random
walk component. To see the second, take a unit root process and change the
unit root to .9999999. ”Close” here can mean any statistical measure of
distance, such as autocovariance functions, likelihood functions, etc.

Given these points, you can see that testing for a unit root vs. stationary
process is hopeless in a finite sample. We could always add a tiny random
walk component to a stationary process and make it a unit root process; yet
in a finite sample we could never tell the two processes apart.

What ”unit root tests” do is to restrict the null: they test for a unit root
plus restrictions on the a(L) polynomial, such as a finite order AR, versus
trend stationary plus restrictions on the a(L) polynomial. Then, they promise
to slowly remove the restrictions as sample size increases.
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10.4.2 Empirical work on unit roots/persistence

Empirical work generally falls into three categories:

1) Tests for unit roots (Nelson and Plosser (1982)) The first kind of tests
were tests whether series such as GNP contained unit roots. As we have
seen, the problem is that such tests must be accompanied by restrictions on
a(L) or they have no content. Furthermore, it’s not clear that we’re that
interested in the results. If a series has a unit root but tiny a(1) it behaves
almost exactly like a stationary series. For both reasons, unit root tests are
in practice just tests for the size of a(1).

Nonetheless, there is an enormous literature on testing for unit roots.
Most of this literature centers on the asymptotic distribution of various test
procedures under a variety of null hypotheses. The problem is econometri-
cally interesting because the asymptotic distribution (though not the finite
sample distribution) is usually discontinuous as the root goes to 1. If there
is even a tiny random walk component, it will eventually swamp the rest of
the series as the sample grows

2 Parametric Measures of a(1) (Campbell and Mankiw (1988)) In this
kind of test, you fit a parametric (ARMA) model for GNP and then find the
implied a(1) of this parametric model. This procedure has all the advantages
and disadvantages of any spectral density estimate by parametric model. If
the parametric model is correct, you gain power by using information at all
frequencies to fit it. If it is incorrect, it will happily forsake accuracy in the
region you care about (near frequency zero) to gain more accuracy in regions
you don’t care about. (See the Sims approximation formula above.)

3. “Nonparametric” estimates of a(1). (Cochrane (1988), Lo and MacKin-
lay (1988), Poterba and Summers (1988)) Last, one can use spectral density
estimates or their equivalent weighted covariance estimates to directly es-
timate the spectral density at zero and thus a(1), ignoring the rest of the
process. This is the idea behind ”variance ratio” estimates. These estimates
have much greater standard errors than parametric estimates, but less bias
if the parametric model is in fact incorrect.
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Chapter 11

Cointegration

Cointegration is generalization of unit roots to vector systems. As usual, in
vector systems there are a few subtleties, but all the formulas look just like
obvious generalizations of the scalar formulas.

11.1 Definition

Suppose that two time series are each integrated, i.e. have unit roots, and
hence moving average representations

(1− L)yt = a(L)δt

(1− L)wt = b(L)νt

In general, linear combinations of y and w also have unit roots. However, if
there is some linear combination, say yt − αwt, that is stationary, yt and wt

are said to be cointegrated, and [1− α] is their cointegrating vector.

Here are some plausible examples. Log GNP and log consumption each
probably contain a unit root. However, the consumption/GNP ratio is sta-
ble over long periods, thus log consumption − log GNP is stationary, and log
GNP and consumption are cointegrated. The same holds for any two com-
ponents of GNP (investment, etc). Also, log stock prices certainly contain
a unit root; log dividends probably do too; but the dividend/price ratio is
stationary. Money and prices are another example.
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11.2 Cointegrating regressions

Like unit roots, cointegration attracts much attention for statistical reasons
as well as for the economically interesting time-series behavior that it rep-
resents. An example of the statistical fun is that estimates of cointegrating
vectors are “superconsistent”–you can estimate them by OLS even when the
right hand variables are correlated with the error terms, and the estimates
converge at a faster rate than usual.

