Week 2 Summary:

Value $=$ value to investor, willingness to pay for a little more x_{t+1}

$$
p_{t}=E_{t}\left[m_{t+1} x_{t+1}\right] ; \quad m_{t+1}=\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}=\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma} \approx 1-\delta-\gamma \Delta c_{t+1}
$$

Equivalent representations and implications:

1. $p_{t}=E_{t} \sum_{j=1}^{\infty} m_{t, t+j} d_{t+j} ; \quad p_{t}=E_{t} \int_{s=0}^{\infty} \frac{\Lambda_{t+s}}{\Lambda_{t}} D_{t+s} d s$
2. $1=E_{t}\left(m_{t+1} R_{t+1}\right) 0=E\left(m_{t+1} R_{t+1}^{e}\right)$;
3. $0=E_{t}\left[d\left(\Lambda_{t} V_{t}\right)\right]=E_{t}\left[d\left(\Lambda_{t} p_{t}\right)\right]+\Lambda_{t} D_{t} d t ; 0=E_{t}\left[\frac{d\left(\Lambda_{t} V_{t}\right)}{\Lambda_{t} V_{t}}\right]=E_{t}\left[\frac{d\left(\Lambda_{t} p_{t}\right)}{\Lambda_{t} p_{t}}\right]+\frac{D_{t}}{P_{t}} d t$
4. $\Lambda_{t}=e^{-\delta t} u^{\prime}\left(c_{t}\right)=e^{-\delta t} c_{t}^{-\gamma}$;

$$
\begin{aligned}
& \frac{d \Lambda_{t}}{\Lambda_{t}}=-\delta d t-\gamma \frac{d c_{t}}{c_{t}}+\frac{1}{2} \gamma(\gamma+1) \frac{d c_{t}^{2}}{c_{t}^{2}} \\
& \frac{d \Lambda_{t}}{\Lambda_{t}}=-\delta d t-\gamma d \log c_{t}+\frac{1}{2} \gamma^{2} d\left(\log c_{t}\right)^{2}
\end{aligned}
$$

5. $R^{f}=1 / E\left(m_{t+1}\right) \quad r_{t}^{f} d t=-E_{t}\left[\frac{d \Lambda_{t}}{\Lambda}\right] \quad r_{t}^{f}=\delta+\gamma E_{t}\left(d \log c_{t}\right)-\frac{1}{2} \gamma^{2} \sigma_{t}^{2}\left(d \log c_{t}\right)$ (Prediction for r^{f}, intertemporal substitution and precautionary savings motives in interest rates)
6. $p=\frac{E(x)}{R^{f}}+\operatorname{cov}(m, x)$
(Cost of capital, risk discount covariances. A lot prettier than $\left.p^{i}=\frac{E\left(x^{i}\right)}{E\left(R^{i}\right)}\right)$
7. $E\left(R^{e i}\right)=R^{f} \operatorname{cov}\left(m, R^{e i}\right)=\beta_{i, m} \lambda_{m} ; \quad E_{t}\left(d R_{t}^{i}\right)-r_{t}^{f} d t=E_{t}\left(\frac{d \Lambda_{t}}{\Lambda_{t}} d R_{t}^{i}\right)=\beta_{i, \Lambda, t} \lambda_{\Lambda, t}$
8. $E_{t}\left(d R_{t}^{i}\right)-r^{f} d t=\gamma \operatorname{cov}_{t}\left(d R_{t}^{i}, \frac{d c_{t}}{c_{t}}\right)=\beta_{i, \frac{d c}{c}} \lambda_{c}, \lambda_{c}=\gamma \operatorname{var}\left(\frac{d c}{c}\right)$ consumption CAPM, log too
9. Explain cross sectional and time series variation in average returns, e.g. Fama French Facts. Expected return vs. beta (graph) point of model; variance doesn't matter only covariance or systematic risk;

$$
\begin{gathered}
R_{t}^{e i}=\beta_{i, m} m_{t}+\varepsilon_{t}^{i} \\
\operatorname{var}\left(R_{t}^{e i}\right)=\beta_{i, m}^{2} \sigma_{m}^{2}+\sigma_{\varepsilon^{i}}^{2}
\end{gathered}
$$

"factor model"
10. MVF; HJ

$$
\begin{aligned}
\frac{E\left(R^{e}\right)}{\sigma\left(R^{e}\right)} & =-\frac{\sigma(m) \rho\left(m, R^{e}\right)}{E(m)} \\
\|\rho\| & \leq 1 \rightarrow \frac{\left\|E\left(R^{e}\right)\right\|}{\sigma\left(R^{e}\right)}<\frac{\sigma(m)}{E(m)} \approx \gamma \sigma(\Delta c)
\end{aligned}
$$

(a) $\exists M V F$, HJ bound, frontier reutrns correlated, two fund theorem, Roll theorem. NOT you want to hold mvf
(b) Equity premium risk/free rate puzzles.

