
5 Week 3. Fama-French and the cross section of stock returns —

overheads

5.1 Fama and French ”Multifactor Anomalies”

1. Big Questions

2. CAPM,

() =  (+)

(a)  are defined from time series regressions


 =  + 


 + ;

(
 = 

 −

 )

(b) What we do: see if attractive opportunities () have higher .

3. Evidence: The CAPM worked great and still does on many assets.

(a) From “Discount Rates” The CAPM works great on size portfolios.

−0.5 0 0.5 1 1.5
−5

0

5

10

15

20

Betas

A
ve

ra
ge

 R
et

ur
n

1926−1979

−0.5 0 0.5 1 1.5
0

2

4

6

8

10

12

14

Betas

1980−2010

4. CAPM Example 2: industry portfolios
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5. The Value Puzzle

(a) FF. Ok for size, industry, beta portfolios. What about book/market? Do low prices

mean high returns across stocks?

(b) Facts: There is a big spread in average returns. But market beta is a disaster. Puzzle

depends on average returns and betas! From “Discount rates”

 Growth       Value  
−0.2

0

0.2

0.4

0.6

0.8

E(r)

β x E(rmrf)

b x E(rmrf)

h x E(hml)

A
ve

ra
ge

 r
et

ur
n

Average returns and betas

Average returns and betas for Fama - French 10 B/M sorted portfolios. Monthly data 1963-2010.
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(c) Also in “Discount Rates”
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(d) Value From Asset Pricing
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6. Fama-French solution:

(a) Run time series regressions that include additional factors (portfolios of stocks) SMB,

HML


 =  + 


 +  +  + ;  = 1 2 for each  = 1 2

(b) Look across stocks

() =  + (
) + () + ()

(c) Result from “Discount rates.”
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(d) 25 portfolios from Asset Pricing
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7. Fama-French paper:

Book/market (NYSE breaks)
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(a) Run time series regressions that include additional factors (portfolios of stocks) SMB,

HML


 =  + 


 +  +  + ;  = 1 2 for each  = 1 2

(b) Look across stocks at the cross-sectional implication of this time-series regression (Take

 of both sides again):

() =  + (
) + () + ()

This works pretty well ( not big) except for small growth.

(c) “Discount Rates” one stop summary again. Now look at the sum of red solid and red

dashed lines. () = ×() + ×().
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Average returns and betas for Fama - French 10 B/M sorted portfolios. Monthly data 1963-2010.

8. FF

(a) See FF Table 1. In depth!

(b) What’s wrong with () = ()+()? “How you behave” vs. “who you

are”

(c) Understand the difference between “explaining returns” (time-series regression) and “ex-

plaining average returns” (cross-sectional relation between average return and beta)!

(d) The main point is to produce a robust model that explains other anomalies. That is

what the CAPM did for many years. See Sales, long term reversal. Not momentum

9. Do we really need the smb portfolio? Smb makes it a better model of returns, doesn’t help

much on average returns, and improves precision.

(a) Example: Suppose the CAPM works add a beta-hedged industry portfolio.


 =  + 


 + 

∗
 = 

 − 



Now run


 =  + 


 + 

∗
 + 

i.   0, 2 improves,  statistics improve, () decreases. The model of variance

improves
ii.


³



´
=  (


 ) + 

³
∗


´
=  (


 ) + 0

The model of mean is unchanged.
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(b) This is roughly true. FF keep SMB because it is so useful to explain the variance of

size-sorted portfolios.

10. Is it a tautology to “explain” 25 B/M, size portfolios by 2 B/M, size portfolios? (No, why?

) → Other sorts.

11. Where does FF come from?

(a) ICAPM: “State variables of concern to investors” Suppose people don’t want stocks that

fall especially (more than others) in recessions.

(b) APT: “Minimalist interpretation.” Suppose 2 = 1,


 =  +  +  + 0

→

³



´
=  () +  () +  ()

(c) Practice: like the CAPM for digesting anomalies.

12. A big picture for “dissecting anomalies” and the whole question of multivariate forecasts:

 ≈ 

∞X
=1

+ −

∞X
=1

∆+

 reveals to us market expectations.

(a) How can  help?

(b)  can predict both  and ∆.  can predict +1 and + in opposite directions.

(c) Fama and French “Dissecting anomalies:” This is why additional “cashflow forecast”

anomaly variables help to forecast returns.

(d) “Discount rates” the cay experiment turns out to forecast the time path of returns.
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13. Regressions summary.

(a) Forecasting


+1 = +  + +1;  = 1 2 

(b) The “market model” of returns (return variance)


 =  + 


 + ;  = 1 2  for each 

(c) FF’s three-factor model of returns (return variance)


 =  +  +  +  + ;  = 1 2  for each 

(d) The CAPM model of mean returns. (We implicitly run this when we look at expected

return vs. beta. We will run this “cross-sectional regression” explicitly soon.)


³



´
=  + ;  = 1 2 

(e) The slope coefficient in d should equal the mean market return (since its beta is one) 
should = (), so we sometimes force that in the implicit cross sectional “regression”


³



´
=  (

) + ;  = 1 2 

(f) Fama and French. They do option e. They are implicitly running a cross sectional

regression with the slopes equal to means of the factors. Table 1 is just data for this

regression


³



´
=  () +  () +  () + ;  = 1 2 

(g) The cross-sectional characteristic regression. Rather than Table 1A, FF dissecting anom-

alies and discount rates describe mean returns by a characteristic regression


³



´
= +  [log()] +  [log()] + ;  = 1 2 

more generally with  a vector of characteristics


³



´
= + ; ;  = 1 2 

(h) The characteristic regression is the same thing as a forecasting regression. (Note some-

times there are fixed effects,  or )


+1 = +  log() +  log() + ;  = 1 2   = 1 2 


+1 = +  + +1
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5.2 Fama and French “Dissecting Anomalies”

1. The relationship between portfolios and cross-sectional regressions

Log(Book/market)

E(R)

1 2 3 4 5
Portfolio

Portfolio
Mean

Securities

Better weights?

Sorted portfolios and cross-sectional regressions.

Log(Book/market)

E(R)

A warning on OLS equally-weighted cross-sectional regressions
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