Suppose yt and wt are cointegrated, so that yt − αwt is stationary. Now,
consider running

yt = βwt + ut

by OLS. OLS estimates of β converge to α, even if the errors ut are correlated
with the right hand variables wt!

As a simple way to see this point, recall that OLS tries to minimize
the variance of the residual. If yt − wtβ is stationary, then for any α 6=
β, yt − wtα has a unit root and hence contains a random walk (recall the
B-N decomposition above). Thus, the variance of (yt−wtβ), β 6= α increases
to∞ as the sample size increases; while the variance of (yt−wtα) approaches
some finite number. Thus, OLS will pick β̂ = α in large samples.

Here’s another way to see the same point: The OLS estimate is

β̂ = (W 0W )−1(W 0Y ) = (
X
t

w2t )
−1(
X
t

wt(αwt + ut)) =

α+
X
t

wtut/
X
t

w2t = α+
1
T

P
twtut

1
T

P
tw

2
t

Normally, the plim of the last term is not zero, so β̂ is an inconsistent estimate
of α. We assume that the denominator converges to a nonzero constant, as
does the numerator, since we have not assumed that E(wtut) = 0. But, when
wt has a unit root, the denominator of the last term goes to ∞, so OLS is
consistent, even if the numerator does not converge to zero! Furthermore,
the denominator goes to ∞ very fast, so β̂ converges to α at rate T rather
than the usual rate T 1/2.

As an example, consider the textbook simultaneous equations problem:

yt = ct + at
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ct = αyt + t

αt is a shock (at = it + gt); at and t are iid and independent of each
other. If you estimate the ct equation by OLS you get biased and inconsistent
estimates of α. To see this, you first solve the system for its reduced form,

yt = αyt + t + at =
1

1− α
( t + at)

ct =
α

1− α
( t + at) + t =

1

1− α
t +

α

1− α
at

Then,

α̂→ plim( 1
T

P
ctyt)

plim( 1
T

P
y2t )

=
plim( 1

T

P
(αyt + t)yt)

plim( 1
T

P
y2t )

= α+
plim( 1

T

P
tyt)

plim( 1
T

P
y2t )

= α+

σ2

1−α
σ2+σ2a
(1−α)2

= α+ (1− α)
σ2

σ2 + σ2a

As a result of this bias and inconsistency a lot of effort was put into estimating
”consumption functions” consistently, i.e. by 2SLS or other techniques.

Now, suppose instead that at = at−1 + δt. This induces a unit root in y
and hence in c as well. But since is still stationary, c− αy is stationary, so
y and c are cointegrated. Now σ2a → ∞, so plim( 1T

P
y2t ) = ∞ and α̂ → α!

Thus, none of the 2SLS etc. corrections are needed!

More generally, estimates of cointegrating relations are robust to many of
the errors correlated with right hand variables problems with conventional
OLS estimators, including errors in variables as well as simultaneous equa-
tions and other problems.

11.3 Representation of cointegrated system.

11.3.1 Definition of cointegration

Consider a first difference stationary vector time series xt. The elements of
xt are cointegrated if there is at least one vector α such that α

0xt is stationary
in levels. α is known as the cointegrating vector.
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Since differences of xt are stationary, xt has a moving average represen-
tation

(1− L)xt = A(L) t.

Since α0xt stationary is an extra restriction, it must imply a restriction on
A(L). It shouldn’t be too hard to guess that that restriction must involve
A(1)!

11.3.2 Multivariate Beveridge-Nelson decomposition

It will be useful to exploit the multivariate Beveridge-Nelson decomposition,

xt = zt + ct,

(1− L)zt = A(1) t

ct = A∗(L) t ;A
∗
j = −

∞X
k=j+1

Ak

This looks just like and is derived exactly as the univariate BN decomposi-
tion, except the letters stand for vectors and matrices.