$$
\begin{aligned}
& \frac{\left\|E\left(R^{e}\right)\right\|}{\sigma\left(R^{e}\right)}<\gamma \sigma(\Delta c) \\
& \frac{0.08}{0.16}<\gamma \times 0.02 \rightarrow \gamma>25 \\
& r_{t}^{f}= \delta+\gamma E_{t}\left(d \log c_{t}\right)-\frac{1}{2} \gamma^{2} \sigma_{t}^{2}\left(d \log c_{t}\right) \\
& \frac{E\left(R^{e}\right)}{\sigma\left(R^{e}\right)} \approx \gamma \sigma(\Delta c) \rho \\
& \frac{0.08}{0.16} \approx \gamma \times 0.02 \times(\rho<0.5) \rightarrow \gamma>50 \\
& r_{t}^{f}= \delta+\gamma E_{t}\left(d \log c_{t}\right)-\frac{1}{2} \gamma^{2} \sigma_{t}^{2}\left(d \log c_{t}\right) \\
& 0.01=\delta+25 \times 0.01 ? \rightarrow \delta=-0.24 ? \\
& 0.01= 0.01+\gamma \times 0.01-\frac{1}{2} \gamma^{2} 0.02^{2} \rightarrow \gamma=50 \\
& \frac{\partial r_{t}^{f}}{\partial E_{t} \Delta c_{t+1}}=50 ?
\end{aligned}
$$

History. β, γ to match

$$
\begin{aligned}
& 0=E\left[\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma} R_{t+1}^{e}\right] \\
& 1=E\left[\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma} R_{t}^{f}\right]
\end{aligned}
$$

(c) Continuous time expression

$$
\begin{aligned}
d R_{t} & =\left(r_{t}^{f}+\mu_{R}\right) d t+\sigma_{R} d z_{t}^{R} \\
\frac{d \Lambda_{t}}{\Lambda_{t}} & =-r_{t}^{f} d t+\sigma_{\Lambda} d z_{t}^{\Lambda} \\
\mu_{R} & =\sigma_{R} \sigma_{\Lambda} \rho\left(d z^{R} d z^{\Lambda}\right) \\
\frac{\left\|\mu_{R}\right\|}{\sigma_{R}} & \leq \sigma_{\Lambda}
\end{aligned}
$$

Note both sides are $\sqrt{d t}$
11. Radom walks and martingales.

$$
0=E_{t}\left[d\left(\Lambda_{t} V_{t}\right)\right] \Lambda_{t+1} V_{t+1}=\Lambda_{t} V_{t}+\varepsilon_{t+1}
$$

12. "Efficiency": price incorporates information. "Joint hypothesis theorem." Implications: information sets $0=E\left[d\left(\Lambda_{t} V_{t}\right) \mid\right.$ prices $] ; 0=E\left[d\left(\Lambda_{t} V_{t}\right) \mid\right.$ public $] 0=E\left[d\left(\Lambda_{t} V_{t}\right) \mid\right.$ inside $]$. Why was it important? an organizing framework for empirical work. Example: trading rules. Fund managers. Announcement effects.
13. General equlibrium:
(a) Endowment economy
(b) Full linear economy. Classic finance

$$
d R_{t}=\mu d t+\sigma d z_{t}
$$

\rightarrow portfolio theory \rightarrow aggregation \rightarrow CAPM. Qantities are endogenous, we derive the composition of the market portfolio
(c) Halfway 1: PIH model. R^{f} is nailed down and the allocation of consumption over time, but not across states
(d) Halfway 2: Q theory, adjustment costs to risky investment projects

Figure 1. Annual excess returns and consumption betas. This figure plots the average annual excess returns on the 25 Fama-French portfolios and their consumption betas. Each twodigit number represents one portfolio. The first digit refers to the size quintile (1 smallest, 5 largest), and the second digit refers to the book-to-market quintile (1 lowest, 5 highest).

Table II

Annual Excess Returns and Consumption Betas

Panel A reports average annual excess returns on the 25 Fama-French portfolios from 1954 to 2003. Annual excess return is calculated from January to December in real terms. All returns are annual percentages. Panel B reports these portfolios' consumption betas estimated by the timeseries regression:

$$
R_{i, t}=\alpha_{i}+\beta_{i, c} \Delta c_{t}+\varepsilon_{i, t},
$$

where $R_{i, t}$ is the excess return over the risk-free rate, and Δc_{t} is Q4-Q4 consumption growth calculated using fourth quarter consumption data. Panel C reports t-values associated with consumption betas.

	Low	Book-to-market			High
	Panel A: Average Annual Excess Returns (\%)				
Small	6.19	12.47	12.24	15.75	17.19
	5.99	9.76	12.62	13.65	15.07
Size	6.93	10.14	10.43	13.23	13.94
	7.65	7.91	11.18	12.00	12.35
Big	7.08	7.19	8.52	8.75	9.50

	Panel B: Consumption Betas					
Small	3.46	5.51	4.26	4.75	5.94	
	2.89	3.03	4.79	4.33	5.21	
Size	2.88	4.10	4.35	4.79	5.71	
	2.57	3.35	3.90	4.77	5.63	
Big	3.39	2.34	2.83	4.07	4.41	

	Panel C: t-values					
Small	0.93	1.71	1.59	1.83	2.08	
	0.98	1.27	2.02	1.83	2.10	
Size	1.15	1.93	2.17	2.07	2.39	
	1.14	1.75	1.90	2.26	2.39	
Big	1.71	1.32	1.67	2.15	2.00	

But...

1. t stats on betas are low. This regression does not test the model: $E R^{e}$. vs. β tests the model. But it means betas are poorly measured, possibly sensitive to a very few data points. (? worth checking in the data!)
2. $E\left(R^{e}\right)=\beta \times(\gamma \sigma(\Delta c))$ very large γ is still implied
3. Does not check riskfree rate implications - the heart of the equity premium puzzle
4. The correct nonlinear version works much worse! It should be $1=E\left(\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma} R\right)$, but raising things to the 50 power makes it work much worse
