
Week 2 Summary:

Value = value to investor, willingness to pay for a little more +1
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Equivalent representations and implications:
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(Prediction for  , intertemporal substitution and precautionary savings motives in interest

rates)
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9. Explain cross sectional and time series variation in average returns, e.g. Fama French Facts.

Expected return vs. beta (graph) point of model; variance doesn’t matter only covariance or

systematic risk;
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“factor model”

10. MVF; HJ
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(a) ∃  , HJ bound, frontier reutrns correlated, two fund theorem, Roll theorem. NOT

you want to hold mvf

(b) Equity premium risk/free rate puzzles.
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(c) Continuous time expression
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11. Radom walks and martingales.

0 =  [ (Λ)] Λ+1+1 = Λ + +1

12. “Efficiency”: price incorporates information. “Joint hypothesis theorem.” Implications: in-

formation sets 0 =  [ (Λ) |prices] ; 0 =  [ (Λ) |public] 0 =  [ (Λ) |inside]. Why
was it important? an organizing framework for empirical work. Example: trading rules. Fund

managers. Announcement effects.

13. General equlibrium:

(a) Endowment economy

(b) Full linear economy. Classic finance

 = + 

→portfolio theory→aggregation→CAPM. Qantities are endogenous, we derive the com-
position of the market portfolio

(c) Halfway 1: PIH model. R is nailed down and the allocation of consumption over time,

but not across states

(d) Halfway 2: Q theory, adjustment costs to risky investment projects
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But...

1. t stats on betas are low. This regression does not test the model: . vs.  tests the model.

But it means betas are poorly measured, possibly sensitive to a very few data points. (?

worth checking in the data!)

2. () =  × ((∆)) very large  is still implied
3. Does not check riskfree rate implications — the heart of the equity premium puzzle

4. The correct nonlinear version works much worse! It should be 1 = (
³
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raising things to the 50 power makes it work much worse
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