11.3.3 Rank condition on A(1)

Here’s the restriction on A(1) implied by cointegration: The elements of xt
are cointegrated with cointegrating vectors αi iff α0iA(1) = 0. This implies
that the rank of A(1) is (number of elements of xt - number of cointegrating
vectors αi)

Proof: Using the multivariate Beveridge Nelson decomposition,

α0xt = α0zt + α0ct.

α0ct is a linear combination of stationary random variables and is
hence stationary. α0zt is a linear combination of random walks.
This is either constant or nonstationary. Thus, it must be con-
stant, i.e. its variance must be zero and, since

(1− L)α0zt = α0A(1) t,
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we must have
α0A(1) = 0

2

In analogy to a(1) = 0 or | a(1) |> 0 in univariate time series, we now
have three cases:

Case 1 : A(1) = 0⇔ xt stationary in levels; all linear combinations of xt
stationary in levels.

Case 2 : A(1) less than full rank ⇔ (1 − L)xt stationary, some linear
combinations α0xt stationary.

Case 3 : A(1) full rank ⇔ (1−L)xt stationary, no linear combinations of
xt stationary.

For unit roots, we found that whether a(1) was zero or not controlled
the spectral density at zero, the long-run impulse-response function and the
innovation variance of random walk components. The same is true here for
A(1), as we see next.

11.3.4 Spectral density at zero

The spectral density matrix of (1 − L)xt at frequency zero is S(1−L)xt(0) =
Ψ = A(1)ΣA(1)0. Thus, α0A(1) = 0 implies α0A(1)ΣA(1)0 = 0, so the spectral
density matrix of (1 − L)xt is also less than full rank, and α0Ψ = 0 for any
cointegrating vector α.

The fact that the spectral density matrix at zero is less than full rank
gives a nice interpretation to cointegration. In the 2x2 case, the spectral
density matrix at zero is less than full rank if its determinant is zero, i.e. if

S∆y(0)S∆w(0) =| S∆y∆w(0) |2
This means that the components at frequency zero are perfectly correlated.

11.3.5 Common trends representation

Since the zero frequency components are perfectly correlated, there is in a
sense only one common zero frequency component in a 2-variable cointe-
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grated system. The common trends representation formalizes this idea.

Ψ =A(1)ΣA(1)0 is also the innovation variance-covariance matrix of the
Beveridge-Nelson random walk components. When the rank of this matrix
is deficient, we obviously need fewer than N random walk components to
describe N series. This means that there are common random walk compo-
nents. In the N = 2 case, in particular, two cointegrated series are described
by stationary components around a single random walk.

Precisely, we’re looking for a representation∙
yt
wt

¸
=
ha
b

i
zt + stationary.

Since the spectral density at zero (like any other covariance matrix) is
symmetric, it can be decomposed as

Ψ = A(1)ΣA(1)0 = QΛQ0

where

Λ =

∙
λ1 0
0 λ2

¸
and QQ0 = Q0Q = I . Then λi are the eigenvalues and Q is an orthogonal
matrix of corresponding eigenvectors. If the system has N series and K
cointegrating vectors, the rank of Ψ is N −K, so K of the eigenvalues are
zero.

Let νt define a new error sequence,

νt = Q0A(1) t

Then E(νtν
0
t) = Q0A(1)ΣA(1)0Q = Q0QΛQ0Q = Λ So the variance-covariance

matrix of the νt shocks is diagonal, and has the eigenvalues of the Ψ matrix
on the diagonal.

In terms of the new shocks, the Beveridge-Nelson trend is

zt = zt−1 +A(1) t = zt−1 +Qνt

But components of ν with variance zero might as well not be there. For
example, in the 2x2 case, we might as well write∙

z1t
z2t

¸
=

∙
z1t−1
z2t−1

¸
+Q

∙
ν1t
ν2t

¸
; E(νtv

0
t) =

∙
λ1 0
0 0

¸
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as ∙
z1t
z2t

¸
=

∙
z1t−1
z2t−1

¸
+

∙
Q11

Q21

¸
v1t; E(v21t) = λ1.

Finally, since z1and z2 are perfectly correlated, we can write the system
with only one random walk as∙

yt
wt

¸
=

∙
Q11

Q21

¸
zt +A∗(L) t.

(1− L)zt = ν1t = [1 0]Q
0A(1) t

This is the common trends representation. yt and wt share a single com-
mon trend, or common random walk component zt.

We might as well order the eigenvalues λi from largest to smallest, with
the zeros on the bottom right. In this way, we rank the common trends by
their importance.

With univariate time series, we thought of a continuous scale of processes
between stationary and a pure random walk, by starting with a stationary
series and adding random walk components of increasing variance, indexed
by the increasing size of a(1)2σ2. Now, start with a stationary series xt, i.e.
let all the eigenvalues be zero. We can then add random walk components one
by one, and slowly increase their variance. The analogue to ”near-stationary”
series we discussed before are ”nearly cointegrated” series, with a very small
eigenvalue or innovation variance of the common trend.

11.3.6 Impulse-response function.

A(1) is the limiting impulse-response of the levels of the vector xt. For
example, A(1)yw is the long-run response of y to a unit w shock. To see
how cointegration affects A(1), consider a simple (and very common) case,
α = [1− 1]0. The reduced rank of A(1) means

α0A(1) = 0

[1 − 1]
∙
A(1)yy A(1)yw
A(1)wy A(1)ww

¸
= 0
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hence
A(1)yy = A(1)wy

A(1)yw = A(1)ww

each variable’s long-run response to a shock must be the same. The reason is
intuitive: if y and w had different long-run responses to a shock, the difference
y − w would not be stationary. Another way to think of this is that the
response of the difference y − w must vanish, since the difference must be
stationary. A similar relation holds for arbitrary α.

11.4 Useful representations for running coin-

tegrated VAR’s

The above are very useful for thinking about cointegration, but you have to
run AR’s rather thanMA(∞)s. Since the WoldMA(∞) isn’t invertible when
variables are cointegrated, we have to think a little more carefully about how
to run VARs when variables are cointegrated.

11.4.1 Autoregressive Representations

Start with the autoregressive representation of the levels of xt, B(L)xt = t

or
xt = −B1xt−1 −B2xt−2 + . . .+ t.

Applying the B-N decomposition B(L) = B(1) + (1 − L)B∗(L) to the lag
polynomial operating on xt−1(t− 1, not t) on the right hand side, we obtain
xt = (−(B1+B2+. . .))xt−1+(B2+B3+..)(xt−1−xt−2)+(B3+B4+..)(xt−2−xt−3)+. . .+ t

xt = (−(B1 +B2 + . . .))xt−1 +
∞X
j=1

B∗j∆xt−j + t

Hence, subtracting xt−1 from both sides,

∆xt = −B(1)xt−1 +
∞X
j=1

B∆xt−j + t.
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As you might have suspected, the matrix B(1) controls the cointegration
properties. ∆xt,

P∞
j=1B ∆xt−j, and t are stationary, so B(1)xt−1 had also

better be stationary. There are three cases:

Case 1 : B(1) is full rank, and any linear combination of xt−1 is stationary.
xt−1 is stationary. In this case we run a normal VAR in levels.

Case 2 : B(1) has rank between 0 and full rank. There are some linear
combinations of xt that are stationary, so xt is cointegrated. As we will see,
the VAR in levels is consistent but inefficient (if you know the cointegrating
vector) and the VAR in differences is misspecified in this case.

Case 3 : B(1) has rank zero, so no linear combination of xt−1 is stationary.
∆xt is stationary with no cointegration. In this case we run a normal VAR
in first differences.

11.4.2 Error Correction representation

As a prelude to a discussion of what to do in the cointegrated case, it will be
handy to look at the error correction representation.

If B(1) has less than full rank, we can express it as

B(1) = γα0;

If there are K cointegrating vectors, then the rank of B(1) is K and γ and
α each have K columns. Rewriting the system with γ and α, we have the
error correction representation

∆xt = −γα0xt−1 +
∞X
j=1

B∗j∆xt−j + t.

Note that since γ spreads K variables into N variables, α0xt−1 itself must be
stationary so that γα0xt−1 will be stationary. Thus, α must be the matrix of
cointegrating vectors.

This is a very nice representation. If α0xt−1 is not 0 (its mean), γα0xt−1
puts in motion increases or decreases in ∆xt to restore α

0xt towards its mean.
In this sense “errors” — deviations from the cointegrating relation α0xt = 0 —
set in motion changes in xt that “correct” the errors.
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11.4.3 Running VAR’s

Cases 1 or 3 are easy: run a VAR in levels or first differences. The hard case
is case 2, cointegration.

With cointegration, a pure VAR in differences,

∆yt = a(L)∆yt−1 + b(L)∆wt−1 + δt

∆wt = c(L)∆yt−1 + d(L)∆wt−1 + νt

is misspecified. Looking at the error-correction form, there is a missing re-
gressor, α0[yt−1wt−1]0. This is a real problem; often the lagged cointegrating
vector is the most important variable in the regression. A pure VAR in lev-
els, yt = a(L)yt−1+ b(L)wt−1 + δtwt = c(L)yt−1+ d(L)wt−1+ νt looks a little
unconventional, since both right and left hand variables are nonstationary.
Nonetheless, the VAR is not misspecified, and the estimates are consistent,
though the coefficients may have non-standard distributions. (Similarly, in
the regression xt = φxt−1 + t; when xt was generated by a random walk
φ̂ → 1, but with a strange distribution.) However, they are not efficient: If
there is cointegration, it imposes restrictions on B(1) that are not imposed
in a pure VAR in levels.

One way to impose cointegration is to run an error-correction VAR,

∆yt = γy(αyyt−1 + αwwt−1) + a(L)∆yt−1 + b(L)∆wt−1 + δt
∆wt = γw(αyyt−1 + αwwt−1) + c(L)∆yt−1 + d(L)∆wt−1 + νt

This specification imposes that y and w are cointegrated with cointegrat-
ing vector α. This form is particularly useful if you know ex-ante that the
variables are cointegrated, and you know the cointegrating vector, as with
consumption and GNP. Otherwise, you have to pre-test for cointegration and
estimate the cointegrating vector in a separate step. Advocates of just run-
ning it all in levels point to the obvious dangers of such a two step procedure.

A further difficulty with the error-correction form is that it doesn’t fit
neatly into standard VAR packages. Those packages are designed to regress
N variables on their own lags, not on their own lags and a lagged difference
of the levels. A way to use standard packages is to estimate instead the
companion form, one difference and the cointegrating vector.

∆yt = a(L)∆yt−1 + b(L)(αyyt−1 + αwwt−1) + δt
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(αyyt + αwwt) = c(L)∆yt−1 + d(L)(αyyt−1 + αwwt−1) + νt

This is equivalent (except for lag length) and can be estimated with regular
VAR packages. Again, it requires a priori knowledge of the cointegrating
vector.

There is much controversy over which approach is best. My opinion is
that when you really don’t know whether there is cointegration or what the
vector is, the AR in levels approach is probably better than the approach of
a battery of tests for cointegration plus estimates of cointegrating relations
followed by a companion or error correction VAR. However, much of the time
you know the variables are cointegrated, and you know the cointegrating vec-
tor. Consumption and GNP are certainly cointegrated, and the cointegrating
vector is [1 -1]. In these cases, the error-correction and companion form are
probably better, since they impose this prior knowledge. (If you run the AR
in levels, you will get close to, but not exactly, the pattern of cointegration
you know is in the data.) The slight advantage of the error-correction form
is that it treats both variables symmetrically. It is also equivalent to a com-
panion form with a longer lag structure in the cointegrating relation. This
may be important, as you expect the cointegrating relation to decay very
slowly. Also, the error correction form will likely have less correlated errors,
since there is a y on both left hand sides of the companion form. However,
the companion form is easier to program.

Given any of the above estimates of the AR representation, it’s easy to
find the MA(∞) representation of first differences by simply simulating the
impulse-response function.

11.5 An Example

Consider a first order VAR

yt = ayt−1 + bwt−1 + δt

wt = cyt−1 + dwt−1 + νt

or µ
I −

∙
a b
c d

¸
L

¶
xt = t; B(1) =

∙
1− a −b
−c 1− d

¸
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An example of a singular B(1) is b = 1− a, c = 1− d,

B(1) =

∙
b −b
−c c

¸
.

The original VAR in levels with these restrictions is

yt = (1− b)yt−1 + bwt−1 + δt
wt = cyt−1 + (1− c)wt−1 + νt

or µ
I −

∙
1− b b
c 1− c

¸
L

¶
xt = t;

The error-correction representation is

∆xt = −γα0xt−1 +
∞X
j=1

B∗j∆xt−j + t.

B(1) =

∙
b

−c
¸
[1 − 1] ⇒ γ =

∙
b

−c
¸
, α =

∙
1

−1
¸
.

Since B is only first order, B∗1 and higher = 0, so the error-correction
representation is

∆yt = −b(yt−1 − wt−1) + δt

∆wt = c(yt−1 − wt−1) + νt

As you can see, if yt−1−wt−1 > 0, this lowers the growth rate of y and raises
that of w, restoring the cointegrating relation.

We could also subtract the two equations,

∆(yt − wt) = −(b+ c)(yt−1 − wt−1) + (δt − νt)

yt − wt = (1− (b+ c))(yt−1 − wt−1) + (δt − νt)

so yt − wt follows an AR(1).(You can show that 2 > (b + c) > 0, so it’s a
stationary AR(1).) Paired with either the ∆y or ∆w equation given above,
this would form the companion form.
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In this system it’s also fairly easy to get to the MA(∞) representation
for differences. From the last equation,

yt − wt = (1− (1− (b+ c))L)−1(δt − νt) ≡ (1− θL)−1(δt − νt)

so
∆yt = −b(yt−1 − wt−1) + δt
∆wt = c(yt−1 − wt−1) + vt

becomes

∆yt = −b(1− θL)−1(δt − νt) + δt = (1− b(1− θL)−1)δt + b(1− θL)−1vt
∆wt = c(1− θL)−1(δt − νt) + vt = c(1− θL)−1δt + (1− c(1− θL)−1)vt∙

∆yt
∆wt

¸
= (1− θL)−1

∙
(1− θL)− b b

c (1− θL)− c

¸ ∙
δt
vt

¸
∙
∆yt
∆wt

¸
= (1−(1−b−c)L)−1

∙
1− b− (1− b− c)L b

c 1− c− (1− b− c)L

¸ ∙
δt
vt

¸
Evaluating the right hand matrix at L = 1,

(b+ c)−1
∙
c b
c b

¸
Denoting the last matrix A(L), note α0A(1) = 0. You can also note

A(1)γ = 0, another property we did not discuss.

11.6 Cointegration with drifts and trends

So far I deliberately left out a drift term or linear trends. Suppose we put
them back in, i.e. suppose

(1− L)xt = µ+A(L) t.

The B −N decomposition was

zt = µ+ zt−1 +A(1) t.
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Now we have two choices. If we stick to the original definition, that α0xt
must be stationary, it must also be the case that α0µ = 0. This is a separate
restriction. If α0A(1) = 0, but α0µ 6= 0, then

α0zt = α0µ+ α0zt−1 ⇒ α0zt = α0z0 + (α0µ)t.

Thus, α0xt will contain a time trend plus a stationary component. Alterna-
tively, we could define cointegration to be α0xt contains a time trend, but
no stochastic (random walk) trends. Both approaches exist in the literature,
as well as generalizations to higher order polynomials. See Campbell and
Perron (1991) for details.
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